Index

Note: page numbers in italic refer to figures, those in bold refer to tables

acoustic backscatter sensors (ABS) 161
 small-scale sediment process measurement 183
 suspended sediment concentration
 measurement 179–81
acoustic Doppler current profilers (ADCP) 161, 174, 177
 Mispec Bay (Bay of Fundy) study 252
 suspended sediment concentration
 measurement 179
acoustic Doppler velocimetry (ADV) 161, 174, 175, 176
acoustic surveys
 benthic habitat mapping 405–14
 data interpretation 408–9
Agulhas Current (southeast African continental
 shelf) 229–46
 bedform
 distribution 233–4
 dynamics 237–8, 240
 location map 231
 meandering 230
 mid-shelf conveyor belt 244–5
 sand dunes
 dimensions in relation to water depth 234, 237, 242, 243, 244
 distance plots 238
 height 232, 233–4, 235, 236, 238, 239
 height wave-like oscillations 242
 height/wavelength relationships 240, 242
 migration rate 238–40, 241, 244–6
 steepness ratio 234
 wavelengths 232, 233–4, 235, 236
 sediment
 composition 234, 236, 238, 239
 grain size 234, 236, 238, 239
 sampling 231–3
 sidescan sonar 231, 232
 study area 230, 231
 study methods 230–3
 velocity gradient 230
animals, stresses from physical processes 391
anthropogenic disturbance, benthic communities 394
Australian shelf hydrodynamic
 regionalizations 398–401
backscatter 3, 13–22
 acoustic strength 13–14
 angular response curve shapes 17–21
 beam pattern residuals 15
 estimating 17
 beam patterns
 multiple sectors 17
 rolling transmit 17
 single sectors 16–17
 bedform correlation 22
 benthic habitat mapping 409
 data manipulation strategies 17–22
 Fraser River delta (western Canada) 51
 grazing angle 14, 15
 Bay of Fundy 24
 local extraction 21–2
 mid-range 20–1
 variability estimation 17, 18
 physical control on seabed scattering 13–15
 pulse length 15, 16
 receiver gain settings 15
 rolling response predictor 19, 20
 seabed 13–14
 seafloor slope 15
 seawater attenuation 15–16
 sediment grain size 14–15
 sonar radiometric/geometric influence 15–17
 source level 15
 strength 15
 volume heterogeneity 14
 Bar and Swash Imaging Radar (BASIR) 104, 105, 107, 108
 basins 47
bathymetry
 digital compilation of data from Sable Island Bank
 (Scotian Shelf) 199–200, 201
 Mispec Bay (Bay of Fundy) 251
 shelf 99
 see also multibeam bathymetry
Bay of Fundy
 backscatter data changes 24, 25
 bedforms 22–5
 difference map 23, 24
 dune migration 23–4
 ellipsoid to geoid surface separation 11, 13
 grazing angle 24
 regional substrate 25
 relict environment 25
 sedimentary processes 25
 tidal reduction model 11–12
 see also Mispec Bay (Bay of Fundy)
bed level
 acoustic mapping 182
 mechanical detection 182
 optical detection 182
 small-scale measurement 183–5
 see also seabed; seafloor

© 2012 International Association of Sedimentologists and published for them by Blackwell Publishing Ltd.
bed roughness 99, 183
continental shelf sediment transport 163–4
sand ridges 131
seabed/seawater interface 14
bed scanning systems (BSS) 183–4, 185
bed stress 162
storm-induced 397
bedform 273
Agulhas Current (southeast African continental shelf) distribution 233–4
asymmetry
calculation 278–9
numerical modelling 281–3
San Francisco Bay coastal system 279, 280–3, 289, 291, 292
displacement measurement 250
mapping 273–4
migration 249–50
measurement 177–8
rate 230
San Francisco Bay coastal system 292
Mispec Bay (Bay of Fundy) migrating 251
shear stress 259–60
mobility 215–16
Sable Island Bank (Scotian Shelf) 198
Copan area 206–7, 209, 211
Defense Research and Development Canada (DRDC) sediment 207–8, 210, 212
distribution 197–8, 201, 203–4, 215–16
distribution link to seabed disturbance 216–17, 220–1
morphology 201, 203, 204
South Sable area 204–6
San Francisco Bay coastal system asymmetry 279, 280–3, 286, 289, 291, 292
depth 280
height 280, 284–5
measurement 277–9
migration 292
patterns 288–9, 290–1, 292
sediment-starved 285
temporal variation in morphology 285–6, 287, 288
tidal bias of analysis 288
wavelength 279–80, 284–5
shear stress 255
Mispec Bay (Bay of Fundy) 259–60, 266
zones 221–2, 223, 224
bedform-associated sediment transport, Mispec Bay (Bay of Fundy) 250, 252–3
bedform celerity method (BCM) 250, 252–3, 258–60
sediment transport rate 260–1, 262
bedload impact sensors 177
bedload measurement 176–8
bedload transport 230, 298
discrepancies 266–8
hydrodynamic predictions 253–5, 263–4, 265, 266
patterns in San Francisco Bay coastal system 273–93
regional 283–5
swath bathymetry surveys 249–69
velocity/rate 177, 178
see also sediment transport
benthic communities
anthropogenic disturbance 394
disturbance 413
flow regime changes 414
sediment grain size 410
sediment type 409–10
sedimentation changes 414
benthic habitat mapping 405–14
acoustic data interpretation 408–9
animal-sediment coupling 409–11
difficulties 406, 408
sediment dynamics 411–14
benthic profiling system (BPS) 183
Billefjorden (Svalbard), downward fluxes of particulate matter 369–84
climate 372
distance from sediment source 383
fjord types 383
flocculation 379, 382
freshwater discharge 373–4, 377, 379
glacimarine sediment 372
grain size 380
distribution 373, 379–80
trapped sediments 377
gravity-driven sediment transport 381–2
hydrology 375
materials/methods 372–3
measurement 377, 378
high vertical 381
non-glacier contact 382
ranges 377, 378
resuspension 381–2
river discharge 373–4, 380
salinity 375
seasonal changes 382
sediment traps 373, 378, 379–80, 381
study area 370, 371, 372
study results 373–7
suspended particulate matter concentrations 372–3, 374, 376–7
distribution in water column 382
biodiversity
benthic 400
intermediate disturbance hypothesis 392
bioherms 414
biological disturbance 391–2
bioturbation
sand ridges 148–9, 150, 151
seabed habitat 413
storm beds 295, 299, 304–5
Bohai Coastal Currents 325
bottom boundary layer hydrodynamics 162–8
braided streams, Hecate Strait (British Columbia) 38, 43

Canadian Pacific Ocean
continental shelf 29
sea-level lowering 30, 32
canyons, submarine 71–2, 390
Cap de Creus canyon head (NE Spain)
acoustic facies map 78, 81
acoustic plume field 81, 83, 90
bathymetric grid 76, 77
berm 93
canyon head erosion 92
canyon headwall 93
canyon walls 76–7, 90
chirp seismic reflection studies 74–5, 88
cold water coral reefs 93
cores 75–6, 84–6
destabilization events 92
echo
acoustic blanking 79–80, 95
chaotic 82, 90, 95
character analysis 77–83, 95
distinct 78–9, 86, 95
hyperbolic 81, 95
in-step 80, 95
indistinct 79, 89, 95
lithology 83, 86
mound 82–3, 95
sharp 81–2, 95
wavy seafloor 81, 86, 95
erosional features 89–90, 92
filled channels 92
fisheries 90
furrows 72, 73, 74, 77
gas in sediments 90–2
potential reserves 74, 83
gullies 90, 92
headspace gas
analysis 87–8
sampling 75–6
hyperpycnal flows 92
interpretative map 94
lithology 83, 84–6, 86
mass wasting 88, 89, 90
MB-Boomer studies 74, 79, 82, 89
methane 74, 91–2
methodology 74–6
morphology 72, 73, 74
mounds 91, 93
multibeam bathymetry 71–96
outcrops 90
palaeo-environment 92–3
pockmark field 76–7, 83, 93
seafloor morphology 76–7, 88
sediment
accumulation 88, 92–3
deposition 93
failures 90
grain size 86, 90
input 86, 88–9
pathways 93
waves 93
seismic waves 89
shallow gas 74, 83
slump deposits 90
slump scars 76, 88
strata formation 72
study area 72, 73, 74
study results 76–83
thalweg 77, 89, 90, 92
tributary system 77
carbon isotopes, stable in Yellow Sea sediments 333, 334, 335
Changjiang delta (Yellow/East China Sea) 313
palaeotopography 313–14, 317
river discharge 317–18, 351
sediment
grain size 317, 355–6
particle trajectory 317
transport 317, 318
subaqueous delta 351, 352
suspended sediment 351–66
calculated parameter variation 358, 359–60, 360, 361, 363–4
concentration 351–2, 354, 358, 359–60, 361
flocculation 364–5
in-situ parameter variation 356–8
particle size spectra 355–6
resuspension 362, 364
settling velocity 361
study area 352, 353
study materials/methods 352–5
study results 355–8, 359–60, 360, 361
transportation 362, 364
tidal current ellipse pattern 315
Chezy coefficient 254
chirp seismic reflection studies
Cap de Creus canyon head (NE Spain) 74–5
North Carolina Outer Banks 102, 104, 107–8, 109, 111, 113
sand ridges on New Jersey shelf 122, 124, 125, 128, 129, 130, 132–4, 137, 138, 139, 140
clay minerals in Yellow Sea sediments 328, 329, 330, 340, 341, 342
X-ray diffraction 327–8
coastal erosion, storm events 297, 302
coastal features, drowned 30, 33
cohesive Doppler velocity profilers (CDVP) 175, 176
computational fluid dynamics (CFD) 187
Conductivity Concentration Metres (CCM) 178, 179
conservation 389–90
continental margins, stratal formation 72
coral reefs
cold water at Cap de Creus canyon head (NE Spain) 93
Great Barrier Reef (Australia) 393
intermediate disturbance hypothesis 392
storm impacts 393
Coriolis effect 375
cross-correlation analysis (CCA) 175
currents
cyclone-induced 397, 398
density 396
disturbance regimes 398–401
intrusions 397
longshore on North Carolina Outer Banks 102
ocean 396, 397
particulate matter flux 375, 376
Sable Island Bank (Scotian Shelf) 197–8, 199
numerical modelling 200–1
sand ridges on New Jersey shelf 124, 137–8
sediment impact on flow 412
shelf
intermediate disturbance hypothesis 395
shear stress 394
shelf ecosystem disturbance 394–6
see also tidal currents; turbidity currents
cyclones
currents-induction 397, 398
Great Barrier Reef (Australia) 397
storm beds 304
cyclonic eddies, Yellow Sea 345–6
deglaciation, Hecate Strait (British Columbia) 38, 40, 44
density currents 396
diagenesis, storm beds 295
differential global positioning systems (dGPS) 182
bedform mapping 273
disturbance 390–8
Australian shelf hydrodynamic
regionalizations 398–401
benthic communities 413
current-related regimes 398–401
definition 390
ecosystems 390–2
response 393–4
frequency 401
marine environment 390–2
ocean currents 396
recovery rates of intertidal fauna 394
regime 396
Scotian Shelf 412
shelf ecosystems 392–3
spatial scales 396–8
storms 396
see also intermediate disturbance hypothesis (IDH)
drowned coastal features, Hecate Strait (British Columbia) 30, 33, 40, 43
East Frisian barrier-island coast (North Sea), sand ridges 143–57
bed forms 145–6
bioturbation 148–9, 150, 151
box core sampling 145, 150, 151, 152, 154, 155
effective wave base 154–6
internal sedimentary structures 148–51
methods 145
mud layer deposition 151, 152–4
sources 153–4
multibeam bathymetry 145, 146
orientation 146
physical setting 144–5
preservation potential 154–6
seasonal facies changes 148, 149–51
sediment
coarse in troughs 154
dynamics 151–4
grain size 146, 148
sorting 147–8, 151, 152
sources 151–4
superficial 146–8
transport direction 154
storm events 143–4, 148, 150, 153, 154–6
study results 145–51
echo character analysis, Cap de Creus canyon head (NE Spain) 77–83, 95
ecological succession 390–8
estuarine 394, 395
ecosystem disturbance 390–2
response 393–4
see also shelf ecosystems
ecosystem engineers 413–14
El Nino, sea surface warming 390
equatorial current system 390
ellipsoid height models 12–13
equatorial upwelling system 11
EM710 multibeam sonar 6
EM1000 multibeam sonar 5–6
English Channel, intersurvey errors 13
environmental management 389–402
equi-angular beam spacing 4
Equi-Distant beam spacing (EBDS) 4–5
estuaries, ecological succession 394, 395
exceedance, threshold 213–15, 216
fans, submarine 390
fish populations, Hecate Strait (British Columbia) 43–4
fisheries
benthic fauna/community disturbance 394
Cap de Creus canyon head (NE Spain) 90
seabed maps 406
fjords
downward fluxes of particulate matter 369–84
glaciomarine sediment 372
sedimentary processes 369–70
flow regime
changes by benthic animals 414
see also tidal flow
flow speed over shelves 397
flume mobile technology 189
fluorescent tracers, bedload estimation 177
foraminifers 393
Fraser glaciation 30
Fraser River delta (western Canada)
backscatter 57
amplitude data 51
base-of-slope fan 66
bathymetric changes 57, 58, 59–61
bedforms 52, 53
channel depth 55
channel infill geometry 64–6
channel levees 66
debris flows 48, 65
delta slope 50
clinof orm progradation 66
distributary channels 52, 55
downslope transport 64–5
dredged fluvial channel morphology 51, 52, 53
dredging 48, 51, 52, 53, 62, 65
disposal 65
fan 57
base-of-slope 66
high backscatter intensity 66
freshwater plume 51
glaciology 50
good flow 50, 67
gullies 55, 57, 61–2
headwall areas 59
erosion 60, 63
incisions 62
slope failures 66
hyperpycnal flows 66, 67
incoherent deposits 53
intra-channel erosion 62, 64
Main Arm 48, 49, 50
mouth constraint 61
main channel 54
methods 50–1
midslope wedge 60
morphological features 48, 49
multibeam surveys 47–67
non-channelled slope 60–1, 66–7
relict channels 55
ridges 50, 55, 56
migration 61
morphology 66
Sand Heads dredge disposal area 65
Sand Heads Sea Valley 48, 49, 50–1
seabed morphology 50
seafloor 55
sediment
accumulation 57, 58, 59, 60, 61
grain size 50, 64
gravity flows 48, 67
instability 62
transport 50
waves 66–7
sedimentation 47
rate 50
setting 50
slope failures 48, 50, 59, 63
flow liquefaction sliding 64
tributary headwalls 66
slope gullies 48
study results 51, 52, 53, 54, 55, 56, 57, 58, 59–61
subaqueous dune formation 53, 63–4
submarine channel system 48, 52, 59–60, 61–2
backscatter intensity 57
erosion 63–4
incised 65
submarine morphology 53, 54, 55, 56, 57
tidal range 50
tributary channels 49, 53, 54, 59
infilling 65
turbidity currents 48, 50, 64–6, 67
upper slope area 50
valley 55
wedge deposits 65–6
Fraunhofer diffraction 185–6
gas in sediments, Cap de Creus canyon head (NE Spain) 90–2
headspace analysis 87–8
sampling 75–6
potential reserves 74, 83
GcGPS services 12
glaciology-ellipsoid surface slopes 13
glacial-eustatic changes 390
glaciation, Hecate Strait (British Columbia) 30, 37, 38, 39, 40
global positioning systems (GPS) 8
kinematic 12
global positioning systems, differential (dGPS) 182
bedform mapping 273
grain size see sediment grain size
gravity flow, Fraser River delta (western Canada) 50, 67
grazing angle of backscatter 14, 15
Bay of Fundy 24
local extraction 21–2
mid-range 20–1
variability estimation 17, 18
Great Barrier Reef (Australia) 393
cyclones 397
seagrass 393–4
Gulf of Lions (NE Spain) 72, 73
 seafloor steepness 86–7
 sediments 86
Gulf of Mexico shelf 296
 storm beds 299–301

habitat(s)
 benthic habitat mapping 405–14
 marine protected areas 390, 401
 patches 396
 recovery times 401

habitat mapping
 logic 406, 407, 408
 sediment dynamics 411–14
 habitat template 411–14
 sediment transport 412–13

Hatteras Island (North Carolina Outer Banks), erosion from storm event 297

headspace gas, Cap de Creus canyon head (NE Spain)
 analysis 87–8
 sampling 75–6

Hecate Strait (British Columbia)
 active bedforms 37–8, 39
 bedrock units 43
 berm 34, 35
 braided streams 38, 43
 channel 36, 37
 circulation 33
 coastal landform erosion 43
 data collection 33
 deglaciation 38, 40, 44
 deltas 36–7, 39, 40, 42
 drowning 43
 drowned coastal features 30, 33, 40, 43
 early humans 44
 embayment 36, 37, 38, 40, 42
 fish populations 43–4
 floating ice 40, 43
 flood tide 43
 glacial deposits 40
 glaciation 30, 37, 38, 39, 40
 groundfish habitat 43–4
 isostatic uplift 40
 lacustrine environment 36–7
 land bridge breach 43
 moat 34, 35, 43
 outwash deposits 40
 outwash plain 36, 38, 43
 palaeo-coastlines 40
 palaeo-landscape 41, 42, 43
 palaeogeographic reconstruction 29–45
 plate convergence 30
 progradational body 37, 39
 recurved spit 34, 35, 36, 40, 42
 drowning 43
 ripples 38
 river run-off 33

sea-level 41
 change 43, 44
 lowering 30, 32
 seabed gradients 34, 35
 seafloor 32–3
 changes 30
 sediment 43
 composition 36
 distribution 37–8, 39
 mobility 34, 35
 transport 38, 43, 44
 seismic reflectors 36–7
 setting 30, 31, 32–3
 spit platforms 40, 42, 43
 drowning 43
 subaqueous dunes 38
 terrestrial environment 40, 43
 tidal crest 32–3
 tidal currents 38, 43
 wave conditions 33
 wave-cut terraces 33–4, 35, 36, 40, 42
 fish populations 44
 wave orbital velocity 38
 winds 33

HOLOMAR system 186
humans, early at Hecate Strait (British Columbia) 44
hummocky cross stratification 295
hurricanes, storm beds 298, 299–301, 302, 303
 preservation 304, 305
 recurrence 303–4
hydrophones 177
hyperpycnal flows
 Cap de Creus canyon head (NE Spain) 92
 Fraser River delta (western Canada) 66, 67

icebergs
 sea bed disturbance 394
 seafloor ploughing 391
impact probes (IPs) 181–2
inertial dissipation 162
instrumentation 173–90
 bed morphology measurement 182–5
 bedload measurement 176–8
 fluid flow measurement 174–5, 176
 laboratory studies 189–90
 Mispec Bay (Bay of Fundy) study 251–2
 particle size measurement 185–6
 settling velocity measurement 187–90
 support frames 186–7
 suspended sediment concentration measurement 178–82
interferometric swath systems 102
intermediate disturbance hypothesis (IDH) 392–3
benthic biological diversity 400
shelf currents 395
Korean Coastal Current (KCC) 324, 325

Lagrangian tidal flow 313, 314, 315, 317, 318
landscape, patchy 390
landscape ecology 390–2
laser diffraction instruments 185–6
laser Doppler velocimetry 174
laser particle-size analyzer 322
Liaonan Coastal Current (LCC) 324–5
light detection and ranging (LIDAR) system 184–5
marine protected areas (MPAs) 389–90
design 390, 401
mass failures, shelf ecosystem impact 395, 396
megaripples, Sable Island Bank (Scotian Shelf) 211, 216
methane, Cap de Creus canyon head (NE Spain) 74, 91–2
Middle Atlantic Bight (MAB) 296, 297
seaward transport of sediment 298
mining, seabed disturbance 394
Mispec Bay (Bay of Fundy) 249–69
 acoustic Doppler current profiler measurements 252
 bathymetry 251
 bedform
 migrating 251
 shear stress 259–60, 266
 bedform-associated sediment transport 252–3
 bedform celerity method (BCM) 250, 252–3, 258–60, 262
 bedload transport 249–69
 hydrodynamic predictions 253–5, 263–4, 265, 266
 flow velocities 255, 256, 257–8
 instruments 251–2
 multibeam bathymetry 251–2
 sand dune
 celerity 250, 252–3, 258–60
 migration 249–69
 sediment
 erosion 267
 mud content 266
 sediment transport
 rate 260–1
 technical discrepancy 266–8
 study area 250–1
 study methods 251–5
 tidal regime 251, 255, 256, 257–8
 current data 257–8
 volumetric method (VM) 253
 mud
 deposition
 river-borne 164, 165
 sand ridges 151, 152–4
 Yellow Sea 326, 342–4
circulation-related 345–6
mud flats, intertidal 390
mudstones, storm beds 295
multibeam bathymetry 3, 4–13
 accuracy 7–13
 acoustic mapping of bed morphology 182
 bathymetric grids 277–8
 bedload transport patterns in San Francisco Bay coastal system 273–4, 276–93
 benthic habitat mapping 405
 Cap de Creus canyon head (NE Spain) 71–96
 Fraser River delta (western Canada) 47–67
 Hecate Strait (British Columbia) 33
 Mispec Bay (Bay of Fundy) study 251–2
 resolution 4–7
 Sable Island Bank (Scotian Shelf) 200
 bedform distribution/morphology 201, 203, 204
 sand ridges
 East Frisian barrier-island coast (North Sea) 145, 146
 New Jersey shelf 122, 124, 125, 126–7, 128–9, 130–1, 132–3, 135–6, 138, 139
 sounding depth correction 276–7
 swath images 33
 bedload transport 249–69
 interferometric 102
 technique 276
 multibeam echo sounders (MBES) 182
 multibeam technology
 accuracy 7–13
 angle detection 4
 beam patterns
 multiple sectors 17
 residuals 15, 17
 rolling transmit 17
 single sectors 16–17
 beam width/spacing 4–6
 change detection capability 22–5
 detection algorithm 4–6
 ellipsoid height models 12–5
 limitations 22–5
 pitch stabilization 6, 7
 positioning systems 8
 pulse length 15, 16
 resolution 4–7
 roll stabilization 6, 7
 seawater attenuation 15–16
 sensor misalignment/mistiming 8
 shelf morphodynamics 3–26
 source level of sonar 15
 tidal reduction 10–13
 two way travel time 6
 water column sound speed structure 8–10
 yaw stabilization 6–7
see also backscatter
Index

New Jersey shelf, sand ridges 121–41
backscatter 122, 124, 125, 126–7, 128, 129, 130–1,
132–3, 135–6, 138, 139, 140
basal “T” horizon 129, 130, 131, 134, 139–40
bathymetric roughness 131
bedform morphology 128–9
chirp seismic reflection studies 122, 124, 125, 128,
129, 130–4, 137, 138, 139, 140
currents 124, 137–8
data 124
dipping reflector 125
dune fields 128–9, 131
erosional features 123
evolution 122–4, 131
grain size 124, 125, 128, 130–1, 138, 139, 140
location map 123
mid-shelf ridges 125, 126–7, 128–9, 131, 137–9
migration 124, 140
moribund 137–8, 140
morphology 124, 125
multibeam bathymetry 122, 124, 125, 126–7, 128–9,
130–1, 132–3, 135–6, 138, 139
orientation 124
outer-shelf ridges 129–31, 140
seaward-dipping horizons 137
study results 125, 126–7, 128–31
swales 123
water depth 124
North Carolina Outer Banks 100
acoustic backscatter 102, 105, 107, 113
bathymetric surveying 102, 103, 104, 107–8, 111,
113
beach surveying 104
chirp seismic reflection studies 102, 104, 107–8, 109,
111, 113
cuspatc forelands 100
general setting 100
gravel deposits 105, 114
interferometric swath systems 102
longshore currents 102
palaeo-river channels 100, 107–8, 109
palaeo-Roanoke River Valley 100, 108, 109
physical setting 100, 102
reflection surface 111
regional platform 100
sand thickness 109, 111, 112, 113
sand volume 116
sandbars 105, 106, 107, 111, 113, 115
position 116
sediment characteristics 109, 110
surveying 104
wave dissipation 116
sediment 100
beach-compatible surface 115
sandbar characteristics 109, 110
thickness 111, 112, 113–14, 114–15
vibracore collection 104, 110
volume 116
shore-oblique features 105, 106, 111, 113
gravel in surf zone 114
metrics 114–15
palaeo-channels 107–8, 109
persistent morphology 105, 107, 108, 114
sediment characteristics of sandbars 109, 110
shoreline change 102
beach-compatible surface sediment 115
decadal-scale 105, 106, 111, 114, 116
erosion 115
geology 114–15
methodology 102, 103, 104
rate 112
sand thickness 109, 111, 112
study results 105, 106, 107–9, 110, 111
shoreline hotspots 102
storm events 297
study area 100, 101, 102
sub-bottom seismic profiling 1–4, 102
surf zone 102, 111, 113–14
gravel deposits 105, 114
sand volume 116
seafloor mapping 104
underlying surface 115, 116
tides 100, 102
troughs 105, 111, 113, 114, 115
wave crests 107, 113
orientation 111, 113
wave dissipation 115, 116
spatial variations 105, 107, 108, 111, 113
wave height 102
weather features 102, 111
nuclear samplers (NS) 182
ocean currents
boundary 397
disturbance 396
optical backscatter sensors (OBS) 181
Pacific Northwest, palaeo-coastal nearshore
morphology 29–30
palaeo-Roanoke River Valley (PRRV) 100
palaeogeography, Hecate Strait (British Columbia) 29–45
partial image velocimetry 174–5
particle size measurement 185–6
particulate matter, downward fluxes 369–84
distance from sediment source 383
fjord types 383
flocculation 379, 382
freshwater discharge 377, 379
glacier contact 370, 372
grain size 377, 380
distribution 373, 379–80
trapped sediments 377
gravity-driven sediment transport 381–2
hydrology 375
materials/methods 372–3
measurement 377, 378
high vertical 381
non-glacier contact 370, 372, 382
ranges 377, 378
resuspension 381–2
river discharge 373–4, 380
salinity 375
seasonal changes 382
sediment discharge 373–4
sediment traps 373, 378, 379–80, 381
slumps 381–2
study area 370, 371, 372
study results 373–7
suspended particulate matter concentrations 372–3, 374, 376–7
distribution in water column 382
Passive Integrated Transponder (PIT) tags 177
patches
 disturbed seafloor 391, 397–8
 habitat 396
landscape 390
phase Doppler anemometry (PDA) 175
plants, stresses from physical processes 391
positioning systems
 horizontal 8
 see also differential global positioning systems (dGPS); global positioning systems (GPS)
predator invasions 392
pressure difference samplers 177
pulse-coherent Doppler profilers (PC-ADP) 161, 174
Queen Charlotte Islands (British Columbia) 30, 31
 land bridge breach 43
 plate convergence 30
 shoreline 32
reefs
 deep-water 414
 see also coral reefs
Reynolds stress method 162
ridges see sand ridges
rivers
 discharge into Billefjorden (Svalbard) 373–4, 380
 muddy 164
 run-off into Hecate Strait (British Columbia) 33
 Yellow Sea 325
Sable Island Bank (Scotian Shelf) 197–226
 bathymetry data digital compilation 199–200, 201
 bedform 198
 Copan area 206–7, 209, 211
 Defense Research and Development Canada (DRDC) sediment 373–4, 207–8, 210, 212, 214
 distribution 377, 378
 migration 201, 203–4, 215–16
 distribution link to seabed disturbance 216–17, 220–1
mid-outer bank area 210–11, 213, 215, 217
mobility 215–16
morphology 201, 203, 204
South Sable area 204–6
zones 221–2, 223, 224
currents 197–8, 199
numerical modelling 200–1
fishing activity 197–8
The Gully 197
location map 198
megaripples 211, 216
multibeam bathymetry
 bedform distribution/morphology 201, 203, 204
 surveys 200
ripples 211, 216
sand ridges 198
 direction 199
 migration 201, 202
 wavelength 210, 211, 215
seabed disturbance 198, 213–15, 218
 bedform distribution link 216–17, 220–1
 numerical modelling 200–1
sediment
 mobility 197–8
 mobilization 214, 215
shipping activity 197–8
sidescan surveys 200, 205–6, 207, 208, 209, 210, 215, 216
 bedform 216
 sandwave shape/wavelength 211
specks 210, 211, 213
storm events 199
study methods 199–201
study region 196, 199
study results 201, 202, 203–8, 209, 210–11, 212, 213–15, 217, 218
submarine canyon 197
tides 199
wave action 199
waves 197–8
 numerical modelling 200–1
salinity
 Billefjorden (Svalbard), downward fluxes of particulate matter 375
 seawater attenuation of backscatter 15–16
San Francisco Bay coastal system
 bedform
 asymmetry 279, 280–3, 286
 depth 280
 height 280, 284–5
 measurements 277–9
 migration 292
San Francisco Bay coastal system (Continued)

patterns 288–9, 290–1, 292
sediment-starved 285
temporal variation in morphology 285–6, 287, 288
tidal bias of analysis 288
wavelength 279–80, 284–5
bedload transport patterns 273–93
regional 283–5
bedrock 274, 284
channel floor 274
currents 274
flow patterns 288–9, 290–1, 292
Golden Gate tidal inlet 274, 275
multibeam bathymetry 273–4, 276–93
previous studies 274–6
sand waves 275–6
height 286
morphology 286, 287
patterns 290–1, 292
temporal changes 287, 288
study area 274, 275, 277
study methods 276–9
study results 279–86, 287, 288–9, 290–1, 292
waves 274
sand, Yellow Sea sediment 328, 329
sand dunes
Agulhas Current (southeast African continental shelf)
dimensions in relation to water depth 234, 237, 242, 243, 244
height wave-like oscillations 242
height/wavelength relationships 240, 242
heights 233–4, 235, 236, 236, 239
migration rate 238–40, 241, 244–6
steepness ratio 234
wavelengths 233–4, 235, 236
celerity in Mispec Bay (Bay of Fundy) 250, 252–3, 258–60
migration
equation 268–9
Mispec Bay (Bay of Fundy) 249–69
wavelength 397
New Jersey shelf sand ridges 128–9, 131
sand ridges
active evolution 122
bed forms 145–6
bioturbation 148–9, 150, 151
currents 124, 137–8
dipping reflector 125
direction 199
distribution 201, 202, 216
East Frisian barrier-island coast (North Sea) 143–57
effective wave base 154–6
erosional features 123
evolution 122–4, 131
Fraser River delta (western Canada) 50, 55, 56
migration 61
morphology 66
grain size 124, 125, 128, 130–1, 138, 139, 140, 146, 148
internal sedimentary structures 148–51
migration 61, 124, 140, 199, 216
Sable Island (Scotian shelf) 201, 203, 205, 206
moribund 137–8
morphology 66, 124, 125
mud layer deposition 151, 152–4
sources 153–4
New Jersey shelf 121–41
orientation 124, 146
preservation potential 154–6
Sable Island Bank (Scotian Shelf) 198
direction 199
distribution 201, 202
migration 199, 201, 203, 205, 206, 216
trough 205–6
seasonal facies changes 148, 149–51
sediment
dynamics 151–4
sorting 147–8, 151, 152
sources 151–4
superficial 146–8
transport 154
storm events 143–4, 148, 150, 153, 154–6
storm wave impact 143–4
tidal subarea in Yellow Sea 342, 344–5
trough 205–6
sediments 154
water depth 124
sand waves 201
distribution 216
grain size 206–7
migration 201, 203, 205, 206, 216
Sable Island Bank (Scotian Shelf) 201
distribution 216
migration 201, 203, 205, 206, 216
wavelength 210, 211, 215
San Francisco Bay coastal system 275–6
height 286
morphology 286, 287
patterns 290–1, 292
temporal changes 287, 288
wavelength 210, 211, 215
sandbars 105, 106, 107, 111, 113, 115
migrating 99
position 116
sediment characteristics 109, 110
wave dissipation 116
sandstones, storm beds 295
Scotian Shelf
disturbance 412
grain size/sorting 410, 411
see also Sable Island Bank (Scotian Shelf)
sea-level
Hecate Strait (British Columbia) 41
change 43, 44
lowering 30, 32
lowering in Canadian Pacific Ocean 30, 32
rise
sand ridge detachment 121
Yellow/East China Sea (YECS) 313
sea surface warming 390
seabed
acoustic surveys 405–14
global attributes of ecological importance 410
granulometric texture 405
morphology 405
measurement 182–5
seawater interface 14
shear stress 213, 218
wave effects 213, 218
see also bed entries; bedform entries
seabed disturbance
anthropogenic 394
bedform distribution 216–17, 220–1
bioturbaction 413
classification 214–15
patches 391, 397–8
Sable Island Bank (Scotian Shelf) 198, 213–15, 218
bedform distribution link 216–17, 220–1
numerical modelling 200–1
seafloor
disturbed patches 391, 397–8
Hecate Strait (British Columbia) 32–3
changes 30
iceberg ploughing 391
slope and backscatter 15
seagrass
abundance cycles 393
Great Barrier Reef (Australia) 393–4
sediment
clay minerals 327–8, 329, 330, 340, 341, 342
composition
Agulhas Current (southeast African continental
shelf) 234, 236, 238, 239
Yellow Sea 327–8, 335–6, 337, 338–40
current flow impact 412
distribution in Yellow Sea 322, 326, 328, 329, 330
dynamics in habitat mapping 411–14
erosion in Mispec Bay (Bay of Fundy) 266
heterogeneous 295–308
local characteristics 99
measurement
of dynamic 187–90
of suspended concentration 178–82
mobilization 214, 215
mud
content in Mispec Bay (Bay of Fundy) 267
in Yellow Sea 326, 342–4, 345–6
particle size measurement 185–6
particle trajectory in tidal currents 315, 316, 317
sampling difficulties 406
settling velocity measurement 185–6
small-scale processes 183–5
suspended 328 (see also suspended sediment
concentration (SSC))
Changjiang delta (Yellow/East China Sea)
351–66
flocculation 364–5
turbulence 365
suspension 162–8
threshold exceedance 213–15, 218
Yellow Sea 321–47
classification 342
clay minerals 327–8, 329, 330, 340, 341, 342
composition 327–8, 335–6, 337, 338–40
distribution 322, 326, 328, 329, 330
grain size 322, 326–7, 329, 330, 331
muds 326, 342–4, 345–6
origins 322
provenance 325–6
sources 342–5
stable carbon isotopes 333, 334, 335
subareas 342–5
total suspended matter 330–1, 332, 333
sediment facies maps 410
sediment-generated noise 177
sediment grain size 406
Agulhas Current (southeast African continental
shelf) 234, 236, 238, 239
backscatter 14–15
benthos effects 410
Cap de Creus canyon head (NE Spain) 86, 90
Changjiang delta (Yellow/East China Sea) 317,
355–6
downward fluxes of particulate matter in Billefjorden
(Svalbard) 380
distribution 373, 379–80
trapped sediments 377
East Frisian barrier-island coast (North Sea) sand
ridges 146, 148
Fraser River delta (western Canada) 50, 64
measurement 322, 326–7, 329, 330, 331
New Jersey shelf sand ridges 124, 125, 128, 130–1,
138, 139, 140
sand waves 206–7
techniques for determination 352
Yellow Sea 322, 326–7, 329, 330, 331
sediment resuspension
Changjiang delta (Yellow/East China Sea)
362, 364
model predictions 298–9
storm beds 297, 298–9, 302
tidal currents 318
tide-induced 364
wind-induced 364
Yellow/East China Sea (YECS) 318
sediment transport 99–100, 161–70
along-shelf flux 164
bed stresses 162
bedform-associated 250, 252–3
bottom boundary flux 162–8
Changjiang delta (Yellow/East China Sea) 317, 318
complexity 168–9
flow-driven across-shelf flux 164–6
gravity-driven across-shelf flux/deposition 166–8
habitat template 412–13
landward 298
model predictions 298–9
rate
 bedform celerity method (BCM) 260–1, 262
 Mispec Bay (Bay of Fundy) 260–3
 volumetric method 261–3
river-borne mud deposition 164, 165
roughness contrasts 163–4
seaward 298
storm beds 297, 302
 model predictions 298–9
technical discrepancy 266–8
tidal influence in Yellow/East China Sea (YECS) 311–18
Yellow/East China Sea (YECS) 318
Yellow Sea 322
settling velocity measurement 185–6
shear stress
 bedforms 255
 Mispec Bay (Bay of Fundy) 259–60, 266
 seabed 213, 218
 shelf currents 394
shelf bathymetry 99
shelf currents
 intermediate disturbance hypothesis 395
 shear stress 394
shelf ecosystems
 current-related disturbance 394–6
 disturbance 392–3
 gravity-driven processes 393
 mass failures 395, 396
 tsunami impacts 395, 396
shelf hydrodynamics
 Australian regionalizations 398–401
 frequency/energy types 399–400
shelf morphodynamics, multibeam technology use 3–26
shelf sedimentation, storm events 296–9
Shields critical mobility parameter 254–5
Shields grain-related mobility parameter 254
shoreline change prediction 99–117
beach-compatible surface sediment 115
decadal-scale 105, 106, 111, 114, 116
erosion 115
gEOlogy 114–15
rate 112
reflection surface 111
sand thickness 111, 112
sediment thickness 111, 112, 113–15
sediment volume 116
shore-oblique features 105, 106
study results 105, 106, 107–9, 110, 111
surf zone 99–100
sidescan surveys, Sable Island Bank (Scotian Shelf) 200, 205–6, 207, 208, 209
silts, Yellow Sea sediment 328, 329, 330
slope failures, Fraser River delta (western Canada) 48, 50, 59, 63
flow liquefaction sliding 64
tributary headwalls 66
sonar 3D model 184
sound speed structure of water column 8–10
Sowbelly parasequence (Gentle Wash, Utah) 306–8
spectral analysis 399
Spiekeroog Island (East Frisian barrier-island coast, North Sea) 144–5
Squamish Delta (Howe Sound, British Columbia) bathymetry 22
delta accretion 9–10
sound speed data 9–10
Stokes Law Equation 354
storm beds 295–308
biological reworking 304–6
bioturbation 295, 299, 304–5
coastal active zone 296–7
composition 295
cyclones 304
deposition 297
rate 306–7
formation 296, 297, 298
modelling 301–3
frequency in Cretaceous 306–8
hurricanes 298, 299–301, 302, 303
recurrence 303–4
modern deposition 299–303
physical reworking 304
preservation potential 304–6
rate 307–8
relationship of modern to rock record 303–8
resuspension 297
sand deposition 301
sand/silt sources 296–7
sediment resuspension/transport 297, 302
model predictions 298–9
thickness 297
storm flow model 299
storm waves, sand ridge impact 143–4
storms/storm events
 bed stress 397
 coastal erosion 297, 302
 coral reef effects 393
 disturbance 396
offshore transport of sediment 297
Yellow/East China Sea (YECS)
- coastline receding 311
- location map 312
- sediment
 - resuspension 318
 - sources 313
 - transport 318
- study area 313
- study methods 313–14
- study results 314–15, 316, 317
- subtidal bottom flow 317
- tidal current prediction 313, 314–15, 316
- tidal flow estimation 314
- tidal influence on sediment transport 311–18

Yellow Sea
- bathymetric map 323
- circulation system 324–5
- cyclonic eddies 345–6
- geographic features 322–3
- oceanographic features 323–5
- relict subarea 345
- rivers 325
- thermocline 325
- tidal currents 323–4, 325
- tides 323–4
- water depth 322–3

Yellow Sea Coastal Currents (YSCC) 324–5
Yellow Sea Cold Water Mass (YSCW) 321, 324

Yellow Sea sediments 321–47
- circulation muddy subarea 342, 343–4
- classification 342
- clay minerals 340, 341, 342
- composition 327–8, 335–6, 337, 338–40
- cyclonic eddies 345–6
- delta mud subarea 341, 342–3
- distribution 322, 326, 328, 329, 330
- grain size measurement 322, 326–7, 329, 330, 331
- muds 326, 342–4
- circulation-related 345–6
- formational environments/mechanisms 345–6
- origins 322
- provenance 325–6
- sampling 326, 327
- sources 342–5
- stable carbon isotopes 333, 334, 335
- study materials/methods 326–8
- study results 328, 329, 330
- subareas 342–5
- suspended 328
- tidal currents 321
- tidal sand ridge subarea 342, 344–5
- total suspended matter 330–1, 332, 333
- transportation 322

Yellow Sea Warm Current (YSWC) 321, 324, 325
- total suspended matter 331