Contents

List of Contributors xiii
Foreword xvii
Preface xix

Introduction to Science and Engineering Principles for the Development of Bioinspired Materials 1
Muhammad Wajid Ullah, Zhijun Shi, Sehrish Manan, and Guang Yang

I.1 Bioinspiration 1
I.2 Bioinspired Materials 1
I.3 Biofabrication 2
I.3.1 Summary of Part I Biofabrication 2
I.4 Biofabrication Strategies 3
I.4.1 Conventional Biofabrication Strategies 3
I.4.2 Advanced Biofabrication Strategies 3
I.5 Part II Biomacromolecules 5
I.5.1 Summary of Part II Biomacromolecules 5
I.5.2 Carbohydrates 5
I.5.3 Proteins 8
I.5.4 Nucleic Acids 9
I.6 Part III Biomaterials 11
I.6.1 Summary of Part III Biomaterials 11
I.6.2 Features of Biomaterials 12
I.6.3 Current Advances in Biomaterials Science 13
I.7 Scope of the Book 13
Acknowledgments 14
References 14

Part I Biofabrication 17

1 Biotemplating Principles 19
 Cordt Zollfrank and Daniel Van Opdenbosch
1.1 Introduction 19
1.2 Mineralization in Nature 20
1.2.1 Biomineralization 20
1.2.2 Geological Mineralization 21
1.3 Petrified Wood in Construction and Technology 23
1.4 Structural Description and Emulation 24
1.4.1 Antiquity 24
1.4.2 Modern Age: Advent of the Light Microscope 24
1.4.3 Aqueous Silicon Dioxide, Prime Mineralization Agent 25
1.4.4 Artificial Petrification of Wood 25
1.5 Characteristic Parameters 28
1.5.1 Hierarchical Structuring 28
1.5.2 Specific Surface Areas 32
Contents

1.5.3 Pore Structures 32
1.6 Applications 34
1.6.1 Mechanoceramics 34
1.6.2 Nanoparticle Substrates 35
1.6.3 Filter and Burner Assemblies 35
1.6.4 Photovoltaic and Sensing Materials 36
1.6.5 Wettability Control 37
1.6.6 Image Plates 38
1.7 Limitations and Challenges 38
1.7.1 Particle Growth 38
1.7.2 Comparison with Alternating Processing Principles 40
1.7.3 Availability 40
1.8 Conclusion and Future Topics 42

Acknowledgments 42
Notes 42
References 43

2 Tubular Tissue Engineering Based on Microfluidics 53
Lixue Tang, Wenfu Zheng, and Xingyu Jiang
2.1 Introduction 53
2.2 Natural Tubular Structures 53
2.2.1 Blood Vessels 53
2.2.2 Lymphatic Vessels 53
2.2.3 Vessels in the Digestive System 54
2.2.4 Vessels in the Respiratory System 54
2.2.5 The Features of the Natural Tubular Structures 54
2.3 Microfluidics 54
2.3.1 An Introduction to Microfluidics 54
2.3.2 Microfluidics to Manipulate Cells 55
2.4 Fabrication of Tubular Structures by Microfluidics 58
2.4.1 Angiogenesis 58
2.4.2 Tissue Engineering of Natural Tubes 58
2.4.3 Tissue Engineering of Other Tubular Structures 62
2.5 Conclusion 64

Acknowledgments 64
References 64

3 Construction of Three-Dimensional Tissues with Capillary Networks by Coating of Nanometer- or Micrometer-Sized Film on Cell Surfaces 67
Michiya Matsusaki, Akihiro Nishiguchi, Chun-Yen Liu, and Mitsuru Akashi
3.1 Introduction 67
3.2 Fabrication of Nanometer- and Micrometer-Sized ECM Layers on Cell Surfaces 68
3.2.1 Control of Cell Surface by FN Nanofilms 68
3.2.2 Control of Cell Surface by Collagen Microfilms 72
3.3 3D-Tissue with Various Thicknesses and Cell Densities 75
3.4 Fabrication of Vascularized 3D-Tissues and Their Applications 77
3.5 Conclusion 80

Acknowledgments 80
References 80

4 Three-dimensional Biofabrication on Nematic Ordered Cellulose Templates 83
Tetsuo Kondo
4.1 Introduction 83
4.2 What Is Nematic Ordered Cellulose (NOC)? 84
4.2.1 Nematic Ordered Cellulose 84
4.2.2 Various Nematic Ordered Templates and Modified Nematic Ordered Cellulose 87
4.3 Exclusive Surface Properties of NOC and Its Unique Applications 89
4.3.1 Bio-Directed Epitaxial Nano-Deposition on Molecular Tracks of the NOC Template 89
4.3.2 Critical Factors in Bio-Directed Epitaxial Nano-Deposition on Molecular Tracks 90
4.3.3 Regulated Patterns of Bacterial Movements Based on Their Secreted Cellulose Nanofibers Interacting Interfacially with Ordered Chitin and Honeycomb Cellulose Templates 93
4.3.4 NOC Templates Mediating Order-Patterned Deposition Accompanied by Synthesis of Calcium Phosphates as Biomimic Mineralization 97
4.3.5 Three-Dimensional Culture of Epidermal Cells on NOC Scaffolds 98
4.4 Conclusion 100
References 101

5 Preparation and Application of Biomimetic Materials Inspired by Mussel Adhesive Proteins 103
Heng Shen, Zhenchao Qian, Ning Zhao, and Jian Xu
5.1 Introduction 103
5.2 Various Research Studies 104
5.3 Conclusion 116
References 116

6 Self-assembly of Polylactic Acid-based Amphiphilic Block Copolymers and Their Application in the Biomedical Field 119
Lin Xiao, Lixia Huang, Li Liu, and Guang Yang
6.1 Introduction 119
6.2 Micellar Structures from PLA-based Amphiphilic Block Copolymers 119
6.2.1 Preparation and Mechanism of Micellar Structures 120
6.2.2 Stability and Stimuli-Responsive Properties: Molecular Design and Biomedical Applications 122
6.3 Hydrogels from PLA-based Amphiphilic Block Copolymers 125
6.3.1 Mechanism of Hydrogel Formation from PLA-based Amphiphilic Block Copolymers 125
6.3.2 Properties and Biomedical Applications of Hydrogel from PLA-based Amphiphilic Block Copolymers 126
6.4 Conclusion 127
Acknowledgments 127
References 127

Part II Biomacromolecules 131

7 Electroconductive Bioscaffolds for 2D and 3D Cell Culture 133
Zhijun Shi, Lin Mao, Muhammad Wajid Ullah, Sixiang Li, Li Wang, Sanming Hu, and Guang Yang
7.1 Introduction 133
7.2 Electrical Stimulation 133
7.3 Electroconductive Bioscaffolds 135
7.3.1 Conductive Polymers-based Electroconductive Bioscaffolds 135
7.3.2 Carbon Nanotubes-based Electroconductive Bioscaffolds 137
7.3.3 Graphene-based Electroconductive Bioscaffolds 140
7.4 Conclusion 145
Acknowledgments 145
References 145

8 Starch and Plant Storage Polysaccharides 149
Francisco Vilaplana, Wei Zou, and Robert G. Gilbert
8.1 Starch and Other Seed Polysaccharides: Availability, Molecular Structure, and Heterogeneity 149
8.1.1 Molecular Structure and Composition of Seeds and Cereal Grains 149
8.1.2 Starch Hierarchical Structure from Bonds to the Granule 149
8.1.3 Crystalline Structure 149
8.1.4 Granular Structure 150
11 Polypeptides Synthesized by Ring-opening Polymerization of N-Carboxyanhydrides: Preparation, Assembly, and Applications 201
Yuan Yao, Yongfeng Zhou, and Deyue Yan
11.1 Introduction 201
11.2 Living Polymerization of NCAs 201
11.2.1 Transition Metal Complexes 201
11.2.2 Active Initiators Based on Amines 203
11.2.3 Recent Advances in Living NCA ROP Polymerization, 2013-2016 204
11.3 Synthesis of Traditional Copolypeptides and Hybrids 204
11.3.1 Random Copolypeptides 205
11.3.2 Hybrid Block Polypeptides 205
11.3.3 Block Copolypeptides 206
11.3.4 Non-linear Polypeptides and Copolypeptides 206
11.4 New Monomers and Side-Chain Functionalized Polypeptides 208
11.4.1 New NCA Monomers 208
11.4.2 Glycopolypeptides 208
11.4.3 Water-soluble Polypeptides with Stable Helical Conformation 209
11.4.4 Stimuli-responsive Polypeptides 210
11.5 The Self-assembly of Polypeptides 212
11.5.1 Chiral Self-assembly 212
11.5.2 Self-assembly with Inorganic Sources 213
11.5.3 Microphase Separation of Polypeptides 214
11.5.4 Self-assembly in Solution 214
11.5.5 Polypeptide Gels 215
11.6 Novel Bio-related Applications of Polypeptides 216
11.6.1 Drug Delivery 216
11.6.2 Gene Delivery 216
11.6.3 Membrane Active and Antimicrobial Polypeptides 217
11.6.4 Tissue Engineering 217
11.7 Conclusion 219
References 219

12 Preparation of Gradient Polymeric Structures and Their Biological Applications 225
Tao Du, Feng Zhou, and Shutao Wang
12.1 Introduction 225
12.2 Gradient Polymeric Structures 225
12.2.1 Gradient Hydrogels 225
12.2.2 Gradient Polymer Brushes 230
12.3 Gradient Polymeric Structures Regulated Cell Behavior 241
12.3.1 Gradient Cell Adhesion 241
12.3.2 Cell Migration 244
12.4 Conclusion 247
References 247

Part III Biomaterials 251

13 Bioinspired Materials and Structures: A Case Study Based on Selected Examples 253
Tom Masselter, Georg Bold, Marc Thielen, Olga Speck, and Thomas Speck
13.1 Introduction 253
13.2 Fiber-reinforced Structures Inspired by Unbranched and Branched Plant Stems 253
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.4.1 Divergent Grafting Onto Strategy</td>
<td>323</td>
</tr>
<tr>
<td>16.4.2 Divergent Grafting from Strategy</td>
<td>328</td>
</tr>
<tr>
<td>16.4.3 Convergent Grafting Through Strategy</td>
<td>332</td>
</tr>
<tr>
<td>16.5 Conclusion</td>
<td>333</td>
</tr>
<tr>
<td>References</td>
<td>334</td>
</tr>
<tr>
<td>17 Bone-inspired Biomaterials</td>
<td>337</td>
</tr>
<tr>
<td>Frank A. Müller</td>
<td></td>
</tr>
<tr>
<td>17.1 Introduction</td>
<td>337</td>
</tr>
<tr>
<td>17.2 Bone</td>
<td>337</td>
</tr>
<tr>
<td>17.3 Bone-like Materials</td>
<td>340</td>
</tr>
<tr>
<td>17.3.1 Biomimetic Apatite</td>
<td>340</td>
</tr>
<tr>
<td>17.3.2 Bone-inspired Hybrids</td>
<td>343</td>
</tr>
<tr>
<td>17.4 Bone-like Scaffolds</td>
<td>344</td>
</tr>
<tr>
<td>17.4.1 Additive Manufacturing</td>
<td>344</td>
</tr>
<tr>
<td>17.4.2 Ice Templating</td>
<td>346</td>
</tr>
<tr>
<td>17.5 Conclusion</td>
<td>349</td>
</tr>
<tr>
<td>References</td>
<td>349</td>
</tr>
<tr>
<td>18 Research Progress in Biomimetic Materials for Human Dental Caries Restoration</td>
<td>351</td>
</tr>
<tr>
<td>Yazi Wang, Fengwei Liu, Eric Habib, Ruili Wang, Xiaoze Jiang, X.X. Zhu, and Meifang Zhu</td>
<td></td>
</tr>
<tr>
<td>18.1 Introduction</td>
<td>351</td>
</tr>
<tr>
<td>18.2 Tooth Structure</td>
<td>351</td>
</tr>
<tr>
<td>18.3 The Formation Mechanism of Dental Caries</td>
<td>352</td>
</tr>
<tr>
<td>18.4 HA-filled Biomimetic Resin Composites</td>
<td>352</td>
</tr>
<tr>
<td>18.4.1 Particulate HA as Filler in Dental Restorative Resin Composites</td>
<td>352</td>
</tr>
<tr>
<td>18.4.2 Novel Shapes of HA as Fillers in Dental Restorative Resin Composites</td>
<td>354</td>
</tr>
<tr>
<td>18.4.3 Challenges and Future Developments</td>
<td>355</td>
</tr>
<tr>
<td>18.5 Biomimetic Synthesis of Enamel Microstructure</td>
<td>356</td>
</tr>
<tr>
<td>18.5.1 Amelogenins-containing Systems</td>
<td>356</td>
</tr>
<tr>
<td>18.5.2 Peptides-containing Systems</td>
<td>357</td>
</tr>
<tr>
<td>18.5.3 Biopolymer Gel Systems</td>
<td>359</td>
</tr>
<tr>
<td>18.5.4 Dendrimers-containing Systems</td>
<td>360</td>
</tr>
<tr>
<td>18.5.5 Surfactants/Chelators-containing Systems</td>
<td>360</td>
</tr>
<tr>
<td>18.5.6 Challenges and Future Developments</td>
<td>360</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>362</td>
</tr>
<tr>
<td>References</td>
<td>362</td>
</tr>
</tbody>
</table>

Index 365