Contents

Preface XXIII
Introduction XXIX

Part One Structure and Bonding

1 Bonding in Coordination Compounds 3
1.1 d Wavefunctions 3
1.2 Crystal Field Effect on Wavefunctions 3
1.2.1 Qualitative Aspects 3
1.2.2 Quantitative Aspects 7
1.2.2.1 Energy Operator of the Ligand Field 7
1.2.2.2 Effect of \(V_{\text{oct}} \) on d Functions 7
1.2.2.3 Crystal Field Splitting Parameter 8
1.2.2.4 Weak and Strong Fields. Crystal Field Stabilization Energy 8
1.2.2.5 Splitting of d Orbitals in a Tetrahedral Field 10
1.2.2.6 Splitting of d Orbitals in a Tetragonally-distorted Octahedral Field. Square-planar Complexes 10
1.3 Molecular Orbital Theory 11
1.3.1 Molecular Orbitals of an Octahedral Complex 12
1.3.1.1 \(\sigma \) Molecular Orbitals 12
1.3.1.2 \(\pi \) Molecular Orbitals 14
1.3.2 Molecular Orbitals of a Tetrahedral Complex 17
1.3.3 Molecular Orbitals of a Square-planar Complex 18
1.3.4 Mixed Ligands and Other Geometries 20
1.3.5 Nobel Prizewinning Discoveries of Complexes 21
1.3.5.1 Metallocenes 21
1.3.5.2 Carbenes 22
1.4 Angular Overlap Model 24
1.4.1 Overlap Integral 24
1.4.2 Energy of the Molecular Orbitals 24
1.4.3 The Additive Character Rule 25
1.4.4 Tables for Calculating the Angular Overlap Parameters 25
2 Classification of Ligands and Design of Coordination 31

2.1 Introduction 31

2.2 Classification of Ligands According to Their Dentate Nature 32

2.2.1 Monodentate Ligands 32

2.2.2 Polydentate (Non-encapsulating) Ligands 32

2.2.2.1 Non-polypodal Open-chain Ligands 33

2.2.2.2 Polypodal Open-chain Ligands 35

2.2.2.3 Closed Polydentate Ligands: Macrocycles 36

2.2.3 Cryptands and Encapsulating Ligands 41

2.2.3.1 Cryptands with Ether-type Oxygen Atoms 43

2.2.3.2 Cryptands with Nitrogen Atoms (Azacryptands) 43

2.2.3.3 Cascade Effect 44

2.2.3.4 Other Cage-like Complexes 44

2.2.3.5 Molecular Capsules 46

2.3 Versatile Ligands 47

2.3.1 Scorpionates 47

2.3.1.1 Boron-Derivatives: ‘Typical’ Scorpionates 48

2.3.1.2 Carbon-Derivatives 48

2.3.2 Calixarenes 48

2.3.2.1 Functionalization and Complexation 50

2.3.2.2 Deprotonated Calix[n]arene, Calixanions 51

2.3.3 Fullerenes 52

2.3.3.1 Exohedral Metallofullerenes 52

2.3.3.2 Endohedral Metallofullerenes 53

References 54

Bibliography 57

3 Stereochemistry and Distortions in Coordination Compounds 59

3.1 Stereochemistry 59

3.1.1 Ligand–Ligand Repulsion: Kepert’s Model 59

3.1.2 Coordination Numbers: Various Factors 59

3.1.3 Coordination Number 2 60

3.1.4 Coordination Number 3 61

3.1.4.1 Stereochemistry 61

3.1.5 Coordination Number 4 62

3.1.5.1 Energy of the MOs (Angular Overlap Model) 63

3.1.5.2 Tetrahedral Complexes 64

3.1.5.3 Square-planar Complexes 64

3.1.5.4 cis-Divacant Octahedron 64

3.1.5.5 Polydentate Ligands: Steric Effects 64

3.1.5.6 $D_{ab} \leftrightarrow O_h$, Equilibrium 65

3.1.6 Coordination Number 5 65
5 Polynucleating Ligands: From Di- and Polynuclear Complexes to Nanomolecules 129

5.1 Introduction 129
5.2 Polynucleating Ligands 129
5.2.1 Monoatomic Bridging Ligands 130
5.2.2 Polyatomic Bridging Ligands 130
5.2.2.1 Diatomic Ligands 130
5.2.2.2 Small Versatile Ligands 130
5.2.3 Polytopic Ligands 131
5.2.4 Compartmental Bridging Ligands 131
5.2.4.1 Polyketones 132
5.2.4.2 Schiff Base Derivatives 132
5.3 Building Block Strategy or Controlled Synthesis: Complexes as Metals/Complexes as Ligands (Complexes as Tectons) 133
5.3.1 The “Complexes as Metals” Approach 134
5.3.2 The “Complexes as Ligands” Approach 134
5.3.3 The “Complexes as Ligands and Complexes as Metals” Approach 134
5.4 High Nuclearity Clusters: Generalities 135
5.5 Oxido-hydroxido High-nuclearity Clusters (Excluding Polyoxometalates) 135
5.5.1 Non-protected Compounds 135
5.5.2 Protected Compounds 136
5.5.2.1 Alkoxido Derivatives 136
5.5.2.2 Assembly of Metal-oxido(alkoxido)-bridged Clusters with Blocking Ligands 137
5.6 Polyoxometalates (POMs) 138
5.6.1 Nanosized Polyoxometalates (NS-POMs) 139
5.6.2 Selected Examples of POMs and NS-POMs 139
5.6.2.1 Vanadates 139
5.6.2.2 Nano-sized Vanadates 140
5.6.2.3 Molybdates and Tungstates 140
5.6.2.4 Nano-sized Molybdates 141
5.6.2.5 Nano-sized Tungstates 143
5.6.3 Polyoxometalate-supported Transition Metal Complexes 143
5.6.3.1 From Not-lacunary Polyoxometalates 143
5.6.3.2 From Lacunary Polyoxometalates 144
5.7 Oxido-carboxylate Clusters (Especially Those Derived from \[M_3O(carboxylate)_6\] Units) 145
5.7.1 Iron 146
5.7.2 Manganese 146
5.8 Metal Wheels 148
5.8.1 Ferric Wheels 148
5.8.2 Wheels of Other Metals 148
5.9 Other Significant Organic Polynucleating Ligands 149
5.9.1 Di-2-pyridylketones 150
6 Metal–Metal Bond and Metal Clusters 163

6.1 Introduction: Definition and Main Characteristics 163
6.2 Transition Metal Clusters 163
6.3 Transition Metal Clusters with π-Donor Ligands 164
6.3.1 Dinuclear Clusters 164
6.3.1.1 Dinuclear Clusters Based on ML₄ or ML₅ Fragments 164
6.3.1.2 Dinuclear Clusters Based on Face-sharing Biocahedra 166
6.3.1.3 L₃MML₃ Unbridged Dinuclear Clusters 166
6.3.1.4 A New and Unique Case: a Fivefold Cr–Cr Bonding 167
6.3.2 Trinuclear Clusters 167
6.3.3 Tetranuclear Clusters 168
6.3.4 Hexanuclear Clusters 168
6.3.5 Centered Clusters 169
6.3.6 Structures Containing More Than One Metal–Metal Bonded Unit 169
6.3.7 Extended Metal Atom Chains (EMACs) 170
6.4 Clusters with π-Acid Ligands: Structure and Bonding 170
6.4.1 Localized Bonding Treatments: 18 Valence Electron (VE) Rule 171
6.4.2 Isolobal Analogies 172
6.4.2.1 Extensions of the Analogy 174
6.4.2.2 Examples of Isolobal Analogies Derived from Octahedral Fragments 175
6.4.2.3 Isolobal Analogies from Non-octahedral Geometry 175
6.4.3 Delocalized Bonding Treatments: Structure and Bonding in Clusters of ‘Medium’ Nuclearity 176
6.4.3.1 Delocalization and Deltahedra: Polyhedral Skeletal Electron Pair Theory (PSEPT or SEP) 176
6.4.3.2 Summary 179
6.4.3.3 The Capping Principle 180
6.4.3.4 The Principle of Polyhedral Fusion (Condensed Polyhedra) 181
6.4.4 Structure and Bonding in High Nuclearity Clusters 181
6.5 Main Group Metal Clusters 183
6.5.1 Alkali and Alkaline earth Metal Clusters 183
6.5.2 Metal Clusters of Groups 13, 14 and 15 184
6.5.2.1 Examples 185
6.5.2.2 Metallated Zintl Clusters 187
6.6 Clusters with Interstitial Atoms 188
6.6.1 ‘Non-metallic’ Atoms in d-Block Clusters 188
<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.6.2</td>
</tr>
<tr>
<td>6.6.3</td>
</tr>
<tr>
<td>6.7</td>
</tr>
<tr>
<td>6.7.1</td>
</tr>
<tr>
<td>6.7.2</td>
</tr>
<tr>
<td>6.7.3</td>
</tr>
<tr>
<td>6.7.4</td>
</tr>
<tr>
<td>6.7.4.1</td>
</tr>
<tr>
<td>References</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>189</td>
</tr>
<tr>
<td>190</td>
</tr>
<tr>
<td>190</td>
</tr>
<tr>
<td>191</td>
</tr>
<tr>
<td>191</td>
</tr>
<tr>
<td>192</td>
</tr>
<tr>
<td>193</td>
</tr>
<tr>
<td>193</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
</tr>
<tr>
<td>7.1.1</td>
</tr>
<tr>
<td>7.1.2</td>
</tr>
<tr>
<td>7.1.3</td>
</tr>
<tr>
<td>7.1.3.1</td>
</tr>
<tr>
<td>7.1.3.2</td>
</tr>
<tr>
<td>7.1.3.3</td>
</tr>
<tr>
<td>7.1.3.4</td>
</tr>
<tr>
<td>7.1.4</td>
</tr>
<tr>
<td>7.2</td>
</tr>
<tr>
<td>7.2.1</td>
</tr>
<tr>
<td>7.2.2</td>
</tr>
<tr>
<td>7.2.2.1</td>
</tr>
<tr>
<td>7.2.2.2</td>
</tr>
<tr>
<td>7.2.2.3</td>
</tr>
<tr>
<td>7.2.2.4</td>
</tr>
<tr>
<td>7.2.3</td>
</tr>
<tr>
<td>7.2.3.1</td>
</tr>
<tr>
<td>7.2.4</td>
</tr>
<tr>
<td>7.2.4.1</td>
</tr>
<tr>
<td>7.2.4.2</td>
</tr>
<tr>
<td>7.2.4.3</td>
</tr>
<tr>
<td>7.2.4.4</td>
</tr>
<tr>
<td>7.2.5</td>
</tr>
<tr>
<td>7.2.5.1</td>
</tr>
<tr>
<td>7.2.5.2</td>
</tr>
<tr>
<td>7.2.5.3</td>
</tr>
<tr>
<td>7.2.5.4</td>
</tr>
</tbody>
</table>

| References |
| 194 |

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
</tr>
<tr>
<td>Thermodynamic and Non-redox Kinetic Factors in Coordination Compounds</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>199</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
</tr>
<tr>
<td>7.1.1</td>
</tr>
<tr>
<td>7.1.2</td>
</tr>
<tr>
<td>7.1.3</td>
</tr>
<tr>
<td>7.1.3.1</td>
</tr>
<tr>
<td>7.1.3.2</td>
</tr>
<tr>
<td>7.1.3.3</td>
</tr>
<tr>
<td>7.1.3.4</td>
</tr>
<tr>
<td>7.1.4</td>
</tr>
<tr>
<td>7.2</td>
</tr>
<tr>
<td>7.2.1</td>
</tr>
<tr>
<td>7.2.2</td>
</tr>
<tr>
<td>7.2.2.1</td>
</tr>
<tr>
<td>7.2.2.2</td>
</tr>
<tr>
<td>7.2.2.3</td>
</tr>
<tr>
<td>7.2.2.4</td>
</tr>
<tr>
<td>7.2.3</td>
</tr>
<tr>
<td>7.2.3.1</td>
</tr>
<tr>
<td>7.2.4</td>
</tr>
<tr>
<td>7.2.4.1</td>
</tr>
<tr>
<td>7.2.4.2</td>
</tr>
<tr>
<td>7.2.4.3</td>
</tr>
<tr>
<td>7.2.4.4</td>
</tr>
<tr>
<td>7.2.5</td>
</tr>
<tr>
<td>7.2.5.1</td>
</tr>
<tr>
<td>7.2.5.2</td>
</tr>
<tr>
<td>7.2.5.3</td>
</tr>
<tr>
<td>7.2.5.4</td>
</tr>
</tbody>
</table>

| References |
| 233 |

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bibliography</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Part Two Electronic Properties

8 Crystal Field Theory and Spin–Orbit Coupling: Energy Terms and Multiplets 237
 8.1 Introduction: The Atomic/Electronic Hamiltonian 237
 8.2 Application of Atomic and Spin Hamiltonians to Many-electron Wavefunctions: Terms, Multiplets and Magnetic States 238
 8.2.1 Basic Concepts 238
 8.2.2 Direct Product Method for Calculating Terms 240
 8.2.3 Different Cases for the Direct Product Calculation 241
 8.3 Weak Field Method 242
 8.3.1 Atomic (Spectroscopic) Terms 243
 8.3.2 Energy of the Atomic Terms 244
 8.3.3 Crystal Field Effect 245
 8.3.4 Observation Regarding the Ground Term 245
 8.3.5 Energy Values of the Crystal Field Terms 247
 8.3.5.1 Effect of the Crystal Field on the Spectroscopic Terms 247
 8.3.5.2 Excited Terms with Same Spin Multiplicity as Ground Term: Configuration Interaction 249
 8.3.5.3 Orgel Diagrams 250
 8.4 Strong Field Method 252
 8.4.1 Considerations Regarding the Ground Term 253
 8.4.2 Term Energies 254
 8.5 Correlations Between the Energy Terms Derived from the Weak and Strong Fields: Intermediate Fields 254
 8.6 Tanabe–Sugano Diagrams 257
 8.7 Ligand Field 259
 8.8 Spin–Orbit Coupling 261
 8.8.1 Spin–Orbit Coupling in Atomic (Spectroscopic) Terms 261
 8.8.2 Spin–orbit Coupling in Coordination Compounds 263
 8.8.3 First-order Spin–Orbit Coupling 263
 8.8.3.1 Cubic Symmetry, O_h or T_d 263
 8.8.3.2 General Case: Non-cubic Symmetry 264
 8.8.3.3 Splitting of the Terms 264
 8.8.3.4 Energy of the Terms in O_h Symmetry 265
 8.8.4 Second-order Spin–Orbit Coupling 265
 8.8.4.1 The Zero Field Splitting (ZFS) 267
 8.8.4.2 The g Parameter Variations 269
 8.9 Final Considerations on Spin–Orbit Coupling and Zero Field Splitting 270
 References 272

9 Electronic Spectroscopy 273
 9.1 Introduction 273
 9.2 Electromagnetic Radiation 273
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3</td>
<td>Fundamentals of Spectroscopy: Selection Rules</td>
<td>275</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Basic Spectroscopic Principles</td>
<td>275</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Transition Moment</td>
<td>276</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Selection Rules</td>
<td>277</td>
</tr>
<tr>
<td>9.4</td>
<td>Interpretation of the Selection Rules</td>
<td>278</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Mixture of d and p Orbitals of the Same Symmetry Species</td>
<td>278</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Vibronic Coupling</td>
<td>279</td>
</tr>
<tr>
<td>9.4.3</td>
<td>Spin–Orbit Coupling</td>
<td>280</td>
</tr>
<tr>
<td>9.5</td>
<td>Types of Spectra for Transition Metal Complexes</td>
<td>281</td>
</tr>
<tr>
<td>9.5.1</td>
<td>d → d Spectra</td>
<td>281</td>
</tr>
<tr>
<td>9.5.1.1</td>
<td>Number of Bands that Appear and Their Assignation</td>
<td>281</td>
</tr>
<tr>
<td>9.5.1.2</td>
<td>Intensity of the Bands</td>
<td>282</td>
</tr>
<tr>
<td>9.5.1.3</td>
<td>Study of the Bandwidth</td>
<td>282</td>
</tr>
<tr>
<td>9.5.1.4</td>
<td>Band Splitting or Asymmetry</td>
<td>283</td>
</tr>
<tr>
<td>9.5.1.5</td>
<td>Band Polarisation: Dichroism</td>
<td>284</td>
</tr>
<tr>
<td>9.5.2</td>
<td>Charge-transfer Spectra</td>
<td>286</td>
</tr>
<tr>
<td>9.5.2.1</td>
<td>Definition and Types</td>
<td>286</td>
</tr>
<tr>
<td>9.5.2.2</td>
<td>Intensity and Allowed Nature of CT Transitions</td>
<td>287</td>
</tr>
<tr>
<td>9.5.2.3</td>
<td>Band Energy: Relationship to Redox Potentials</td>
<td>289</td>
</tr>
<tr>
<td>9.5.2.4</td>
<td>M → L or L → M Transitions?</td>
<td>291</td>
</tr>
<tr>
<td>9.5.3</td>
<td>Intervalance Charge-transfer Bands</td>
<td>291</td>
</tr>
<tr>
<td>9.6</td>
<td>Calculating the Crystal Field Parameters from the Position of the d–d Bands</td>
<td>292</td>
</tr>
<tr>
<td>9.6.1</td>
<td>Numerical Method for d^2, d^3, d^7 (Weak Field) and d^8 Ions</td>
<td>292</td>
</tr>
<tr>
<td>9.6.2</td>
<td>Graphical Methods for Any d^n Configuration</td>
<td>293</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>293</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>293</td>
</tr>
<tr>
<td>10</td>
<td>Molecular Magnetism</td>
<td>295</td>
</tr>
<tr>
<td>10.1</td>
<td>Mononuclear Complexes</td>
<td>295</td>
</tr>
<tr>
<td>10.1.1</td>
<td>Introduction</td>
<td>295</td>
</tr>
<tr>
<td>10.1.2</td>
<td>Quantum Magnetism: Magnetic Moment and Energy of the States</td>
<td>296</td>
</tr>
<tr>
<td>10.1.2.1</td>
<td>Generalities</td>
<td>296</td>
</tr>
<tr>
<td>10.1.2.2</td>
<td>Orbital and Spin Angular Momentum</td>
<td>296</td>
</tr>
<tr>
<td>10.1.2.3</td>
<td>Electronic Magnetic Moment</td>
<td>297</td>
</tr>
<tr>
<td>10.1.2.4</td>
<td>Energy and Magnetization</td>
<td>297</td>
</tr>
<tr>
<td>10.1.3</td>
<td>The Hamiltonian</td>
<td>297</td>
</tr>
<tr>
<td>10.1.3.1</td>
<td>Spin Hamiltonian</td>
<td>298</td>
</tr>
<tr>
<td>10.1.3.2</td>
<td>Hamiltonian for T Terms</td>
<td>298</td>
</tr>
<tr>
<td>10.1.4</td>
<td>Macroscopic Magnetism: Definitions and Units</td>
<td>298</td>
</tr>
<tr>
<td>10.1.5</td>
<td>Magnetic Measurements: Magnetization and Molar Susceptibility</td>
<td>300</td>
</tr>
<tr>
<td>10.1.5.1</td>
<td>Boltzmann Statistics</td>
<td>300</td>
</tr>
<tr>
<td>10.1.5.2</td>
<td>Overall Magnetization</td>
<td>300</td>
</tr>
<tr>
<td>10.1.5.3</td>
<td>Magnetization: Brillouin Function</td>
<td>300</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>10.1.5.4</td>
<td>Molar Susceptibility: van Vleck Equation</td>
<td>304</td>
</tr>
<tr>
<td>10.1.5.5</td>
<td>Plots of χ_m, $\chi_m T$ and $1/\chi_m$ for Complexes that Follow Curie Law</td>
<td>306</td>
</tr>
<tr>
<td>10.1.5.6</td>
<td>Plots for Complexes that Follow the Curie–Weiss Law</td>
<td>306</td>
</tr>
<tr>
<td>10.1.6</td>
<td>Application of the Spin Hamiltonian to the A or E Terms</td>
<td>307</td>
</tr>
<tr>
<td>10.1.6.1</td>
<td>Isotropic Systems (Mono- or Polyelectronic)</td>
<td>307</td>
</tr>
<tr>
<td>10.1.6.2</td>
<td>Anisotropic Systems</td>
<td>308</td>
</tr>
<tr>
<td>10.1.7</td>
<td>Magnetism in Orbitally Degenerate Terms (T in O_h or T_d)</td>
<td>309</td>
</tr>
<tr>
<td>10.2</td>
<td>Polynuclear Complexes</td>
<td>311</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Introduction</td>
<td>311</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Magnetic Interpretation in a Cu$^{2+}$ Dinuclear Complex</td>
<td>311</td>
</tr>
<tr>
<td>10.2.3</td>
<td>Phenomenological Treatment</td>
<td>313</td>
</tr>
<tr>
<td>10.2.3.1</td>
<td>The Heisenberg–Dirac–Van Vleck Hamiltonian</td>
<td>313</td>
</tr>
<tr>
<td>10.2.3.2</td>
<td>Calculation of the Energies for Homodinuclear Complexes with dn Configuration</td>
<td>314</td>
</tr>
<tr>
<td>10.2.4</td>
<td>Molar Susceptibility Equations for Homodinuclear Complexes</td>
<td>314</td>
</tr>
<tr>
<td>10.2.5</td>
<td>χ_m and $\chi_m T$ vs. T Plots</td>
<td>315</td>
</tr>
<tr>
<td>10.2.5.1</td>
<td>$S_A = S_B = 1/2$ (Dinuclear Copper(II) Complex)</td>
<td>315</td>
</tr>
<tr>
<td>10.2.5.2</td>
<td>Homodinuclear Complexes dn–dn</td>
<td>316</td>
</tr>
<tr>
<td>10.2.6</td>
<td>Heterodinuclear Complexes</td>
<td>317</td>
</tr>
<tr>
<td>10.2.7</td>
<td>Generalization to Other Polynuclear Compounds</td>
<td>317</td>
</tr>
<tr>
<td>10.2.8</td>
<td>Relations Between Molecular Orbitals and Magnetic Coupling</td>
<td>318</td>
</tr>
<tr>
<td>10.2.8.1</td>
<td>The Nature of the Magnetic Exchange</td>
<td>318</td>
</tr>
<tr>
<td>10.2.8.2</td>
<td>New Trends</td>
<td>320</td>
</tr>
<tr>
<td>10.2.8.3</td>
<td>Extrapolation to Different Polynuclear Systems</td>
<td>321</td>
</tr>
<tr>
<td>10.2.9</td>
<td>Qualitative Study of Some Antiferromagnetically Coupled Systems</td>
<td>321</td>
</tr>
<tr>
<td>10.2.9.1</td>
<td>Influence of the Geometry in Dinuclear Cu$^{2+}$ Complexes with Halido, Oxido, Hydroxido or Alkoxido Bridges: a Paradigmatic Case</td>
<td>321</td>
</tr>
<tr>
<td>10.2.9.2</td>
<td>Tuning of J Value in Complexes with Antiferromagnetic Coupling</td>
<td>323</td>
</tr>
<tr>
<td>10.2.10</td>
<td>Ferromagnetic Interactions</td>
<td>325</td>
</tr>
<tr>
<td>10.2.10.1</td>
<td>Theory and Experimental Data</td>
<td>325</td>
</tr>
<tr>
<td>10.2.10.2</td>
<td>Tuning of J Value with Azido Bridging Ligands: Antiferromagnetism vs. Ferromagnetism</td>
<td>326</td>
</tr>
<tr>
<td>10.2.11</td>
<td>Towards Molecule-based Magnets</td>
<td>327</td>
</tr>
<tr>
<td>10.2.11.1</td>
<td>Some Examples of Molecule-based Magnets</td>
<td>328</td>
</tr>
<tr>
<td>10.2.11.2</td>
<td>Importance and Perspectives</td>
<td>329</td>
</tr>
<tr>
<td>10.2.12</td>
<td>Single-Molecule Magnets</td>
<td>329</td>
</tr>
<tr>
<td>10.2.12.1</td>
<td>Magnetic Relaxation</td>
<td>330</td>
</tr>
<tr>
<td>10.2.12.2</td>
<td>Quantum-tunneling Effects</td>
<td>331</td>
</tr>
<tr>
<td>10.2.12.3</td>
<td>Main Examples of SMMs</td>
<td>332</td>
</tr>
<tr>
<td>10.2.12.4</td>
<td>Single Chains Magnets (SCM)</td>
<td>332</td>
</tr>
<tr>
<td>10.2.12.5</td>
<td>Challenges and Perspectives</td>
<td>332</td>
</tr>
<tr>
<td>10.3</td>
<td>Spin Transitions (Spin Crossover (SCO))</td>
<td>333</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Concepts and Mechanisms</td>
<td>333</td>
</tr>
</tbody>
</table>
10.3.1.1 Effect of Pressure 335
10.3.1.2 Effect of Light 335
10.3.2 Collective Behavior 336
10.3.3 Magnetic Measurements 336
10.3.4 Some Examples 337
10.3.5 Perspectives 338
References 338

11 Electron Paramagnetic Resonance in Coordination Compounds 341
11.1 Introduction 341
11.2 Fundamentals of EPR Spectroscopy 341
11.3 Systems Suitable for Research with EPR 342
11.4 Recording EPR Spectra and Their Information 343
11.5 g Values 344
11.6 Hyperfine Coupling 345
11.6.1 The Simplest Example: the Hydrogen Atom 346
11.6.2 Hyperfine Coupling Created by Equivalent $I = 1/2$ Nuclei 347
11.6.3 Hyperfine Coupling Originated by $I = 1/2$ Non-equivalent Nuclei 348
11.6.4 Hyperfine Coupling Originated by Nuclei with $I > 1/2$ 349
11.7 Isotropic Polyatomic Systems 352
11.8 Study of the Anisotropy in Monoatomic Systems with Orbitally Non-degenerate Ground States 353
11.8.1 The g Parameter 353
11.8.2 Shape of the EPR Spectra for Anisotropic Monoatomic Ions 355
11.8.3 Examples of $S = 1/2$ Systems Other Than Cu$^{2+}$ Complexes 357
11.9 Zero-field Splitting: Anisotropic Polyatomic Systems ($S > 1/2$) 357
11.9.1 S Integer (i.e. $S = 1$, Ni$^{2+}$ or $S = 2$, Mn$^{3+}$) 358
11.9.2 S Non-integer (i.e. $S = 3/2$, Cr$^{3+}$ or $S = 5/2$, Mn$^{2+}$) 364
11.10 EPR Spectra of Polynuclear Metal Complexes 366
11.10.1 Some Typical Examples 366
11.11 EPR Spectra of Orbitally Degenerate Terms 368
11.12 High-frequency and High-field EPR Spectroscopy 368
11.13 Relaxation Times and Linewidths in EPR 369
11.13.1 Spin–Lattice Relaxation 370
11.13.2 Spin–Spin Relaxation 370
References 371
Bibliography 373

Part Three Electron Transfer

12 Redox Mechanisms 377
12.1 Historical Introduction 377
12.2 Mechanisms of Redox Reactions 377
12.2.1 The Outer-sphere Mechanism 378
12.2.1.1 The Electron Transfer Precursor 379
12.2.1.2 The Electron Transfer Step 380
12.2.1.3 Zero-order and First-order Potential Energy Surfaces 386
12.2.1.4 Theoretical Treatments of the ET Transfer: From Classical to Quantum Theories 387
12.2.1.5 Some Examples of Outer-sphere Reactions 393
12.2.2 The Inner-sphere Mechanism 394
12.2.2.1 The Experiments of Taube 394
12.2.2.2 Mechanism 395
12.2.2.3 Criteria and Factors Influencing the Inner-sphere Mechanism 396
12.2.2.4 Formation of Precursor Complexes 397
12.2.2.5 An Organic Radical? 398
12.2.2.6 Post-electron Transfer Intermediates 399
12.2.3 Inner-sphere vs. Outer-sphere Reactions 400
References 401
Bibliography 402

13 Mixed-valence Compounds 403
13.1 Introduction 403
13.2 Experimental Features 403
13.2.1 Color 403
13.2.2 Electrical Conductivity 404
13.2.3 Magnetic Properties 404
13.3 Definition, Stability and Electronic Delocalization 404
13.4 Electrons Jumping from One Center to Another 406
13.5 The Robin–Day Classification 407
13.6 Theory of Mixed-valence Compounds 407
13.6.1 Introduction 407
13.6.2 Classical Theory 409
13.6.3 Quantum Theory: the Piepho–Krausz–Schatz (PKS) Model 410
13.6.4 Classification of Mixed-valence Systems According to the Classical or PKS Theories 412
13.6.4.1 Characteristics of the Intervalance Bands 414
13.6.4.2 Dynamics Considerations and the Class II–III Classification 414
13.7 Degree of Delocalization: Factors Favoring Localization or Delocalization 415
13.7.1 Influence of the Symmetry / Asymmetry Created by Ligands 415
13.7.1.1 CuII–CuI Complexes with Binucleating Macrocyclic Ligands 415
13.7.1.2 FeII–FeIII Complexes with Binucleating Macrocyclic Ligands 417
13.7.1.3 Cyanido-bridged Complexes 418
13.7.2 Influence of the Asymmetry of the Ions 418
13.7.2.1 Manganese Dinuclear Complexes 418
13.7.2.2 [M,O] Complexes 419
13.7.3 Non-discrete Systems 421
13.7.3.1 One-dimensional Complexes 421
13.7.3.2 Three-dimensional Complexes 423
13.7.4 The Creutz-Taube Ion: \([\text{[NH}_3\text{]_5\text{Ru}–(\mu-\text{pyrazine})–\text{Ru(NH}_3\text{)}_5]}\)^5 and Similar: Class II–III? 423
13.7.5 Class III-A (Isolated Complexes) 425
13.7.5.1 Clusters Without a Direct Metal–Metal bond (or at Least Total Evidence of It) 425
13.7.5.2 Metallic Clusters with Metal–Metal Bond 426
13.7.6 Class III-B: Extended Systems 430
13.7.6.1 One-dimensional Wires 430
13.7.6.2 Three-dimensional Systems 431
13.8 Conclusions 431
References 432
Bibliography 434

Part Four New Trends in Modern Coordination Chemistry

14 Supramolecular Chemistry, Metallosupramolecular Chemistry and Molecular Architecture 439
14.1 Supramolecular Chemistry: Definitions 439
14.1.1 Lehn’s Idea 439
14.1.2 Intermolecular Bonds 440
14.1.3 Concepts and Perspectives 441
14.1.3.1 Host–Guest Chemistry 441
14.1.3.2 Self-assembly Processes 441
14.1.3.3 Perspectives 441
14.1.3.4 The “Philosophy” of This Chapter 441
14.2 Molecular Recognition 442
14.2.1 Molecular Receptors (Hosts) 442
14.2.1.1 Cation-binding Hosts 442
14.2.1.2 Selectivity of Cation Complexation 446
14.2.1.3 Anionic Recognition 447
14.2.1.4 From Anionic Recognition to Cationic Recognition: A Simple Change in pH 448
14.2.1.5 Neutral Molecules Recognition: Binding of Neutral Molecules 448
14.2.1.6 Molecular Coreceptors and Multiple Recognition 450
14.3 Supramolecular Dynamics: Reactivity, Catalysis and Transport Processes 451
14.4 The Self-assembly Concept and Its Application in Molecular and Supramolecular Chemistry 451
14.5 Metallosupramolecular Chemistry: Different Strategies and Types 452
14.5.1 Helicates 453
14.5.1.1 Cyclic Helicates 455
14.5.1.2 Self-recognition in Helicates 456
14.5.2 Grid-type Metal Ion Architectures 457
14.5.3 Ladder and Racks Architectures 458
14.5.4 Discrete Nanostructures Mediated by Transition Metals. Molecular Paneling via Coordination 458
14.5.4.1 Polygons (or Metallocycles) 459
14.5.4.2 Polyhedra: Molecular Paneling 460
14.5.4.3 Cationic and Anionic Control 463
14.6 Encapsulated Guests in Metallo-nanostructures 463
14.7 Supramolecular Assistance in the Synthesis of Molecular (and Supramolecular) Structures 463
14.7.1 Rotaxanes, Catenanes and Knots 464
14.7.1.1 Catenanes, Catenates 464
14.7.1.2 Rotaxanes 466
14.7.1.3 Knots 466
14.7.1.4 Necklaces 467
14.8 (Supra)molecular Devices and Machines 468
14.8.1 Some Different Motions 469
References 472

15 Photochemistry and Photophysics in Coordination Compounds 477
15.1 Fundamentals 477
15.1.1 Introduction 477
15.1.2 Electronic Spectra and Photochemistry 477
15.1.3 Photochemical Principles for Absorption and Emission 478
15.1.3.1 Introduction 478
15.1.3.2 The Excited State 479
15.1.3.3 Transitions Between Energy States. Decay Processes 480
15.1.3.4 Quantum Yield 483
15.1.3.5 Main Principles: Kasha’s Rule and Stokes Shift 483
15.1.4 Identification of the Excited State 484
15.2 Examples of Main Photochemical Processes 485
15.2.1 Non-redox Processes 485
15.2.1.1 Photoisomerization 485
15.2.1.2 Photodissociation 486
15.2.1.3 Photosubstitution 487
15.2.2 Photo-redox Processes 487
15.2.2.1 General Aspects 487
15.2.2.2 Mechanism of the Redox Processes 488
15.2.2.3 Variation in Redox Potentials 488
15.2.3 Generalities of Some Photochemically Active Series of Compounds 489
15.2.3.1 [Ru(bpy)3]2+ and Related Complexes 489
15.2.3.2 Porphyrins and Related Complexes 491
15.2.3.3 Photophysics of Lanthanides 491
15.3 Photo-molecular Devices and Machines 493
15.3.1 Switching Electron-transfer and Energy-transfer Processes 494
15.3.1.1 Bistable Systems 494
15.3.1.2 Multiple Chemical Inputs 495
15.3.2 Light-harvesting Antennae 497
15.3.2.1 Metallo-porphyrin Systems 499
15.3.2.2 Dendrimers 500
15.3.2.3 Lanthanide Systems 501
15.3.3 Photoinduced Charge Separation (Solar Energy Conversion) 502
15.3.3.1 Photoinduced Energy Transfer Coupled to Charge Separation 502
15.3.3.2 Model of Photosynthesis 504
15.4 Applications (Present and Future) 505
15.4.1 Modulation of Switches: Analytical Probes and Sensors 505
15.4.1.1 Fluorescent (or Luminescent) Chemosensors 505
15.4.2 Photomolecular-scale Machines 508
15.4.2.1 Systems Based on Photoisomerization Processes 508
15.4.2.2 Systems Based on Photoinduced Electron Transfer (PET) 509
15.4.3 Splitting of Water upon Visible Light Irradiation: Hydrogen Liberation 510
15.4.3.1 The Solar Spectrum and Energy Requirements 510
15.4.3.2 The First Steps of the History: From the Beginning to the 1980s 511
15.4.3.3 The Second Step: The Use of Sensitizers and Semiconductors 512
15.4.3.4 The Third Step: The Use of Only Semiconductors 513
15.4.3.5 Grätzel’s System 514
15.4.3.6 Non-Ru-bpy Systems 514
15.4.3.7 Dye-sensitized Solar Cells 514
15.4.3.8 The Future 515
References 515
Bibliography 519

16 Crystal Engineering: Metal–Organic Framework (MOFs) 521
16.1 Coordination Polymers and Crystal Engineering 521
16.1.1 Coordination Polymers 521
16.1.2 Crystal Engineering 521
16.1.3 Strategies in Coordination Chemistry 522
16.1.3.1 Node-and-Spacer Approach 522
16.1.3.2 The Counter-anion/cation Influence 524
16.1.4 General Analysis of Framework Structures 524
16.1.4.1 A Question of Nomenclature 524
16.1.4.2 1D Framework Structures 524
16.1.4.3 2D Framework Structures 525
16.1.4.4 3D Framework Structures 526
16.2 MOFs with Polydentate Polypyridyl Derivatives 526
16.2.1 Pyrazine, 4,4′-Bipyridine and Similar Ditopic “Rigid” Derivatives 526
16.2.1.1 One- and Two-dimensional Networks 526
16.2.1.2 Three-dimensional Networks 528
16.2.2 Tritopic (Trigonal) and Similar Polytopic Bridging Ligands 528
16.2.3 Flexible Bis-pyridyl-like Derivatives 528
16.2.3.1 Simple Cases 528
16.2.3.2 Metal–organic Rotaxane Frameworks (MORFs) 529
16.2.3.3 Cucurbituril Networks: Influence of the Metal Center and the Bridging Ligands 530
16.3 MOFs with Carboxylate Linkers 531
16.4 MOFs with Polynuclear Building Nodes 533
16.4.1 Dinuclear Building Nodes 533
16.4.2 M₂O and M₄O Building Nodes 535
16.4.3 “Nanoscale” Building Nodes 536
16.4.4 Oligonuclear Complexes as Tectons 537
16.5 Highly Connected Solid-state Materials 537
16.5.1 From Lanthanide Nodes 537
16.5.2 From Cluster Nodes 537
16.6 Interpenetrating MOFs 539
16.6.1 Topology of Interpenetration 540
16.7 Porous Coordination Polymers 541
16.7.1 Interpenetration vs. Porosity: a Problem 541
16.7.2 Types of Porous Structures 542
16.7.2.1 Dots (0D Cavities) 542
16.7.2.2 Channels (1D Space) 542
16.7.2.3 Layers (2D Space) 543
16.7.2.4 Intersecting Channels (3D Space) 543
16.7.2.5 Reversible Transformation 543
16.7.3 Functions of Porous Structures 543
16.7.3.1 Gas Sorption or Storage 544
16.7.3.2 Exchange 545
16.7.3.3 Catalysis 545
16.8 Inorganic Hybrid Materials 546
16.8.1 Metal-azido Coordination Polymers 546
16.8.2 Metal-cyanido Coordination Polymers 547
16.8.3 Polyoxometalates as Nodes 547
References 548
Bibliography 553

17 Biocoordination Chemistry: Coordination Chemistry and Life 555
17.1 Introduction 555
17.1.1 Biodistribution of Metal Ions 555
17.1.2 Biocoordination Compounds 557
17.1.2.1 Types of Reactions 557
17.1.2.2 Knowledge of the Active Site: Crystallographic, Spectroscopic and Other Techniques 558
17.2 Biological Ligands and Their Environment 558
17.2.1 Proteins 558
17.2.2 Macrocyclic Tetrpyrrole Ligands (Porphyridinoids) 560
17.2.2.1 Heme Group 562
17.2.2.2 Macrocyclic Ligands derived from Non-heme Porphyrins 562
17.3 Systems that Interact with O₂ 563
17.3.1 O₂ Carriers 563
17.3.1.1 Myoglobin and Hemoglobin 563
17.3.1.2 Non-heme Carriers: Hemerythrin and Hemocyanin 565
17.3.2 Activation of O₂ 566
17.3.2.1 Hemoglobin-like Systems 566
17.3.2.2 Hemerythrin-like Systems 567
17.3.2.3 Hemocyanin-like Systems 568
17.3.3 Other Fe-Heme Enzymes: Peroxidases and Catalases 569
17.4 Electron Transfer 570
17.4.1 Cytochromes 570
17.4.2 Fe–S Proteins 571
17.4.3 Blue Copper Proteins 573
17.5 Electron Transport and Enzyme Activity 573
17.5.1 Cell Respiration: Cytochrome Oxidase 573
17.5.2 Photosynthesis 575
17.5.3 Nitrogen Fixation: Nitrogenase 576
17.6 Medicinal Coordination Chemistry 578
17.6.1 Therapeutic Agents: Some Examples 578
17.6.2 Diagnostic Agents: Some Examples 579

Appendix 1: Tanabe–Sugano Diagrams (Chapter 8) 583
Appendix 2: Definitions and Units in Molecular Magnetism (Chapter 10) 587
Appendix 3: χₘ formulae for some homodinuclear, dⁿ–dⁿ, and heterodinuclear, dⁿ–dⁿ, complexes (Chapter 10) 589
Index 591