Contents

Preface
XI

Introduction
1

1 **Basic Principles**
1.1 Atomic structure
1.2 Plasmas
1.3 Emission and absorption of radiation
1.4 Ionization
1.5 Dissociation
1.6 Sources for atomic spectrometry
1.7 Analytical atomic spectrometry

2 **Spectrometric Instrumentation**
2.1 Figures of merit of an analytical method
2.2 Optical spectrometers
2.2.1 Optical systems
2.2.2 Radiation detectors
2.2.3 Miniaturized spectrometers
2.2.4 Non-dispersive spectrometers
2.3 Mass spectrometers
2.3.1 Types of mass spectrometers
2.3.2 Ion detection
2.3.3 Ion extraction
2.3.4 Ion optics and transmission
2.4 Data acquisition and treatment
2.5 Traceability

3 **Sample Introduction Devices**
3.1 Sample introduction by pneumatic nebulization
3.2 Ultrasonic nebulization
3.3 Hydride and other volatile species generation
3.4 Electrothermal vaporization

Analytical Atomic Spectrometry with Flames and Plasmas by José A. C. Broekaert
Copyright © 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-31282-X
3.4.1 The volatilization process 121
3.4.2 Types of electrothermal devices 122
3.4.3 Temperature programming 125
3.4.4 Analytical performance 127
3.5 Direct solids sampling 128
3.5.1 Thermal methods 128
3.5.2 Slurry atomization 131
3.5.3 Arc and spark ablation 136
3.5.4 Laser ablation 142
3.6 Cathodic sputtering 147

4 Atomic Absorption Spectrometry 159
4.1 Principles 159
4.2 Atomic absorption spectrometers 161
4.2.1 Spectrometers 161
4.2.2 Primary radiation sources 163
4.3 Flame atomic absorption 171
4.3.1 Flames and burners 172
4.3.2 Nebulizers 174
4.3.3 Figures of merit 175
4.4 Electrothermal atomic absorption 177
4.4.1 Atomizers 178
4.4.2 Thermochemistry 181
4.4.3 Figures of merit 182
4.5 Special techniques 187
4.5.1 Hydride and cold-vapor techniques 187
4.5.2 Direct solids sampling 189
4.5.3 Indirect determinations 190
4.5.4 Flow injection analysis 190
4.5.5 Diode laser atomic absorption spectrometry 191
4.6 Background correction techniques 192
4.6.1 Correction for background absorption with the deuterium lamp technique 192
4.6.2 Background correction with the aid of the Zeeman effect 194
4.6.3 The Smith–Hieftje technique 197
4.6.4 Coherent forward scattering 197
4.7 Fields of application 199
4.8 Outlook 205

5 Optical Emission Spectrometry 207
5.1 Principles 207
5.2 Atomic emission spectrometers 217
5.3 Flame emission 225
5.4 Arcs and sparks 225
5.4.1 Arc emission spectrometry 225
5.4.1.1 Arc characteristics 225
5.4.1.2 DC arc spectrometry 226
5.4.1.3 AC arc spectrometry 228
5.4.2 Spark emission spectrometry 228
5.4.2.1 Sparks 228
5.4.2.2 Analytical features 230
5.5 Plasma source OES 232
5.5.1 DC plasma-jet OES 232
5.5.1.1 Types of plasma jets 232
5.5.1.2 Three-electrode plasma jet 233
5.5.2 Inductively coupled plasma OES 234
5.5.2.1 The inductively coupled plasma 234
5.5.2.2 Instrumentation 236
5.5.2.3 Analytical performance 238
5.5.2.4 Applications 247
5.5.3 Low-power high-frequency plasmas 249
5.5.4 Microwave plasmas 253
5.6 Glow discharge OES 265
5.6.1 Hollow cathodes for OES 266
5.6.2 Furnace emission spectrometry 267
5.6.3 DC glow discharges with a flat cathode 268
5.6.4 RF glow discharges 272
5.6.5 New developments 273
5.7 Laser sources 279

6 Plasma Mass Spectrometry 284
6.1 ICP mass spectrometry 285
6.1.1 Instrumentation 285
6.1.2 Analytical features 287
6.1.3 Applications 304
6.1.4 Outlook 311
6.2 Glow discharge mass spectrometry 314
6.2.1 Instrumentation 316
6.2.2 Analytical performance 323
6.2.3 Analytical applications 323

7 Atomic Fluorescence Spectrometry 332
7.1 Principles 332
7.2 Instrumentation 335
7.3 Analytical performance 337

8 Laser-Enhanced Ionization Spectrometry 339
8.1 Principles 339
8.2 Figures of merit 342
8.3 Analytical applications 343