Index

Note: Page numbers in italic refer to illustrations

action plan and lesson learned 18
robust assessment 53–55
robust optimization 50–51
actuation pressure response 380, 382
actuation time measurement 281, 288
generated voltage signal for actuator robust assessment and benchmark study 279–297
benchmarking test setup 282
control factors 291
data acquisition 284–285
data analysis 291–296
strategy 285
dynamic S/N results 295
electrical charge calculation 288
generated voltage signal for actuation time measurement 285
low torque dynamic S/N results 296
mechanical work calculation 209
outer array 291
P-ideal diagram 287
performance test input signal and output response 292–293
function 287
robust assessment 286–296
actuators [1–4] 294
actuators [5–8] 294
ideal function 286–299
measurement method 281–285
scope and P-diagram 286
signal and noise strategy 290–291
tape measure spring windings to torque relationship 283
scope 286
test equipment 281–284
torque load fixture 283
ADAMS 147, 149
example model for Future Truck program 149
additivity 41, 49, 103, 162, 164
concept of 49
ADP (advanced development project) 405–406, 419

Robust Optimization: World’s Best Practices for Developing Winning Vehicles,
© 2016 Subir Chowdhury, Shin Taguchi, and ASI Consulting Group, LLC.
Published 2016 by John Wiley & Sons, Ltd.
advanced development project see ADP
aging 8, 11, 100, 101, 136, 259, 342, 368, 372, 373, 375
alloy composition 318–320, 322, 323, 329, 335
analysis of variance see ANOVA
ANOVA (analysis of variance) 86–87, 276, 363
 dynamic 271–273, 275
 for each injection point 269
 of first line of orthogonal array 87
 signal point-1 271
 table for noise factors 363
Apply Slurry into Substrate function 407–408
array modification, breakdown of 195
assembly issues 8
assignment and analysis result 104
audible noise 3
 consideration of analysis for 108–118
 evaluation of 111
automatic transmission 187, 188, 192, 206
 distribution of spin losses in 192
automotive brake subsystem, P-diagram
baseline circuit topology 302, 303
baseline spring mass model response
 validation 71
BCs (boundary conditions) 341, 345, 364
bench test confirmation 217–218
benchmark product 106–108, 111
 performance comparison with 107
benchmarking robustness 17
 how noise factors are varied for 23–32
benchmarking test setup 282
Beta (β)
 change of estimated and measured values of β_1 and β_2 85
 computations of 39–43, 41–43
 for A1, A2 and A3 and plots 55
 for all 18 sets of data of L18 44
 for L18 data sets 43
 sample of, with No. 1 data set of L18 45
dynamic 356–357
 graph of weight change response 329
 response charts 47, 203, 310–311, 356–357
 on β_1, β_2 and S/N ratio 144
 response tables for 46, 330
boot-strap circuit (floating MOSFET gate drive) 299
bottom line performance 58, 62
boundary conditions see BCs
cabin deformation 79, 80, 84
 magnitude of vs. crash velocity 93
CAE (computer aided engineering) 65, 66, 147–149, 154, 176
 simulations, sequential application of robust engineering to 341–366
calculation program 184–185, 186
carbon monoxide 336, 404
Carbonyl Iron 372
cascade learning (aka leveraged knowledge) 346
catalyst slurry coating process optimization
 Apply Slurry into Substrate function 407
ceramic particulate trap 404
 Coat Substrate function 407
compound noise strategy 412, 412
control factors 411
 confirmation results in Tulsa 417, 419
 for diesel catalyzed particulate traps 403–425
 factors and levels 411–412
 follow-up parameter design experiment 416–419
 function analysis 407–409, 408
 high level map 406
 ideal function 409, 421
 initial performance 406
 initial production scale-up run 407
 means plots 414
Index

for S/N ratios 417, 419, 423, 423
means tables 414–415
measurement system
 evaluation 409–410
noise factors 411–412
 Q affect process control 420
parameter design experiment
 layout 412–414, 417–418, 422
parameter diagram 409, 411, 421
 Tulsa 417
particulate trap regeneration 405
performance before and after optimization 416
predicted performance improvement 416
prediction and confirmation 423
process capability 423–424
Florange settings 424
 Tulsa settings 420
process map 406, 408
project description 406
transfer to Florange 419–424
two-step optimization and prediction 415
catalyzed trap 404
ceramic materials 317
ceramic particulate trap 404
CF (correction factor) 362, 364
CFD (computation fluid dynamic) 362, 364
checking validity of formulations, data set and graphs for 31
Chrysler 65, 78, 187, 188, 204, 207
 62TE 188, 192
cleaning procedures 320
Coat Substrate function 407–409, 411
coking 336
collision safety, optimization of component characteristics for improving collision safety by simulation, optimization of 79–94
compound noise strategy 412
 and additional input signal in outer array 159
computation fluid dynamic see CFD
computer aided engineering see CAE
computer simulation 13, 14, 20, 38, 347
 optimization of next-generation steering system using 133–145
concentration polarization 336
conduction losses 300
run 201
results of 51, 217–219, 244–246, 417, 419
 on initial and optimal design 142
 for operating characteristics 122–123
confirmatory calculation 91
 for six level changes 90
 with optimum conditions used as standard 92
 with wide level ranges 87
contamination test pressure cycle 374
control factor(s) and levels 33, 118, 176
 in actuator robust assessment and benchmark study 290–291
 application for spring stiffness updates 73, 73
assignment of 140
avoid strong interactions between 34–38
 in catalyst slurry coating process optimization 411
change of during iterative application 181
 for X3 183
 for X10 184
 in discrete floating MOS gate driver 305–306
 in double-lift window regulator system 117–118
demand 12–13, 65–67, 174, 254, 280
design
 contribution of variability 271
 per signal point 271
 signal point 1:2 ml desired 272
 of experiment 2
 optimal
 determination of 48–49
 for double-lift window regulator system used in automobiles 113–132
 of engine mounting system based on quality engineering 173–186
 for next-generation steering system 104
 for reformer washcoat adhesion on metallic substrates 331, 333
 for sequential application of robust engineering 359
 optimization process handling 66 parameter 9–13
 design diagram 241
 Future Truck steering effort robustness 154–172
 implementation of 244
 reference 359
 select
 alternatives 67
 for assessment 52
 space, exploration by orthogonal array 33–34
 technique
 improvement of 239–241
 by Quality Engineering 239–241
 system 241–246
 traditional 239
 tolerance 13–15
 tuned 360
 valve assembly 152–153
 Design-Build-Test-Fix cycle 32
 Design of Experiments see DOEs
 Design for Six Sigma see DFSS
 Design-Test-Fix 224
deterioration 8, 12, 80, 81, 116
 Detroit Tigers 14
development period 132, 238
 effect by shortening of 246
 for improving coupling factor in vehicle theft 223–234
 optimization for vehicle offset impact, stepwise implementation of 67–77
diesel
catalyzed particulate traps, catalyst slurry coating process optimization for 403–425
 common rail system 250
 direct injection see Direct Injection Diesel injector optimization emissions 404
 engines 404
direct injection diesel injector optimization 249–278
 ANOVA
 for each injection point 269
 signal point-1 271
 comparison model data Vs experimental data 253
 contribution of design factors to variability
 per signal point 271
 signal point 1:2 ml desired 272
 contribution of design factors on slope (dynamic tolerance design) 276
current total loss for some signal points 273
data analysis and two-step optimization 259–263
dynamic tolerance design 270–271
 ANOVA 275
 vs signal point tolerance design 273–275
dynamic analysis of variance 271–273
dynamic loss function 273–275
 experimental layout 259, 261
direct injection diesel injector
optimization (Continued)
for dynamic tolerance design 274
and factors 269
FTQ representation 267
end of line 269, 269
ideal function 257–258, 258
initial design compared to optimized
design 265
labeling used in experiment 253
loss function 269–270
model confirmation 263–264
modeled system 254
noise factors 259–260
noise strategy 258–259
objectives and approach 251–253
optimization process flow chart 252
parameter design 257–268
diagram 260
discussions on results 264–268
prediction 263
schematic of injector 255
schematic representation of injector
mapping 256
signal and noise strategies 258–259
signal points 258
signal point chart to support
manufacturing tolerance
decision-making 275
S/N ratio and sensitivity plots 262
signal point by signal point tolerance
design 269–270
simulation model robustness
253–257
slope tolerance 266
specifications on slope 266
structure of mathematical model
256
Taguchi loss function 273
for dynamic tolerance design 277
tolerance design 268–278, 269
factors and levels for 270
total current loss distribution among
parameters 276
two-step optimization 263
discrete floating MOS gate driver
299–314
baseline circuit topology 303
Beta response circuit topology 310–311
comparison of actual circuit
response 313
confirmation 312
control factors and levels 305–306
developing ideal function 302–305
dynamic ideal functions for Turn-On
and Turn-Off 304
experimental strategy and
measurement system 306
floating MOS gate drive 299, 302
ideal circuit response 304
L18 orthogonal array 308
noise strategy 305
optimum factors presenting
improvement for turn-off
event 311
parameter design experiment
layout 306, 307
prediction and confirmation 312
response charts 307–311
results 307
for Turn-On and Turn-Off
event 309
several control factor levels
adjusted 306
simple solenoid 301
single factor with three levels
305
S/N response chart 310
two-step optimization 311
distribution of spin losses in automatic
transmission 192
DOEs (Design of Experiments)
147–149, 157–159, 161–164,
171, 396
design for vehicle A under noise
conditions 163
design for vehicle B under noise
conditions 164
double-lift window regulator
system 114
evaluation of quality characteristics 122–123
schematic figure of 114, 115
selection of optimal condition and confirmation test results 120–1
used in automobiles, optimal design for 113–132
DPF (Diesel Particulate Filter) 403
DYNA 3D nonlinear-spring and damper models 67, 70, 71
dynamic analysis of variance 271–273
dynamic ideal functions for Turn-On and Turn-Off 304
dynamic loss function 273–275
Dynamic Most Common Case formulation 289
dynamic response 20–21, 25, 250, 277, 355–356
optimization 68
dynamic signal-to-noise results 295
low torque 296
dynamic tolerance design 252, 268–271, 276, 277, 277
ANOVA 273, 275
vs signal point tolerance design 273–275
ECCC 372
ECM (engine control module) 254, 300
ECU (engine control unit) 134, 348, 349, 363, 364
education and training 58, 61–62
effective communication 58, 60–61
electrical charge calculation 288
Elter, John 5
emissions 4, 279, 280, 404–405
emissivity 350, 354, 357, 365
absorption capability 65
efficiency 98, 101, 107–111
electrical 286, 288
kinetic 65, 84
loss 11
mechanical 286
response and two-step optimization 36
thermal 342, 347, 364, 365
thinking 20, 68
transformation of 6, 8, 10–12, 21, 30, 39, 43, 104, 107, 189, 191, 199, 209
engine box crush 68
gene control module see ECM
gene control unit see ECU
gene engine mounting system based on Quality Engineering, optimal design of 173–186
application of standard S/N ratio Taguchi method 175–178
iterative 178–181
design object 174–175
influence of interval at factor level 181–184
three-point 175
gene vibration 174, 184, 186
low frequency 175
simulation 186
environmental influences 8
EPA City and Highway tests 191
error factors 242, 243
Europe 390
European Technical Center 250
evaluation of audible noise (quality characteristic) 111
calculation program 184–185
functionality for 98–111
in DC motors 98–99
importance of 110
under unloaded (idling) condition 110
executive leader and corporate team 57–60
exhaust gases 404
experiment(s) and data collection, result of 40
outer array of 139
test results 214–215
of fuel delivery system 214
experimental data 119
experimental layout 259, 261
for dynamic tolerance design 274
for each run 102
and factors 269
experimental method and measurement
data
discrete floating MOS gate driver 306
for small DC motors 99–100
experimental setup 197
for each build combination 198
experimentation recipes and orthogonal
array L18 37
factor level 47, 74, 90–91, 169–170, 185,
201, 214, 252, 320, 346, 350
control 73–74, 306, 320, 415
influence of interval at 181–184
factorial effects of sensitivity β, 92
factors and levels 32–38, 70–72,
100–101, 118, 136–137, 411–412
failure modes 10, 21, 23, 25, 286, 287,
348
and effects analysis (FMEA) 62
F-D (force-displacement) curve 73, 75
FETs (field-effects transistors) 342
field-effects transistors see FETs
First Time Quality (FTQ) 249, 264,
266–268, 272–273, 391
end of line
as function of observed standard
deviation on β 268
as function of observed standard
deviation on slope 268
representation 267
fixed factors of fuel delivery
system 214
floating MOSFET delivery
("boot-strap" circuit) 299, 302
optimization of discrete 299–314
Florange, France 403, 405–406, 412, 419,
421, 424
FMEA see failure modes and effects
analysis
force-displacement see F-D curve
Ford Motor Company 209–211,
220–221
front wheel drive (FWD) 188, 190
optimization of transmission for
improved efficiency and
robustness 187–207
frontal barrier crash test 79–80, 80
FTQ see First Time Quality
fuel
delivery system
bench test confirmation 217–218
confirmation test results 217–219
control factors 213
experiment test results 214
conventional 211
fixed factors 214
ideal function 211–12
initial performance 219
new 211
noise factors 213–214
optimal performance 220
overview 210
robustness 209–221
sensitivity (β) analysis 214–217
test method 211
vehicle verification 218–219
flow 209
pump
efficiency 211
pressure levels 213
system 209
volatility (RVP values) 213
voltage 211
voltage levels 212
full system crash model 66
function analysis 407–409
function variation 11
functionality
comparison between optimal design
of, and noise-oriented
design 109
for evaluation 97–111
in DC motors 98–99
importance of 110
vs. quality characteristic 109
furnace 322–323
Future Truck program 147–150
 example ADAMS model for 149
 hydraulic power-steering assist
 system 149–151
 methodology 148–149
 parameter design 154–172
 parameter diagram 168
 project scope 153
 quality loss function 165–168
 standardized A/N post-
 processing 159–165
 steering effort robustness 147–172
 structure diagram 168
 valve assembly design 152–153
FWD see front wheel drive
gate driver
 optimization of discrete floating
 MOS 299–314
 “Gazelle” actuator 287, 293–296
 General Motors (GM) 147, 172,
 223–225, 234
general purpose actuator robust
 assessment and benchmark
 study 279–287
generated voltage signal for actuation
 time measurement 285
 “Giraffe” actuator 287, 292, 294–296
 GM see General Motors
graphs of runs 200–201
gull wing joints 396, 400
 visual scoring criteria for 395
heat flux signal 348, 353
heavy trucks 404
House of Quality
 Level-1: customer Qs and system
 CTQs 226
 lower levels 227
hydraulic power-steering assist
 system 149–151
 for rack and pinion steering
 gear 151
hydrocarbon decomposition 336
IC (integrated circuit) 19, 238, 241–243,
 299, 302, 314, 393, 399–401
IDDOV see Identify-Define-Develop-
 Optimize-Verify
ideal circuit response 303, 304
ideal function(s)
 in actuator robust assessment and
 benchmark study 287
 of catalyst slurry coating process
 optimization 409, 421
concept of 115
of DC motor 99
of Direct Injection Diesel injector
 optimization 257–258, 258
 of double-lift window regulator
 system 114–115
dynamic response 20–21
 of fuel delivery system 211–212
 of FWD transmission for improved
 efficiency 189, 189–190
displaying gear ratio as indicative
 factor 190
identify
 robust assessment 52
 robust optimization 20–23
 of next-generation steering
 system 136
 nondynamic responses 21–23
 of pressure switch module 371–372,
 372
 of reformer washcoat adhesion on
 metallic substrates 318, 318
schematic 70
 of sequential application of robust
 engineering 347–349, 348
 average thermal resistance 360
 heat flux response 349
 optimal design 359
 plot of raw data 351
 reference design 359
 tuned design 360
 steering effort 154–156
 various (table) 22
ideal state 239, 299
Identify-Define-Develop-Optimize-Verify (IDDOV) 187
Identify-Optimize-Verify (IOV) 187–188, 206
idling (unloaded) condition, evaluation under 110
improving coupling factor in vehicle theft using DFSS 223–234
diagram of subsystem 228
experimental results 228–229
experimental strategy 225–227
control factors 226
input signal 227
noise strategy 226
response 225
optimization details
based on L18 array full factorial plotted 232
L18 orthogonal array results 230
mean graphs 231
restricting factors A, B, and D 233
S/N graphs 231
original 18 experimental results 232
system 227–228
voice of customer 225
indicative factors 84–86, 136–137, 188–190, 199, 206, 371, 375
inefficiency 21
information 6, 48, 50, 60–61, 233, 275, 277, 297, 336, 368, 414
steering 134
transformation of 7–8, 10, 21
and tuned optimal design 145
initial fuel delivery system
performance 219
injector, fuel 210, 213, 300
direct injection diesel
optimization 249–278
and key variability sources 251
schematic of 255, 256
input M 20, 25, 30, 53, 99, 106
varied to benchmark robustness 23
input–output 84, 100, 107, 141
based on energy thinking 20
comparison of relation for each design 106
and indicative factors 85
integrated circuit see IC
integration strategy 58, 62
interval at factor level, influence of 181–184
IOV see Identify-Optimize-Verify
IPC/JEDEC J-STD-020B 390
iterative application
change of control factors during 181
concept of 179
of standard S/N ratio Taguchi method 178–181
vibration spectrum before and after 179
variation of 180
J.D. Power 165
kinetic energy 65, 84
L18 data sets
computations of S/N and Beta for 43
data from combination of 202
modified 196
orthogonal array 230, 308
sample calculation for combination of 201
L54 orthogonal matrix 337–339
lead-free reflow soldering process
experimental 391–396
inputs for evaluation 392
maximum pull strengths 400
noise factors 393
optimal and baseline settings for pull test 396
results 400–401
robust engineering methodology 391–394
robust optimization of visual scoring 394–396
criteria for gull wing joints results 396–400
S/N cross-section photos of best and worst response table 397
wetting of lead-free joints response table 397
leadership commitment 57–58
lesson learned and action plan robust assessment 53–55
robust optimization 50–51
level of factors 82–83
leveraged knowledge (aka cascade learning) 346
linear term β_1 and quadratic term β_2, calculation of 143
“Lion” actuator 287, 291, 293–296
load characteristics vs spring deformation, example of 81
load distribution 116–117, 124
way of varying 116
function 13, 264, 269–270, 276
dynamic 273–275
quality as 1–4, 13
see also quality loss function; Taguchi loss function
low frequency engine vibration 174, 175, 186
low torque dynamic S/N results 296
magnetic sensing system 238–239
and confirmation experiment comparison of result 245
results 244–246
construction of 238
control factor 243
design technique by Quality Engineering 239–241
effect of incomputable numbers and S/N ratio 244
effect by shortening of development period 246
error factor 243
ideal state 239
improvement of design technique 239–241
optimization 237–247
parameter design diagram 242
principle of 238
signal factor 242
system design technique 241–246
implementation of parameter design 243
parameter design diagram 241–242
results of confirmation experiment 244–246
technique on modeling 240
traditional design technique 239, 240
magnitude of cabin deformation vs. crash velocity, final results of 93
making better decisions faster 341–366
error 136, 175, 177, 186
organizations 1
process 6, 249, 390–391, 401
optimization 387–425
Martin, Billy 14
material thickness 350, 354, 357–358, 365
MATLAB 134–135
math-models generated data 351
sequential application of robust engineering to 341–366
structure of 256
maximization of number of good donuts 34
means plots 414, 414
for S/N ratios 417, 419, 423, 423
means tables 414–415
measurement 5, 21, 30, 32, 36, 52, 122,
200–201, 230, 280–282, 284–285,
287–288, 290, 297, 306, 354, 364,
368, 371, 373, 389–390, 406
data 102, 135–136
and experimental method 99–100
to input–output relation 100
of next-generation steering system 135, 135
and ideal function 189–190
system evaluation 334, 409–410
technology 19–20, 23
mechanical work calculation 209
mega project 18, 20
metallic substrates, reformer washcoat adhesion on 315–339
minimum detectable difference 334
MOSFET gate drive, floating (“bootstrap” circuit) 299, 301
neighboring subsystems 8
next-generation steering system using computer simulation,
optimization of 133–145
control factors 137
data reset for analysis using standardized S/N ratio 139
determination of optimal design and confirmation 141–142
factors and levels 136–137
high and low conditions 139
ideal function 136
measurement data 135
indicative factors 137
noise factors 136–137
outer array of experiment 139
pre-analysis for compounding noise factors 137–138
system description 134–135
tuning to targeted value 142–144
Nissan 5, 97, 113, 133, 142
nitric oxides 404
noise compounding strategy and input signals 157–159
noise factors 8–9
ANOVA table for 363
of catalyst slurry coating process optimization 411–412
categories of, with examples 26
countermeasures for 27
of Direct Injection Diesel injector optimization 259–260
of double-lift window regulator system 116–117
of fuel delivery system 213–214
of lead-free reflow soldering process 393
of next-generation steering system 136–137
pre-analysis for compounding 137–138
popular, with examples 28
of pressure switch module 373
Q affect on slurry coating 417
of reformer washcoat adhesion on metallic substrates 320–322
signal factor 320
unwanted outputs 320–322
response table 363
robustness as interaction between control factor and 36
sequential application of robust engineering 349
of steering effort robustness 157–159
used in experiments 116
varied to benchmark robustness 23
noise levels for CFD N1 and N2 364
noise-oriented design, comparison between optimal design of functionality and 109
noise strategy
compound
and additional input signal in outer array 159
for catalyst slurry coating process optimization 412, 412
of FWD transmission for improved efficiency 192
flow chart for developing effective 29
for Direct Injection Diesel injector optimization 258–259
for discrete floating MOS gate driver 305
for improving coupling factor in vehicle theft using DFSS 226
for optimization of front-wheel drive transmission for improved efficiency 191
for pressure switch module 372
see also signal: and noise strategies
nondynamic response 23–24, 25, 268, 351, 354
nonlinear spring-mass model 81
North America 224
NTB (nominal-the-best) function 375, 378–379, 414

OEMs (original equipment manufacturers) 1, 60, 343
subsystems level optimization by 95–234
OFF time 300
On-Center Handling behavior 147
ON resistance 300
ON time 300
one-dimensional multiple-degrees-of-freedom model 81
optimal build combination 201, 204, 206
confirmation results on 142
for double-lift window regulator system 113–132
for engine mounting system based on Quality Engineering 173–186
of functionality and noise-oriented design, comparison between 109
selection of 48, 104–107
and targeted values, comparison of 142
tuned, and initial design 145
optimal fuel delivery system performance 220
optimization
8 steps see robust optimization: eight steps to benefits gained 107–108
of catalyst slurry coating process for diesel catalyzed particulate traps 403–425
of component characteristics for improving collision safety by simulation 79–94
of Direct Injection Diesel injector 249–278
of discrete floating MOS gate driver 299–314
of front-wheel drive transmission for improved efficiency and robustness 187–207
control factor selection 192–193
ideal function and measurement 189–190
noise strategy 191
orthogonal array selection 193
signal strategy 190–191
of fuel delivery system 218, 219
of magnetic sensing system 237–247
of manufacturing process 387–425
of next-generation steering system using computer simulation 133–145
process flow chart 252
of small DC motors using functionality for evaluation 97–111
table of round 1 optimization factor levels 74
two-step 48
optimization (Continued)
of vehicle offset crashworthy design using simplified analysis model 65–78
validation of optimized model 74–76
vehicle level of 63–94
optimum conditions 90–94
comparison of 90
as standard, control factors with 81
optimum design see optimal design
original equipment manufacturers see OEMs
and analysis results 121
exploration of design space by 33–34
L18 and experimentation recipes 37
and mechanics 36–38
popular 38
selection 193–196
for washcoat adhesion study 324–325
and input based on energy thinking 20
oxidation 317, 319, 322–323
P-diagram see parameter design: diagram
parameter design 9–13
actuator robust assessment and benchmark study 287
automotive brake system 25
catalyst slurry coating process optimization 409
Tulsa 417
data set for robust assessment 53
direct injection diesel injector optimization 260
discrete floating MOS gate drive 307
ideal function 212
lead-free reflow soldering process 392
magnetic sensing system 242
power-steering system 168
pressure switch module 371
program 69
reformer washcoat adhesion on metallic substrates 319
DOE, modified L36 inner arrays 169–170
experiment first 406–416
follow-up 416–419
experiment layout 412–414, 417–418, 421–422
implementation of 244
initial design compared to optimized design 265
optimization, two chosen SEFs for 156
particulate traps 404
diesel, catalyst slurry coating process optimization for 403–425
ceramic 404
regeneration 405
particulates 403–404
PASS-Key I 224
PASS-Key II 224
PASS-Key III+ (PKIII+) 223, 225
Passlock system 224
PDCA cycle see Plan-Do-Check-Act (PDCA) cycle
performance test input signal and output response 292–293
PKIII+ see PASS-Key III+
Plan-Do-Check-Act (PDCA) cycle 50 and 8 Steps of Optimization 51
planar reformer 316
PMAP (process map) 391–393, 406
Power MOSFET 300–301
power-steering assist 147–149, 153, 168
hydraulic 149–151, 151
rack and pinion steering gear with 150
pre-analysis for compounding noise factors 137–138
predicted performance improvement 416
prediction(s) 49–50, 263, 329, 332, 357–362, 379–384, 415, 423, 312
and confirmation 122, 218, 312
on S/N ratio 131, 141
summary of 50
pressure switch element 369
pressure switch module (PSM) 369
actuation pressure response 380, 382
contamination test pressure cycle 374
control factors and levels 374–375
current production pressure switch module, detailed 368–369
current production (N.C.) switching element, detailed 369
data analysis 375–379
ideal function 371–372, 372
noise factors 373
noise strategy 372
normally open feasibility and supplier competition 367–385
objective 370
prediction and confirmation 379–384
release pressure response 381
response data 377
robust assessment 370
S/N response plot 380–381
scope and P-diagram 370–371, 371
test data 375–376
testing criteria 372–374
verification 383
prevention 9, 11, 60–61
printed circuit boards see PCBs
process map see PMAP
process capability 393, 419–420, 423–424
Florange settings 424
index 403
Tulsa settings 420
processes of changing levels of control factors six times 88–89
product development 1–2, 19, 38, 58–62, 98, 209, 237, 239, 345
traditional 32, 32
PSM see pressure switch module
Pugh analysis 62
Pugh chart 67
Pugh matrix 67–68
pull test 396
results 400–401
pulse width 253–254, 256–257, 300
modulation see PWM
“Puma” actuator 287, 293–296
PWM (pulse width modulation) 300
pyrolysis 336
Pythagorean Theorem 39
QFD see quality function deployment
QLF see quality loss function
quadratic term β_2 and linear term β_1, calculation of 143
quality as loss 1–4
quality characteristics 108, 110–111
evaluation of 122–123
quality engineering 94, 237–241
improvement of design technique by 239–241, 246
optimal design of engine mounting system based on 173–186
quality function deployment (QFD) 62, 225
quality loss function (QLF) 165–172
R&D (research and development) 111
rack and pinion steering gear
with hydraulic power-steering assist 149–151, 151
with power-steering assist 150
RE see robust engineering (Taguchi) 233
reformer substrates 315–317, 317, 319, 322
reformer washcoat adhesion on metallic substrates 315–340
alloy composition 319–320
cleaning procedures 320
confirmation 329–334
control factor levels 320–321
control factors 319–320
description of experiment 322–323
furnace 322–323
orthogonal array and inner array 323
S/N and Beta array calculations 323
response tables 323
design improvement 329–334
design parameter combination for optimal design 333
evaluation guidelines for analysis 328
experimental setup 317–320
tubular reformer and planar reformer 316
two-step optimization 323–329
various possible geometries for reformer substrates 317
washcoat composition 320
on β₁, β₂ and S/N ratio 143, 144, 159, 161
for β₂ response 160
of S/N ratio 141, 141, 159, 160
analysis of data under unloaded condition 105
and sensitivity analysis of data under loaded condition 105
on steering torque 138
Ricoh 5
RO see robust optimization
road feel 166
objective performance, relationship with value to customer 167
robust assessment 18, 29–30, 32, 38–39, 367–368, 370
data set for 41, 54
definition 5
eight steps to 17, 18, 52–55
step 1: define scope 52
step 2: identify ideal function/response 52
step 3: develop signal and noise strategies 52
step 4: select designs for assessment 52
step 5: execute and collect data 52
step 6: conduct data analysis 52
step 7: make judgments 53
step 8: lesson learned and action plan 53–55
general purpose actuator robust assessment and benchmark study 279–297
graph for 54
measurement method 281–285
methodology 391–394
robust optimization (RO) 1–2, 4–5, 7–8, 12, 15, 52–53, 55, 57–62, 312, 401
definition 5–15
eight steps to 17, 18, 19–51
and PDCA cycle 51
select project area 18, 51
step 1: define scope 19–20, 67
step 2: identify ideal function/response 20–23, 68
step 3: develop signal and noise strategies 23–32, 69–70
step 4: select control factors and levels 32–38, 70–72, 100–101
step 5: execute and collect data 38, 73–74
step 6: conduct data analysis 38–49, 101–104
step 7: predict and confirm 49–50
step 8: lesson learned and action plan 50–51
implementation of 57–62
introduction to 1–15
of lead-free reflow soldering process 389–402
and sequential application of robust engineering 347–364
test for 39
data set for assessing 30
definition 4
of direct injection diesel injector simulation model 253–257
of fuel delivery system 209–221
of Future Truck steering effort 147–172
higher 4
input M varied to benchmark 23
as interaction between control factor and noise factor 36
noise factors varied to benchmark 23–32
and optimization of FWD transmission for improved efficiency 187–207
thermal 354–358, 364–365
RoHS Directive 390
RVP values 213
in actuator robust assessment and benchmark study 286
for robust assessment 52
for robust optimization 19–20
scoping optimization/assessment project, considerations for 20
SEFs (steering effort functions) 147, 155, 159, 162, 165–166
comparison of, from several vehicles from different manufacturers 155
for parameter design optimization 156
sensing system optimization 20

(β) analysis 214–217, 216
sequential application of robust engineering
cascade learning (aka leveraged knowledge) 346
closed form solution 343–344
critical design parameters for thermal robustness 345–346
to math-models, CAE simulations, and accelerated testing 341–366
objective 345–346
robust optimization 347–364
ANOVA table for noise factors 363
control factors and levels 350
data analysis 351–353
dT response 352
heat flux signal 353
ideal function 347–349, 348
average thermal resistance 360
heat flux response 349
optimal design 359
plot of raw data 351
reference design 359
tuned design 360
input signal 350
math-model generated data 351
noise factors 349
noise levels for CFD N1 and N2 364
prediction and confirmation 357–362
response plot
dynamic Beta 356–357
dynamic S/N 356
dynamic STB S/N 355
nondynamic STB S/N 354
response table – level sums for all noise factors 363
scope and P-diagram 347, 347

setting for reference, optimal and tuned designs 358
signal and noise strategy 349
subsystem thermal resistance (Beta) 356–357
thermal robustness (signal-to-noise) 354–356
verification 362–364
test Taguchi robust engineering methodology 346
thermal equivalent circuit
detailed 343, 344
simplified 343, 344
thermal robustness design template 345

signal factors 242, 320
levels 258
and noise strategies
for actuator robust assessment and benchmark study 290–291
for direct injection diesel injector optimization 258–259
for robust assessment 52
for robust optimization 23–32
for sequential application of robust engineering 349

varying 25
points
chart to support manufacturing tolerance decision-making 275

current total loss for 273
quality 225
and response 136
strategy 190–191
for optimization of front-wheel drive transmission for improved efficiency 190–191
signal-to-noise ratio see S/N ratio
simulation models 81–82, 250–251, 258, 264, 277

robustness 252–257
single factor with three levels 305
slurry 316, 319–320, 328–329, 331
catalyst coating process optimization for diesel catalyzed particulate traps 403–425
compounding 407
parameters 320
small DC motors 97
optimization using functionality for evaluation 97–111
Smaller-the-Better see STB
SMT (surface mount) 389–392, 394, 399, 401
S/N ratio(s) 5, 39
and Beta
computations of 39–43, 41–43, 326
for A1, A2 and A3 and plots 55
for all 18 sets of data of L18 44
for L18 data sets 43
sample of, with No. 1 data set of L18 45
concept of 43
response table for 43–48, 327
calculations 139–141, 198–200, 323
change of estimated and measured values of 185
conventional
comparison with analysis results based on standardized S/N ratio 127–131
Direct Injection Diesel injector optimization 262
dynamic 295, 356
low torque 296
and effects of ncomputable numbers 244
high and low, raw data plot for 45
prediction and confirmation based on 131, 141
response charts 47, 141, 203, 215, 310, 380–381
and \(\beta_1 \) and \(\beta_2 \) 144
and sensitivity analysis of data under loaded condition 105
response tables for 46, 397
and sensitivity, predicted and confirmed results on 106
standardized analysis results based on 125–128
comparison with analysis based on conventional S/N ratio 127–131
determining of sensitivities 125
determining of standardized S/N ratio 124
application to engine mounting system 175–178
coefficient of first term of sensitivity based on 129
concept of analysis based on 124
and conventional S/N ratio 128
data format for determining 125
data format for determining sensitivity based on 126
data reset for analysis using 139
graphs of factorial effects for six level changes 89
with optimum conditions used as standard 92
with wide level ranges 87
iterative application to engine mounting system 178–181
post-processing 159–165
prediction and confirmation based on 131
with respect to survival space 82–86
response graphs based on 130
thermal robustness 354–356
SOFC (solid oxide fuel cell) system 336
solenoid(s) 280, 300
simple 301
solid oxide fuel cell see SOFC system
spin losses 192
distribution in automatic transmission 192
spring deformation vs. load characteristics, example of 81
spring mass model 66–67
nonlinear 81
response validation 72, 75–77
baseline 71
spring mass model (Continued)
simplified: creation and validation 70–71
for vehicle offset impact event 71
spring stiffness updating, control factor
level application for 73
standardized S/N ratio graphs of factorial effects
for six level changes 89
with optimum conditions used as standard 92
with wide level ranges 87
STB (Smaller-the-Better) 74, 348, 354–356, 361
dynamic 355
nondynamic 354
steering
angle on steering wheel 135
control loop behavior, intended 154
information 134
speed–steering torque characteristic 136
system, next-generation: optimization
of using computer simulation 133–145
torque on steering wheel 135
response graph on 138
steering effort function see SEF
strategy for varying signal and noise 25
subsystem(s)
diagram of (coupling factor in vehicle theft using DFSS) 228
level optimization
by OEMs 95–234
by suppliers 235–389
thermal resistance (Beta) 356–357
supplier competition and pressure switch module normally open feasibility 367–385
suppliers, subsystems level optimization by 235–385
surface mount see SMT
switching losses 300
Synform 372
system design technique 241–246
parameter design diagram 241, 242
Taguchi, Dr. Genuchi 1–4, 8, 55, 86, 110–111, 132, 134, 145, 207, 241, 281, 290, 394
Taguchi designs 2
Taguchi loss function 269, 272, 273
for dynamic tolerance design 277
application of standard S/N ratio 175–178
iterative 178–181
recommendations for 277
test Taguchi robust engineering methodology 342, 346
Taguchi two-step optimization 201, 346, 354, 357, 378
tape measure spring windings to torque relationship 283
TCU (transmission control unit) 368
technique on modeling 240
and time increase 35
test
data 375–376
equipment 281–284
planning 62
stand layout 190
thermal equivalent circuit 342, 345, 347
detailed 343, 344
simplified 343, 344
thermal loads see TLs
thermal resistance 349, 351, 357–358
average 360
subsystem 356–357
thermal robustness 341–342, 351, 357–358, 364–365
critical design parameters 345–346
design template 345
signal-to-noise 354–356
three-point engine mounting system 175, 185
time and temperature increase 35
TLs (thermal loads) 341, 345
tolerance design 13–15
of Direct Injection Diesel injector optimization 268–78
ANOVA for each injection point 269
factors and experimental layout 269
factors and levels 270
loss function 269–270
dynamic 270–271
experimental layout 270
signal point vs. dynamic 269
signal point by signal point 269–270
tolerancing 13
braking 30, 39, 52–53
load fixture 283
required for operation, reduction in 123
steering 135–139, 142–145, 154–156, 163–164, 168, 171
tape measure spring windings to relationship 283
total sum of squares 39, 41, 45, 119, 125, 362
decomposition of 42
traditional product development 32, 237
traditional design technique 239, 240
training, education and 58, 61–62
transformation of energy 6, 8, 10–12, 21, 30, 39, 43, 104, 107, 189, 191, 199, 209
of information 7–8, 10, 21
transmission control unit see TCU
tubular reformer 316
Tulsa, Oklahoma 403, 405, 406, 416, 417, 419, 420, 421
tuned optimal design, initial design and 144–145
tuning 2, 93, 134, 136, 147–148, 151, 153, 155, 157, 279, 346, 358, 365, 379
to targeted value 142–144
catalyst slurry coating process optimization 415
Direct Injection Diesel injector 259–263, 263
discrete floating MOS gate driver 311
and energy response 35
reformer washcoat adhesion on metallic substrates 323–329
unloaded (idling) condition, evaluation under 99–100, 103–106, 110
validity of formulations, data set and graphs for checking 31
valve assembly 147–149, 152–154, 168
design 152–153, 157–158, 160–162, 164–166
for Future Truck program 152
exploded view of typical 153
VATS (Vehicle Anti-Theft System) 224
VDI see vehicle anti-theft system
VECD see vehicle engine compartment displacement
vehicle
(crash performance 65
(crash responses 66

Index
vehicle (Continued)

- crush zone classification 70
- dash intrusion (VDI) 69, 70
- engine compartment displacement (VECD) 69, 70
- full validation of round 3 optimized dash intrusion 76
- full validation of round 3 optimized impact performance 76
- full validation of round 3 optimized results 75
- impact design 66
- impact velocity (VV) 70
- level of optimization 63–94
- offset crashworthy design, optimization of using simplified analysis model 65–78
- offset impact, stepwise implementation of DFSS optimization for 67–76
- stiffness demand 65
- theft, improving coupling factor using DFSS 223–234
- verification 218–219
- phase 204
- test conditions 205
- vibration spectrum 173, 177, 179–180, 182

- before and after optimization 177, 179
- variation of 180
- X3, change of 182
- X10, change of 182
- visual scoring 390–391, 394–398, 400
- VoC see Voice of Customer
- Voice of Customer (VoC) demands 65
- VV see vehicle impact velocity

- washcoat 405, 409
- adhesion on metallic substrates 315–340
- composition 320
- wear 8, 11, 287, 290, 296
- WEEE 390
- Whack-a-Mole Development Process 32

- X3
- change of control factors for 183
- change of vibration spectrum 182
- X10
- change of control factors for 184
- change of vibration spectrum 182
- Xerox 5

- Youden Square 188, 193–194, 206

- “Zebra” actuator 287, 292, 294–296
- ZTA (zirconia toughened alumina) 317