CONTENTS

ABOUT THE EDITORS xv
LIST OF CONTRIBUTORS xix
PREFACE xxiii

1 THE ROLE OF THE PHYTOMICROBIOME IN MAINTAINING BIOFUEL CROP PRODUCTION IN A CHANGING CLIMATE 1
Gayathri Ilangumaran, John R. Lamont and Donald L. Smith

1.1 General Background on Climate Change 1
1.2 More Extreme Weather More Often – More Crop Stress 2
1.3 Biofuel Crops – Alternative to Fossil Fuels 3
1.4 Avoiding Competition with Food Production 4
1.5 Fuel Crops Grown on Marginal Lands – Constraints 4
1.6 Plant Response to Stresses Related to Climate Change and Marginal Lands 6
1.7 Sustaining Biofuel Crops Under Stressful Environments 7
1.8 The Phytomicrobiome and Climate Change Conditions 8
1.9 The Phytomicrobiome and Abiotic Plant Stress 8
1.10 Mechanisms of Stress Tolerance in the Phytomicrobiome 9
1.11 Phytomicrobiome Engineering 11
1.12 The Phytomicrobiome in Biofuel Plants 12
1.13 Role of the Phytomicrobiome in Phytoremediation by Biofuel Plants 13
References 14
2 THE IMPACT OF AGRICULTURE ON SOIL MICROBIAL COMMUNITY COMPOSITION AND DIVERSITY IN SOUTHEAST ASIA

Binu M. Tripathi, Itumeleng Moroenyane and Jonathan M. Adams

2.1 Introduction 25
2.2 The Extent of Soil Microbial Diversity and their Status in Tropical Soils 27
2.3 The Composition and Function of Microbial Communities in Tropical Soils of Southeast Asia
 2.3.1 Unique Soil Microbial Communities of Southeast Asia and their Potential Drivers 29
2.4 The Impact of Land use Change on Soil Microbial Community Structure and Diversity 31
2.5 The Impact of Land use Change on Soil Functional Gene Diversity 34
2.6 Conclusions 35
References 35

3 CLIMATE CHANGE IMPACT ON PLANT DISEASES: OPINION, TRENDS AND MITIGATION STRATEGIES

Sachin Gupta, Deepika Sharma and Moni Gupta

3.1 Introduction 41
3.2 Climate Change and Agriculture 42
3.3 Interactions among Global Change Factors 43
3.4 Pathogen–Host Plant Relationship under Changed Scenario 44
3.5 Effect of Climate Change on Plant Diseases
 3.5.1 Temperature 46
 3.5.2 Drought 48
 3.5.3 Rainfall 48
 3.5.4 CO₂ Concentration 48
3.6 Adaptation and Mitigation Strategies for Climate Change
 3.6.1 Adaptation Strategies 49
 3.6.2 Mitigation Strategies 50
3.7 Conclusion and Future Directions 51
References 51
4 MICROALGAE: POTENTIAL AGENTS FOR CARBON DIOXIDE MITIGATION

Preeti Singh, Rahul Kunwar Singh and Dhananjay Kumar

4.1 Introduction
4.2 Carbon Capture and Storage
4.3 Carbon Capture by Photosynthesis
4.4 CO₂ Mitigation by Microalgal Culture
 4.4.1 The Open Pond System
 4.4.2 The Closed Photobioreactor System
 4.4.3 The Environmentally Controlled System
4.5 Advantages
 4.5.1 Integration of Microalgal Culture in Waste Water Treatment
 4.5.2 Ability of Microalgae to Tolerate the Greenhouse Gases
4.6 Carbon Concentrating Mechanism of Microalgae
4.7 CO₂ Sequestration by Microalgae
4.8 Cost Effectiveness
 4.8.1 Biofertilizer
 4.8.2 Biofuel
 4.8.3 Other Products
4.9 Conclusion
References

5 PHOTOSYNTHETIC MICROORGANISMS AND BIOENERGY PROSPECTS: CHALLENGES AND POTENTIAL

Balkrishna Tiwari, Sindhunath Chakraborty, Ekta Verma and Arun Kumar Mishra

5.1 Introduction
5.2 Photosynthetic Microbes
5.3 Anoxigenic Photosynthetic Microbes
 5.3.1 Green Photosynthetic Bacteria
 5.3.2 Purple Bacteria
 5.3.3 Heliobacteria
 5.3.4 Prospects of Anoxigenic Photosynthetic Microbes in Bioenergy Production
5.4 Oxygenic Photosynthetic Microbes 87
 5.4.1 Cyanobacteria 89
 5.4.2 Microalgae 93
5.5 Biomass Production and Challenges 95
5.6 Some Important Issues Associated with Biofuel Production 96
 5.6.1 Use of Water 96
 5.6.2 Nutrients and Competition with Crops 96
 5.6.3 Minimizing Algae Death from Biotic and Abiotic Factors 96
 5.6.4 Competition with Petroleum in Terms of Price 97
5.7 Conclusions 97
Acknowledgements 98
References 98

6 AMELIORATION OF ABIOTIC STRESSES IN PLANTS THROUGH MULTI-FACETED BENEFICIAL MICROORGANISMS 105
Usha Chakraborty, Bishwanath Chakraborty and Jayanwita Sarkar

6.1 Introduction 105
6.2 Temperature Stress Alleviation 107
 6.2.1 Alleviation by Bacteria 107
 6.2.2 Alleviation by Fungi 110
6.3 Water and Salinity Stress Alleviation 112
 6.3.1 Alleviation by Bacteria 112
 6.3.2 Alleviation by Fungi 118
6.4 Alleviation of Heavy Metal Toxicity 124
6.5 Conclusions 131
References 132

7 ROLE OF METHYLOTROPHIC BACTERIA IN CLIMATE CHANGE MITIGATION 149
Manish Kumar, Raghvendra Saxena, Rajesh Singh Tomar, Pankaj K. Rai and Diby Paul

7.1 Introduction 149
7.2 Methylotrophic Bacteria and their Role in Agriculture 151
7.3 Volatile Organic Carbon Mitigation and Methylotrophs 152
7.4 Carbon Cycling and Climate Change 152
7.5 Methylotrophs Mitigating Methane 154
7.6 Methylotrophs Mitigating Methane in Paddy Fields 158
CONTENTS

7.7 Conclusions 160
Acknowledgements 160
References 160

8 CONSERVATION AGRICULTURE FOR CLIMATE CHANGE RESILIENCE: A MICROBIOLOGICAL PERSPECTIVE 165
Raj Pal Meena and Ankita Jha

8.1 Introduction 165
8.2 The Effect of Climate Change on Agricultural Production 169
8.3 Concepts and Principles of Conservation Agriculture 173
8.4 The Ecological Role of Microbial Biodiversity in Agro-Ecosystems 177
8.5 Role of Microbial Population in C-Sequestration, N, P Cycle 179
8.6 Restoring Diversity in Large-Scale Monocultures 180
8.7 Enhancing Crops vis-a-vis Microbial Biodiversity to Reduce Vulnerability 181
8.8 Conclusions 183
References 183

9 ARCHAEAL COMMUNITY STRUCTURE: RESILIENCE TO CLIMATE CHANGE 191
M. Thomas, K.K. Pal and R. Dey

9.1 Introduction 191
9.2 Possible Role of Archaea in Agricultural Sustainability 192
9.3 Ecology and Phylogeny of Domain Archaea 193
9.4 Archaeal Contribution to Global Climate Change 194
9.4.1 Archaeal Response to Increased Temperatures 195
9.4.2 Archaeal Response to Biogeochemical Cycles 196
9.5 Archaeal Mechanisms of Adaptation with Respect to Abiotic Changes 200
9.6 Conclusions 200
References 201

10 MYCORRHIZA – HELPING PLANTS TO NAVIGATE ENVIRONMENTAL STRESSES 205
Raghvendra Pratap Singh, Geetanjali Manchanda, Mian Nabeel Anwar, Jun Jie Zhang and Yue Zhang Li
10.1 Introduction 205
10.2 Arbuscular Mycorrhizae 207
10.3 Elevated CO2 Levels 209
10.4 High Temperature 211
10.5 Salinity 214
10.6 Conclusions 219
References 220

11 ENDOPHYTIC MICROORGANISMS: FUTURE TOOLS FOR CLIMATE RESILIENT AGRICULTURE 235

11.1 Introduction 235
11.1.1 Climate Change – Impact and Need for Adaptation 236
11.2 Endophytes and Climate Resilience 239
11.2.1 High Temperature Stress 239
11.2.2 Low Temperature Stress 240
11.2.3 Moisture-Deficit Stress 240
11.2.4 Salinity Stress 242
11.2.5 Waterlogging Stress 244
11.3 Endophytes and Biotic Stress 245
11.3.1 Plant Diseases 245
11.3.2 Nematode Infestation 247
11.3.3 Insect Pests 247
11.4 Conclusions 247
References 248

12 BACILLUS THURINGIENSI S: GENETIC ENGINEERING FOR INSECT PEST MANAGEMENT 255
Gothandapani Sellamuthu, Prabhakaran Narayanasamy and Jasdeep Chatrath Padaria

12.1 Introduction 255
12.2 Biology of *Bacillus Thuringiensis* 257
12.2.1 Natural Occurrence of *Bacillus thuringiensis* 257
12.2.2 Classification of Bt Toxins 258
12.2.3 Mode of Action 260
12.3 Biotechnological Approaches of Microbial Genes for Insect Pest Management 261
 12.3.1 Microbial Genes and Gene Pyramiding 261
 12.3.2 Alternative Insecticidal Genes 262
 12.3.3 Gene Pyramiding 262
12.4 Methods for Development of Transgenic Crops 263
 12.4.1 Direct Gene Transfer 264
 12.4.2 Indirect Gene Transfer 266
12.5 Field Evaluation and Commercially Available Insecticidal Crops 267
 12.5.1 Environmental Safety 269
 12.5.2 Ecological Balance and Food Safety 270
12.6 Insecticide Resistance 270
12.7 Conclusions 271
References 271

13 MICROBIAL NANOTECHNOLOGY FOR CLIMATE RESILIENT AGRICULTURE 279
Prem Lal Kashyap, Pallavi Rai, Raj Kumar, Shikha Sharma, Poonam Jasrotia, Alok Kumar Srivastava and Sudheer Kumar

13.1 Introduction 279
13.2 Microbe Mediated Fabrication of Nanoparticles 281
 13.2.1 Bacteria 281
 13.2.2 Fungi 286
 13.2.3 Algae 287
 13.2.4 Viruses 292
 13.2.5 Actinomycetes 293
13.3 Nanomaterials for Biotic and Abiotic Stress Management 295
 13.3.1 Biotic Stress Management 295
 13.3.2 Abiotic Stress Management 306
13.4 Nano-Fertilizers for Balanced Crop Nutrition 314
13.5 Conclusion and Future Directions 315
References 316

INDEX 345