Abbe theory of imaging, 157
ABCD matrices, 474–479, Appendix D
Aberrations, 83, 101, 169, 179–185
Absorption, 202
Airy disk, 74
Airy pattern, 74, 84
Albedo, 137, 284, 286, 293
Amplitude field See Electric and magnetic fields
Amplitude Shift Keying See On-Off Keying
Amplitude spectrum spatial, 206
temporal, 208
Amplitude Spread Function, 263, 268 See also Coherent point spread function
Angular beam spread of diffraction-limited optics, 74
Angular Spectrum, 51, 59
Aperture stop, 113
Aplanatic, 117
Apodization, 178
Asymmetry factor, 292 See also Average cosine
Autoconvolution, 15
Autocorrelation, 15, 16, 39–40
Auto-covariance, 40
Avalanche photodiode, 300, 319, 326, 337–338
Average cosine, 292
Background noise ratio, 414
Baffles, 119
Bandgap, 301, 306–308, 319
Bandgap energy, 302
Bayes risk, 359
Bayes solution, 359
Beer’s law, 240, 248–249, 453
Bidirectional reflectance distribution function, 135–136
Binominal distribution, 35–37
Bit error probability See Probability of bit error
Blackbody radiation sources, 145
Boltzmann factor, 448
Bose–Einstein distribution, 149, 202
Butoon model, 280–281
Built-in potential barrier, 310
Carrier-to-noise ratio, 336–337, 395
Cavity See Optical resonator
Channel capacity, 381–382
Characteristic function See Moment generating function
Charged coupled device, 300, 301, 325
Chemical potential, 203
Chief ray, 115
Chi-squared random variables, 34–35, 396–398, 412–413, 416
Circ function, 72–73, 232
Clear aperture (diameter) 117
Coefficient of variation, 346
Coherence area, 203, 229, 235
Coherence length, 211, 225, 235, 263
Coherence time, 204, 211–212
Coherent point spread function, 157
Complementary error function, 365
Complex degree of coherence, 223, 229
Complex degree of temporal coherence, 211, 213
Complex Pupil Function, 268 See also Spatial filter function
Composite coherence factor, 204
Conditional probabilities, 23–25
Constant false alarm rate, 374–375
Contrast
fringe, 216, 229
Michelson, 163, 165, 168, 213, 248
OTF, 161, 164, 166, 178, 181, 183, 233, 248–249
threshold, 250
Weber, 247–249, 345, 410
Contrast-to-noise ratio, 414, 433
Contrast Transfer Function See Optical transfer function
Convolution, 15, 16, 154
Cosine to the fourth power, 140–143
Cost matrix, 358
Cross-correlation, 15, 227
Cross-power spectrum See Cross-spectral density
Cross-spectral density, 230
normalized, 230
Cumulative density function, 25–26
bivariate, 29
joint, 29
Current from a detector, 203
Current noise, 334
Damping condition, 55–56
Directional hemispheric reflectance, 136
Decibels, 40–42
Depletion layer capacitance, 317
Depletion region, 309, 312, 314, 317, 319, 321–323
Depth of field, 184
Depth of focus, 183–184
Diopters, 102
Differential junction capacitance, 316
Differential Phase Shift Keying, 376
Diffuse attenuation coefficient, 287–289
Diffuse reflectance See Albedo
Diffusion length, 321, 323
Diffusion (scattering) thickness, 292
Dirac Delta Function, 20–21
Dirichlet, 13–14, 16
Double-slit experiment, 228
Duffieux Formula, 168

Effective path length error See Wave aberration function
Eigenvalues, 8, 287
Eigenvectors, 8, 287
Eikonal equation, 96
Einstein Coefficients, 447
Einstein Photoemission Equation, 302
Electrical bandwidth, 205, 301, 382
Electric field, 52
Electron affinity, 302–303
Emissivity, 146–147
Energy per bit, 382
Energy per photon, 148–149, 202, 445
Energy spectral density, 211
Entrance Pupil, 113
Entrance Window, 117
Equilibrium contact potential, 321
Erbium doped fiber amplifiers, 330–331, 339, 342, 348
Error of the first kind, 357, 367
Error of the second kind, 357, 367
Étendue, 132–133
Evanescent electro-magnetic field, 56–58, 69
Event, 21
Exit pupil, 113
Exit Window, 117
Eye Diagram, 348–349, Appendix B

Fabry–Perot resonator, 466, 470
Fast speed, 117
Fermat’s Principle, 97
Fiber-coupling efficiency, 342–345
Field Stop, 115
Finesse, 470
Flicker noise, 334
f–number, 103, 116–117, 135, 174, 184
Focal length, 102, 117
Focal plane array, 300, 326
Focal point, 101–102
Fourier series
complex, 10–11
real, 9–10
Fourier spectrometry, 228
Fourier transforms
Cartesian coordinates, 15–17
polar coordinates, 17–20
Fraunhofer diffraction, 51, 68–76
using a lens, 76–82
Fraunhofer Spreading Loss, 76
Free spectral range, 468
Frequency, 148, 301, 327, 332, 335, 339, 346
dispersion of, 207
response, 301, 305, 324, 333
Fresnel diffraction, 51, 65
Fried parameter, 268, 271–274, 279, 281
Fringe visibility, 228

Gain, 40, 459, 464
Gain coefficient, 458
Gain noise, 325
Gaussian aperture field, 263–267
Gaussian lens equation, 105
Gaussian random variables, 31–33
Generalized interference law
for completely coherent light, 225
partially coherent light, 224
quasi-monochromatic light, 224
Generalized Pupil Function, 180
Geometrical wave front See Geometrical wave surfaces
Geometrical wave surfaces, 96
Gibbs effect, 13–14
Gradient operator, 8
Gram–Schmidt orthogonalization, 435–436
Greenwood frequency, 275
Greenwood time constant, 275
Greybody, 146
Group velocity, 207
Heaviside Step Function See Unit Step Function
Helmholtz equation, 54, 55, 466
Hermite–Gaussian modes, 471
Hermite Polynomial, 472
Hermitian, 14, 16
Hessian, 8
High speed, 117
Hilbert transforms, 461–463
Homogeneity, 154

Ideal Diode law, 318
Image Space irradiation condition, 55
Impulse response, 300–301, 337
Incomplete gamma function, 396
Interference, 201
and spatial coherence, 214–219
and temporal coherence, 205–214
Interferogram, 213
Intermediate frequency, 376
Inverse square law, 128
Ionization, 202
Irradiance, 128, 138–140, 284–288, 291
attenuation, 245, 286
Isoplanatic, 231
Isoplanatic angle, 274, 279

Jacobian, 8

Keystone effect, 125–126
Koschmieder equation, 250
Kramers–Kronig relations, 462
Kronecker delta function, 10

Lagrange invariant See Optical invariant
Lambertian surface, 137–138, 143
Lambert’s law, 137
Lens Law, 67
Lensmaker’s equation, 112

Likelihood ratio, 358, 362, 367, 369, 386, 428
logarithmic, 369, 431
Limit of resolution, 163
Linear filter theory, 160–162
Linearity, 51, 154–156
Linear superposition, 51, 206, 468
Line-shape function, 458, 460–461
Linewidth, 460
Longitudinal modes, 467–468
Lorentzian distribution, 458, 460–461
Loss, 40
Low-pass filter, 159, 160
Low speed, 117

Magnetic field, 52
Magnification, 68, 81
lateral or transverse, 107–108
longitudinal, 108
Mahalanobis distance, 428
Marcum Q-function, 398
Maréchal formula, 192
Marginal Rays, 115–116
Matrix
addition, 2
cofactors, 4–7
determinant, 3–5
identity, 5
inner product, 7
inverse, 5
multiplication, 2–3
orthogonal projection, 7
outer product, 7
positive definite, 8
quadratic equation, 8, 33
quartic form, 33
rank, 8
trace, 3
transpose, 3

Maximum a posteriori, 377, 386
Maxwell equations, 52–55
Mean effective turbulence height, 275
Method of stationary phase, 80,
Appendix A
Minimax risk, 361
Minimax strategy, 361
Minimum detectable power, 335, 346–347, 350
Modal density, 149, 459, 469
Mode number, 467
MODTRAN, 240–241
Modulation Transfer Function, 161, 162, 166, 194–195
Moiré patterns, 87
Moment generating function, 30–31, 400
Multipath time spreading, 293
Mutual coherence function, 223, 239
aerosol atmosphere, 251–255
molecular atmosphere, 255–256
total atmosphere, 262–272
turbulent atmosphere (plane & spherical waves) 256–262
Mutual intensity, 222, 229, 231
normalized, 229, 234
Newtonian image equation, 105
Nodal points, 101–102
Noise equivalent power, 346–347
Noise Figure, 337
Nonideal diode law, 318–319
Nonlinear, 154–156
Non-return-to-zero, 376
Non-shift-invariant, 231
Nonstationary process, 39
Normal distribution See Gaussian random variables
Normal (Gaussian) probability integral, 373
n-type semiconductor, 308, 319
Numerical aperture, 84, 116–117, 174, 184
Object space, 103
On-Off Keying, 376–377, 383, 385
Operating Characteristic See Receiver Operating Characteristic
Optical axis, 101
Optical bandwidth, 205, 301
Optical circulator, 446
Optical invariant, 110
Optical length See Optical thickness
Optical path, 96
Optical path difference, 180, 184
Optical resonator, 466
Optical thickness, 240
Optical transition
direct, 306
indirect, 306–307
Outcome, 21, 23–26, 35–36
Paraxial approximation, 101, 135, 143, 157
Partial coherence, 201
Path function, 245
Permeability, 53, 206, 466
Permittivity, 53, 206, 466
Phase noise, 335
Phase Transfer Function, 161, 166, 191–193
Phase velocity, 53, 207, 466
Photoconductive, 300, 305, 322, 324
Photodiode, 308, 319–324
Photodiode array, 325–326, 337
Photoelectric effect, 300, 302–303, 305
Photoelectric work function, 302, 305–306
Photoelectromagnetic, 300, 305–306
Photoemissive, 300, 302–305, 330, 334
Photometry, 123
Photomultiplier tube, 301, 304–305
Photon density, 148–149
total, 150
Phototube, 304–305
Photovoltaic, 300, 305, 320, 322, 324, 330
Pink noise See Relative intensity noise
Planck’s law, 145, 147–148
Plane of incidence, 100
Point spread function, 161, 180
Poisson distribution, 37–39
Posterior probabilities, 359
Power of the hypothesis test, 361–362
Power (intensity) spectral density
 for temporal processes, 212, 215, 228
Power spectrum, 40, 227
 Kolmogorov, 257–258
 modified von Karman, 258
Poynting vector, 53
p-Polarization definition, 100
Principal planes, 102
Principal points, 101–102
Prior probability, 356
Probability, 21–23
Probability density function, 25–26, 356
 bivariate, 29
 conditional, 29
 Gaussian, 356
 joint, 29
 marginal, 29
 vector-valued, 30
Probability mass function, 27–28
Probability of bit error, 375, 377, 387–388
Probability of error, 375
Projected area, 125, 128, 135, 141, 143
Propagation vector, 52
p-type semiconductor, 308, 319
Pupil Function, 220
Q-parameter, 380–384
Quadratic form See Quadratic equation–matrix
Quality Factor, 471
Quantum efficiency, 203, 300–301, 304, 327, 332, 336, 405
Quasi-monochromatic, 229
Radial frequency, 39
 attenuation, 245
 blackbody, 147
Radiance theorem, 132
Radiant emittance, 138
Radiant energy, 127–129
Radiant exitance, 135, 138, 146–147
Radiant flux See Radiant power
Radiant flux density See Radiant exitance
Radiant intensity, 127–130
Radiant power, 127–128
Radiative transfer equation, 245
Radiometers, 123
Radiometry, 123
 of images, 143
Random intensity, 208
Random processes, 38–40
Random variables
 correlation coefficient, 29
 covariance, 29
 covariance matrix, 30
 definition, 25
 expectation, 28, 30
 mean (see Expectation)
 moments, 28
 statistically independent, 30
 variance, 28
 vector-valued, 30–31
Range resolution, 391
Rayleigh distance or range, 265
Rayleigh–Jeans law, 148
Rayleigh Resolution Criterion, 84–85
Rayleigh–Sommerfeld–Debye
 Diffraction, 51, 55
 integral of, 63
 quadratic or parabolic approximation
 of, 65
Real image, 101, 108
Reality symmetry See Hermitian
Receiver circuit noise, 326
Receiver FOV overlap function, 405
Receiver Operating Characteristic, 362
Receiver sensitivity, 335, 347–350, 375, 381
Redistribution function, 287
Rect function, 20, 71
Reflection coefficient, 100
Refractive index, 53, 207, 466
complex, 255
turbulent atmosphere, 256
Refractive index structure function, 257
Hufnagel–Valley, 5/7, 278–280
Relative intensity noise, 331–333, 348
Resolving power, 269–272
Resonant frequencies, 468, 474
Responsivity, 300–301, 303, 319–320, 337, 347
Return-to-zero, 376, 383
Richardson’s constant, 305–306
Richardson’s law, 305
Risk, 357–359
Rose criterion states, 346
Rytov Number, 275
Rytov Variance, 275–277, 385

Saddle point method, 60, 69, Appendix A
Saturation intensity, 452, 464
Scattering cross section
single molecular species, 255
spherical particle, 255
Scatter phase function, 253, 255, 286–287
Semiconductor photodiode detector, 319
Shift-invariant See Isoplanatic
Shift theorem, 14, 16
Shot noise, 301, 326, 338, 341–342, 348
dark current, 330, 348
quantum, 326–330
Signal-to-noise ratio
background-limited, 337
optical, 249, 337–341, 414
quantum-limited (see Signal shot-noise-limited)
signal shot-noise-limited, 337, 341, 381–382
thermal noise, 380–381
Sinc function, 20, 72
Size of the hypothesis test, 361–362
Slow speed, 117
Small-signal-gain coefficient, 464
Smith–Helmholtz invariant See Optical invariant
Snell’s Law, 98
Solar Constant, 129
Solid angle
planar, 124
projected, 127, 133
spherical, 124
Space-Bandwidth Product, 89
Space charge region, 308–309, 311, 313–314, 316–317 See also Depletion region
Space invariant, 154–156
Space variant, 154–156
Spatial coherence, 225
Spatial coherence factor, 204
Spatial filter function, 157
Spatial frequency, 9, 58–65
Spatial spread, 210
in water, 292–294
Spectral density
for temporal processes, 212, 218
for temporal-spatial processes, 215
Spectral efficiency, 382
Spectrally pure, 230
Spectral width
for temporal processes, 212
Spectrum, 331 See also Spectral density
Specular surfaces, 136–137
Speed, 117
Speed of light, 53, 206, 445, 467
in vacuum, 53, 467
S-Polarization definition, 100
Spontaneous emission, 202, 330–331, 335, 340, 342, 348, 443
Spurious resolution, 183
Stationary process, 39, 212
Stefan–Boltzmann constant, 146
Stefan–Boltzmann law, 146
Stefan constant See Stefan–Boltzmann constant
Stimulated emission, 330–331, 348, 443–444
Strehl ratio, 191–193, 277–278
Structure function, 257

Temporal coherence, 225
Temporal coherence factor, 204
Temporal coherence function, 211–212, 218
Temporal frequency See Radial frequency
Thermal detectors, 302
Thermal emissions, 305, 326
Thermal voltage, 311, 318
Thin lens, 104, 106–111
Tombstone effect See Keystone effect
Transfer function, 301, 324
Transition (or oscillator) strength, 457
Transmittance
atmospheric, 240, 248–249, 453
between two dielectrics, 100
in water, 292
Transverse modes, 471, 472

Unit Step Function, 21
USAF Resolution Test Chart, 162

Valance band, 300, 302, 310
Van Cittert–Zernike theorem, 235
Vector-space image representation, 371, Appendix C
Vignetting, 113, 132
Virtual image, 101, 108
Visibility, 213, 246, 250 See also
Michelson contrast
Volume absorption coefficient, 240–243
Volume extinction coefficient, 240, 242–243, 249–250
Volume scattering coefficient, 240, 242–243
Volume scattering function, 242–245, 405

Water reflectivity, 289
Wave aberration function, 180, 184–193
Wavefront radius of curvature
Gaussian, 265–266
Wavelength, 40–41, 55, 57–59, 250
maximum for a blackbody, 147
Wave number, 467–468
Wave train
spatial, 208
temporal, 206–207
Weiner–Khinchin Formula, 17, 40, 212
White noise, 40
Whittaker–Shannon Sampling
Theorem, 87
Wien’s displacement law, 147
Window, 117

Zernike circle polynomials, 187–188
Zernike modes See Zernike polynomials
Zernike polynomials, 185–191