INDEX

Note: An n after a page number indicates a footnote.

A
Absolute dispersion, 111
Absolute frequency, 75, 77, 78–79, 83
Absolute value differentiation, 112n
Acceptance region, 288
Accrued interest, 61
Active return, 542–544
Active risk
 active factor risk, 547n
 active manager guidelines, 546
 active risk squared, 547
 active specific risk, 547
 decomposition of, 546n, 547–549
 information ratio, 545
 tracking error, 545, 545n
Addition rule for probabilities, 159–161
Adjusted R^2, 402–403
α (alpha), 286–287, 416
Alternative hypothesis, 284–285
American options, 213–214, 213n
Analysis of variance (ANOVA)
 bid–ask spread explained, 389
 definition, 366
 F-tests, 366, 367–369
 population means and, 292n
 regression analysis (see Regression analysis)
 regression sum of squares, 367
 sum of squared errors, 367
Annualizing
 bank discount basis, 59–60
 holding period yield, 61–62
 IRR periodic rate, 53n, 58
 semiannual yield to maturity, 64
 time-weighted return, 55
 tracking error, 545n
 volatility estimation, 230, 230n, 231–232
Annual percentage rate (APR), 12n
Annual percentage yield (APY), 12n
Annuities
 annuities due, 13, 21–22
 lump sum as, 35–36
 ordinary annuities, 13, 14–15, 19–24, 26
 perpetuities, 13, 24–26
 solving for payment size, 31–35, 36
ANOVA. See Analysis of variance
Antilogarithm conversion, 391, 391n
A priori probability, 154
Arbitrage pricing theory (APT)
 APT definition, 527
 APT equation, 528–529
 arbitrage definition, 528, 528n
 arbitrage opportunity, 528, 530–532
 arbitrage portfolio, 531
 CAPM as special case, 528n
 factor risk premium, 529
 pairs arbitrage trade, 155
 parameters, 529–530
 pure factor portfolios, 529
ARCH (autoregressive conditional heteroskedasticity), 504–507, 507n, 514
Arithmetic average. See Sample mean
Arithmetic mean. See also Mean
 of Bernoulli random variables, 211
 of binomial random variables, 211
Chebyshev’s inequality, 121–123, 218
computation of, 80n
cross-sectional mean, 88–89
definition, 86, 211n
extreme-value sensitivity, 90, 90n, 92–93
forward-looking context, 139
geometric mean versus, 100–102, 101n, 103, 138–139
harmonic mean versus, 103
historical returns, 138
investment style comparison, 109–110
population mean, 86–87, 221, 221n
properties of, 89–90
sample mean, 87–89, 221, 249
standard deviation correlation, 120
trimmed mean, 90n
weighted mean versus, 96, 96n
Winsorized mean, 90n
Arithmetic mean returns, 100–101, 101n, 102, 109–110
Artifacts of dataset, 271n
Asian call options, 233–235
Asset allocation correlatons and, 340–342
multifactor models for, 542, 549–551
Autocorrelation. See also Serial correlation
consequences of, 415–419
moving-average fitting time-series, 497
number computed, 476n
residual autocorrelations, 475, 475n
residual error, 462
time-series model, 474–477, 474n
Autoregressive (AR) models
autoregressive conditional heteroskedasticity, 504–507, 507n
autoregressive moving-average models, 504
chain rule of forecasting, 478
covariance stationary, 472–473, 472n, 473n
CPI model, 478–480 (see also Consumer Price Index)
definition, 462, 472
forecasting, 477–480, 494, 513
mean reversion, 477
model specification check, 475–477
moving-average versus, 494, 497, 513n
random walk as, 485
regression coefficient instability, 482–485
sample period length, 483–485
seasonality, 499–503
serially correlated errors, 474–477
time-series data challenges, 462
Average, 87n. See also Arithmetic mean; Mean estimating via regression, 360–362, 360n, 368–369, 369n
standardized beta, 538
β (beta), 286–287
Biases
data-mining bias, 268–271, 423
evaluation of forecast bias, 352–353, 364–366
hypothesis testing, 290–291
in investment research, 273–274
look-ahead bias, 272, 274
omitted variable bias, 423–425
sample selection bias, 271–272, 273, 290
survivorship bias, 271–272, 273, 290
time-period bias, 272–273, 274, 290–291
Bid–ask spreads
ANOVA explaining, 389
multiple linear regression, 387–391
negative, 428, 429
nonlinearity and, 426–429
omitted variable bias, 424–425
Bimodal distributions, 93
Binomial distributions
Bernoulli random variable, 204–205
binomial option pricing model and, 204
binomial probability function, 206–211
binomial random variables, 206, 211, 213
block broker evaluation, 205–206, 208–210
combination formula, 207
independence assumption, 206, 212
price movement modeling, 204–205, 206–208, 212–214
as probability distributions, 200
skew, 207
Binomial formula, 190
Binomial option pricing model
binomial distributions and, 204
combination formula, 190–191
price movement modeling, 204–205, 206–208, 212–214
as probability distribution, 200
Binomial random variables, 206, 211, 213
Binomial trees
earnings per share analysis, 169–170, 172
option valuing, 213–214
price movement as binomial model, 205, 212–213
Bivariate normal distributions, 219n, 315n, 344n
Black–Scholes–Merton option pricing model
continuously compounded returns, 228n, 230
as continuous time finance model, 228n
lognormal distribution assumption, 226–227
Monte Carlo simulations versus, 238
probability distribution use, 200
volatility and, 230
Block broker evaluation, 205–206, 208–210
Bond funds
equity funds versus, 95–97
portfolio expected return and variance, 175–180
Bonds
bond equivalent yield, 63–64
bond indexing, 250–251
correlations, 341–342, 346
coupon-bearing bonds, 61, 74
credit ratings, 73, 73n
defaults via binomial distribution, 212
IRR as yield to maturity, 46
pricing of, 201
recovery rates on defaulted, 303–304
zero coupon default risk, 173–174
Book-value-to-price ratio, 534
Box–Pierce Q-statistic, 475n
Breusch–Pagan test, 411–413, 411n, 417–419

C
Calculators
geometric mean, 99
internal rate of return, 49, 53n
money-weighted rate of return, 53, 53n
precision of, 6
rounding errors, 9n
Call options, 213–214, 213n
Canada Treasury bills, 3n, 62n
Capital asset pricing model (CAPM)
as arbitrage pricing theory special case, 528n
beta, 527, 527n
data mining bias, 269n
heteroskedasticity and, 410
market portfolio return, 527
mean–variance foundation, 526
multifactor models versus, 533, 552
as probability distribution, 200
regression of mutual fund performance, 367–369, 369n
systematic risk, 526–527
Capital budgeting, 44
Capital structure, 44
Carhart four-factor model, 529, 532–533, 543–544
Cash flow from operations, 342–343, 343n, 429–431
Cash flows
additivity principle, 32, 37
annuity future values, 13–16
annuity types, 13
correlations among, 342–343, 343n
estimation, 44n
future value of single, 4–13
internal rate of return, 46–51
macroeconomic factor models, 533–537
money-weighted rate of return, 46, 52–53
net present value, 44–46
present value of, 16–27
regression analysis, 429–431
retirement annuity payment size, 32–35
series of equal cash flows, 14–15, 19–26
series of unequal cash flows, 15–16, 26–27
weighted average cost of capital, 44n
Cdf. See Cumulative distribution function
Cells of stratified sampling, 250–251
Center for Research in Security Prices (CRSP), 272
Central limit theorem
continuously compounded return normality, 230
definition, 218, 230n, 254, 286n
nonnormal underlying, 255n, 256–257
sample size and, 255, 257, 352n
Central tendency
arithmetic mean, 80n, 86–90, 92–93, 96, 96n, 100–101
definition, 70, 86
dispersion, 111 (see also Dispersion)
geometric mean, 30n, 54, 55, 98–102
harmonic mean, 102–103
median, 90–93
mode, 93–94
weighted mean, 95–98
Certificates of deposit (CDs), 6, 9–10
Chain rule of forecasting, 478
“Change in” (Δ), 388n
Chebyshev’s inequality, 121–123, 218
Chi-square distributions, 286, 311n, 561
Chi-square tests
confidence intervals and, 309n
critical values for, 561
F-tests versus, 351n
hypothesis tests on single variance, 308–310
p-value via spreadsheet function, 292n
Classic normal linear regression model
assumptions, 351–352
Coefficient of determination (R²)
adjusted R², 402–403
linear regression, 356–358, 402
multicollinearity symptom, 420
multiple linear regression, 390, 390n, 402
Coefficient of variation, 123–125
Cointegrated time-series data, 509–510, 509n, 511
Combination formula, 190, 207
Common size statements, 429–431, 429n
Comparisons
 common size statements for, 429–431, 429n
 exchange traded funds vs. T-bills, 126–127
 factor models, 539–541
 forecasting model performance, 481–482
 geometric vs. arithmetic means, 100–102, 101n, 103, 138–139
 global vs. US stocks, 307–308
 Monte Carlo simulations for, 233
 negative Sharpe ratios, 127
 paired comparisons test, 304–308
 portfolio managers, 59
 returns across countries, 80–81, 88–89
 sequential comparisons, 162, 162n
 stock return and price, 228–230
 time- vs. money-weighted returns, 54, 56–58
 variance of returns pre- and post-crisis, 312–313
Compounding
 annual, 4, 5, 12
 compound growth rate, 30, 30n, 98, 102
 continuous, 11–12, 13 (see also Continuous compounding)
 daily, 12
 definition, 5
 frequency, 11–12, 18–19
 future value of single cash flow, 4–5, 9, 12
 monthly, 9, 10–11, 12, 19
 quarterly, 9–10, 12
 semiannual, 12, 13
 “stated annual interest rate,” 12n
 time-weighted rate of return, 53–58
Compound returns, 99–102
Conditional expected values, 169
Conditional heteroskedasticity
 autoregressive, 504–507, 507n, 514
 Breusch–Pagan test, 411–413, 411n
 serial correlation corrections, 418
Conditional probability
 definition, 157
 historical vs. future performance, 157–159
 likelihoods, 185
 limit order execution, 160–161
 as ratio, 156–157
 total probability rule, 164–166, 169–173
 unconditional probability and, 156n
Confidence intervals
 chi-square test and, 309n
 confidence limits, 260, 260n
 construction of, 260, 261
 definition, 258, 260, 266, 283
 degree of confidence, 260
 hypothesis testing and, 289–290, 289n, 358–359
 one-sided, 260n
 population mean, 261–268
 population variance unknown, 262–265
 practical interpretations, 260
 prediction intervals as, 369–372
 probabilistic interpretations, 260
 reliability factors, 260–261, 261n, 263, 265, 266
 sample size selection, 266–268, 266n
 Sharpe ratio population mean, 262–263, 265
 Student’s t-distribution, 262, 263–265
 two-sided, 260
 underlying distribution unknown, 262–263
 for variance, 309n
 z-alternative, 262–263
Consistent probabilities, 155–156
Consol bonds, 24
Constant-proportions strategy, 97
Consumer Price Index (CPI)
 autoregressive conditional heteroskedasticity, 505–506
 in- vs. out-of-sample, 481–482
 modeling, 478–480
 time-series model instability, 483–485
 trend, 463–465, 471, 471n
Continuous compounding
 compounding frequency, 12
 continuously compounded returns, 228n, 229–230, 231–232
 discrete versus, 228n
 effective annual rate, 13
 exponential growth, 466, 466n, 469–471
 future value of lump sum, 11–12
 Continuous random variables, 167n, 201, 202, 214–218
 Continuous time finance models, 228n
 Continuous uniform distributions, 214–218
 Corporate valuation, 393–396, 398–399
Correlation
 bivariate normal distributions, 219n
 correlation analysis definition, 329
 correlation coefficient calculation, 330, 332–333
 correlation coefficient definition, 329–330
 correlation coefficient significance tests, 344–347
 correlation coefficient variables, 356
 correlation matrix, 180, 181
 definition, 180
 diversification and, 180, 526
 estimating, 182–183
 factor definition, 525
 first-order serial correlation, 415
 Fisher’s z-transformation, 341n
 independence vs. uncorrelatedness, 183
 joint normal distributions, 219
 multivariate normal distributions, 219
 negative serial correlation, 415, 417n, 471n
 nonlinear relation and, 333–334
 outliers, 334–336
 pairwise and multicollinearity, 419–420, 420n
 positive serial correlation, 415, 417n, 471n
 properties of, 180–181
 residual error, 462
 scatter plots, 328–329, 330, 331, 337
 serial correlation, 415–419, 422 (see also Serial correlation)
 Spearman rank correlation coefficient, 315–317
 spurious correlation, 336
 uses of, 336–343
Cost averaging via harmonic mean, 103
Counting
 Bernoulli trials, 207
 combination formula, 190
 enumeration, 188
 factorials, 189–190, 189n
 labeling problems, 189–190
 multinomial formula, 190
 multiplication rule of, 189–190
 permutations, 191, 191n
Coupon-bearing bonds, 61, 74
Covariance
 correlation coefficient calculation, 332–333
 covariance matrix, 178, 179, 180, 181
 definition, 176–177, 330
 diversification correlation, 180
 estimating, 182–183
 joint probability function, 181–183
 “off-diagonal covariance,” 178, 178n, 179
 portfolio variance, 176–180
 of random variable with itself, 178
 sample covariance, 332, 332n
 sign of, 178
 stationarity, 472–473, 472n (see also Covariance stationarity)
 variance affected by, 178
Covariance stationarity
 definition, 472–473, 472n
 forecasting model steps, 513
 random walk determination, 489–493
 random walks, 473n, 486–489
 trend models, 473n
 unit root test, 489–493, 507–509
Credit risk, 73, 73n, 94–95
Critical thinking decision making, 283n
Critical values. See also Rejection points
 chi-square, 561
 Durbin–Watson (DW) statistic, 566
 F-distributions, 562–565
 one-sided t-distributions, 264n, 560
Cross-sectional data
 cross-sectional mean, 88–89
 cross-sectional standard deviation, 115–116
 cross-sectional variance, 115–116
 definition, 251, 253
 fundamental factor models, 534
 linear regression, 348, 362–364
 longitudinal data, 253n
 multiple linear regression, 387, 393
 observation notation, 348, 387, 393
 ordering vs. time-series, 471n
 panel data, 253n, 348n
 parameter instability, 372
 sampling, 253–254
 stock screening and independence, 162–163
Cumulative distribution function (cdf)
 continuous uniform cumulative distribution, 215–216
 definition, 202
 discrete uniform distribution, 202–204
 normal cumulative distribution function, 221, 222n
 normal cumulative probabilities, 222, 223, 558–559
 random observation generation, 235
Cumulative frequency distributions, 84–85
Cumulative relative frequency, 76, 77, 78–79, 84–85
Currencies. See Exchange rates
Data mining
bias, 268–271, 423
definition, 268, 423
intergenerational, 269, 269n, 270
model specification versus, 422–423
warning signs of, 270–271
Data snooping. See Data mining
Debt instruments
correlations of debt and equity returns, 341–342
holding period yield, 61
long-term debt markets, 63–64
pure discount instruments, 59
short-term debt markets, 59–64, 61
Deciles, 103–110
Decision making via critical thinking, 283n
Default risk premium, 3, 173–174
Defaults, 212, 303–304
Degree of confidence, 260
Degrees of freedom (df)
chi-square and F-distributions, 311n
definition, 263
F-tests, 367
linear regression, 355, 358–359
multiple linear regression, 390, 390n
sample variance, 117, 263–264
t-distribution parameter, 263–264, 293
Delistings, 272, 272n
Density, 202. See also Probability density function
Dependent events, 161, 304
Dependent variables
ANOVA, 366
autoregressive models, 462
linear regression, 347, 348, 351, 356
log-log regression models, 387–388
multiple linear regression, 386–388, 392–393
population regression coefficient testing, 399–402
predictions about, 369–372, 398–399
qualitative dependent variables, 435–437
time-series misspecifications, 431–435
Derivatives of semivariance, 121n
Descriptive statistics, 70, 71. See also Statistical methods
Deviations. See Dispersion
Differencing random walks, 486–489, 491–493
Diffuse priors, 188
Discount, 2, 16–19, 59
Discounted cash flow. See Time value of money
Discount rate
“interest rate” equivalence, 2
internal rate of return, 46, 48, 50
net present value computation, 44–45, 51
present value and, 18
Discount yield, 60, 62–63
Discrete random variables, 167n, 200–204, 202n
Discrete uniform distributions, 202–204
Discrete vs. continuous compounding, 228n
Dispersion
absolute dispersion, 111
Chebyshev’s inequality, 121–123, 218
coefficient of variation, 123–125
definition, 70, 111
interquartile range, 111n
mean absolute deviation, 111–113, 119
population standard deviation, 114–116
population variance, 114, 115–116
range of data, 74, 111, 111n, 112–113, 201, 394n
relative dispersion definition, 123
sample standard deviation, 117–120
sample variance, 116–117, 118–119
semideviation, 120–121
semivariance, 120–121, 121n
Sharpe ratio, 111, 126–127
standard deviation definition, 114 (see also Standard deviation)
sum around mean, 90, 112
variance definition, 113–114, 167 (see also Variance)
“Distribution-free” vs. “nonparametric,” 314n
Distribution function, 202
Diversification
arbitrage and, 528
asset-specific risk elimination, 528
correlation and, 180, 340–341, 526
risk reduction via, 180
Dividend yield factor, 538
Dogs of the Dow Strategy, 270n
Dollar-weighted rate of return, 46, 52–53, 54, 56–58
Dow Dividend Strategy, 270, 270n
Down transition probability, 212–213
Dummy variables, 403–407, 435–437, 538, 538n
Durbin–Watson (DW) statistic
autoregression invalidity, 474
critical values for, 566
serial correlation in regression, 416–418, 471n
trend model correlated errors, 471–472
Dutch Book Theorem, 156, 156n
DW statistic. See Durbin–Watson (DW) statistic
Earnings per share (EPS)
Bayes’ formula, 184–188
conditional variances, 171
dispersion around forecast, 168
as independent events, 162
operating cost expected value, 171–173
price–earnings ratio analysis, 92–93
as random variables, 200
total probability rule, 165–166, 169–173
tree diagram, 169–170, 172
unconditional variance, 171n
Earnings yield, 347
EBITDA analysis, 217–218
Effective annual rate (EAR), 12–13
Effective annual yield (EAY), 61–63
Empirical probability, 153–154
Enterprise value (EV), 362–364, 370–371
Enumeration shortcuts, 188–191
Equal cash flows, 14–15, 19–24
Equity funds
active risk comparison, 548–549
arithmetic mean returns, 100–101
bond funds versus, 95–97
correlations, 340–342
exchange traded funds vs. T-bills, 126–127
Forbes Magazine Honor Roll, 115–116, 115n–116n
gemetric mean returns, 100–101
performance predictability, 157–159, 163–164
population variance hypothesis testing, 309–310
sample standard deviation, 118–119
sample variance, 118–119
skewness, 132–134
t-test of population mean, 294–295
Equity markets
coefficient of variation, 124–125
frequency distribution, 80–81
global vs. US, 307–308
median, 91–92
risk premium hypothesis testing, 284–292
sample mean return, 88–89
stock return and price relationship, 228–230
Equivalent annual rate (EAR), 12n
Errors
error autocorrelation, 474–477, 474n
heteroskedasticity, 408–415
homoskedasticity, 408–409
in- vs. out-of-sample forecast errors, 481–482, 514
prediction errors, 478n
root mean squared error, 481–482
rounding errors, 9n
Error term of regression
assumptions, 351, 351n, 352n
definition, 348
error autocorrelation, 474–477, 474n
uncertainty of, 370
Estimation
asymptotic properties, 259
confidence intervals, 258, 260–268, 283
consistency of estimator, 259, 434, 434n
definition, 258, 283
efficiency of estimator, 259
estimate definition, 258
estimators definition, 258
hats over symbols as estimated, 206n, 348n
linear regression parameters, 348–349
normal distributions for, 226
ordinary least squares, 463n (see also Ordinary
least squares)
point estimates, 258–259, 260, 283
precision of estimator, 260n
Student’s t-distribution, 262
unbiasedness of estimator, 258–259, 259n
European-style options, 233, 233n
EURO STOXX 50, 105–108
Events
Bayes’ formula, 184–188
complements, 164
definition, 152
dependent events, 161, 304
exhaustive events, 153
independent events, 161–164 (see also
Independence
probabilities of outcomes, 153, 188
total probability rule, 164–166
Excess kurtosis
definition, 134–135
as “kurtosis,” 134n
normal distribution, 219
sample excess kurtosis, 135–138
S&P 500 Index, 132
Excess return
Carhart four-factor model, 532
mean excess return, 126
performance evaluation regression, 368–369
return attribution, 538
Sharpe ratio, 126, 252
Exchange rates
exchange rate return correlations, 338–340, 345
holding period return formula, 74n
as random walks, 486, 487–488
time-series data for, 460
Exchange traded fund comparison, 126–127
Exhaustive events, 153
Expected returns

- arbitrage pricing theory, 528–529, 530–532
- calculation of, 176, 181
- Carhart four-factor model, 532–533
- portfolio (see Portfolio expected return)
- risk premium definition, 285

Expected values

- conditional expected values, 169
- default risk premium, 173–174
- dispersion around, 168
- forward-looking data, 98
- multiplication rule, 183
- operating costs, 171–173
- properties of, 175–176
- of random variable, 166–167
- total probability rule, 169–173
- variance definition, 167

Expense ratio, 316n

Explanatory variables, 386n

Explosive roots, 489n

Exponential growth

- log-linear trends, 466, 466n, 469–471
- Starbucks’ seasonality, 501n
- time series with unit root, 493n

F

- Face value of US T-bills, 59
- Factorials, 189–190, 189n

Factors

- arbitrage pricing theory, 528–529
- company fundamental factors, 541
- company share-related factors, 541
- definition, 525
- factor analysis models, 534
- factor price, 529
- factor risk premium, 529
- factor sensitivity, 536, 538
- fundamental, 534, 537–541
- macroeconomic, 533–537, 539–541
- principal components models, 534
- pure factor portfolios, 529
- statistical, 534

Fat tails, 220, 220n

F-distributions, 286, 311n, 562–565

Financial calculators. See Calculators

Financial crisis

- inflation forecasts and, 364–366, 483–485
- mutual fund skewness, 132–134
- returns and inflation rate outliers, 335, 366
- volatility pre- and post-crisis, 312–313

Finite population correction factor (fpc), 255n, 294n

First-order serial correlation, 415

Fisher effect

- corrected standard errors, 418–419
- Durbin–Watson statistic, 417–418
- lagged dependent variable, 432–433
- measurement error, 434–435
- testing, 411–413, 411n
- unit roots and, 508

Fisher’s z-transformation, 341n

Fitted parameters of linear regression, 348–349

Foolish Four investment strategy, 270, 270n

Forbes Magazine Honor Roll, 115–116, 115n–116n

Forecasting

- autoregressive models, 494 (see also
 Autoregressive (AR) models)
- autoregressive moving-average models, 504
- bias evaluation, 352–353, 364–366
- chain rule of forecasting, 478
- CPI (see Consumer Price Index)
- EPS dispersion around forecast, 168
- forecasting the past, 433
- future as out-of-sample, 481
- in-sample forecast errors, 481, 514
- model performance comparison, 481–482
- moving-average models, 496–498
- multiperiod forecasts, 477–480
- out-of-sample forecast errors, 481–482, 514
- root mean squared error, 481–482, 512
- seasonality, 499–503
- Survey of Professional Forecasters, 336, 366, 412
- time-series steps, 512–514
- uncertainty, 512

Four-factor model, 529, 532–533

France Treasury bills, 3n, 62n

Free cash flow to the firm, 342–343, 343n, 346–347, 429–431

Frequency distributions

- absolute frequency, 75, 77, 78–79
- construction of, 74–76, 80–81
- cumulative relative frequency, 76, 77, 78–79
- definition, 73
- histograms, 82–83
- holding period returns, 74–81
- intervals, 75–76, 75n, 78
- Monte Carlo simulations, 233, 256–257
- relative frequency, 76, 77, 78–79
Frequency polygons, 83–84
F-statistic, 366, 367, 415, 420, 562–565
F-tests
 analysis of variance, 366, 367–369
 chi-square tests versus, 351n
 critical values for, 562–565
 degrees of freedom, 367
 heteroskedasticity and, 408
 p-value for, 391n
 p-value via spreadsheet function, 292n
Full-replication approach, 250
Fundamental factor models, 534, 537–541
Future value
 cash flow additivity principle, 37
 compounding formula, 5, 9
 compounding frequency and, 11–12
 present value equivalence, 35–37
 series of cash flows future value, 13–16
 single cash flow future value, 4–13
 single cash flow present value, 16–19
 solving for annuity payment size, 31–35
 solving for growth rate, 28–30
 solving for interest rate, 27–28
 solving for number of periods, 30–31

G
GARCH, 507n
Generalized least squares, 414, 414n
Geometric mean
 arithmetic mean versus, 100–102, 101n, 103, 138–139
 compound growth rate, 30n, 98
 computation of, 98–99
 definition, 98–99
 harmonic mean versus, 103
 historical returns, 138–139
 standard deviation correlation, 101n, 120
 time-weighted rate of return, 54, 55
Geometric mean returns
 arithmetic mean versus, 100–101, 101n, 102
 formula, 99
 investment style comparison, 109–110
 mutual fund returns, 100–101
 standard deviation correlation, 101n, 120
Germany Treasury bills, 3n, 62n
Graphical representations of data
 continuous uniform distributions, 215, 216
 cumulative frequency distributions, 84–85
 frequency polygons, 83–84
 hetero- vs. homoskedasticity, 409
 histograms, 82–83, 94
 linear regression, 349
lognormal distributions, 227
 normal distribution, 130, 221, 264
 outliers, 335
 scatter plots, 328–329 (see also Scatter plots)
 semilogarithmic scales, 138–139
 standard deviation, 130, 221
 Student’s t-distribution, 264
 time-series, 460, 461, 464, 465, 467, 468, 470, 485, 491, 492, 495
 time series plotting, 494–496, 512, 513
Growth rates
 compound growth rate, 30
 geometric mean, 466, 466n, 469–471, 493n, 501n
 geometric mean for, 30n, 98, 102
 growth and inflation rate correlation, 332–333, 344–345
 growth factor risk premium, 536
 interest rates as, 28
 solving for, 28–30
 time-weighted rate of return, 53–58

H
Hansen standard errors, 418, 418n
Harmonic mean, 102–103
Hats over symbols, 206n, 348n
Hedge funds, 73, 73n, 272, 272n
Hedging via time-series data, 460
Heteroskedasticity
 autoregressive conditional, 505–507, 507n, 514
 conditional, 411–413, 411n, 418
 consequences of, 408, 422
 correcting for, 410, 413–415, 414n, 422
 definition, 408, 409, 504
 standard error of estimate and, 410, 414, 414n
 testing for, 411–413
 unconditional, 410–411
Histograms, 82–83, 94
Historical returns
 beta estimation, 360n
 correlation estimation, 182
 covariance estimation, 182
 empirical probability, 153–154
 geometric vs. arithmetic means, 138–139
 historical mean vs. expected value, 166
 historical simulations, 238
 mutual fund performance, 157–159, 163–164
 statistical factor models, 534
 survivorship bias, 271–272
 volatility estimation, 230–232
Historical simulations, 238
Holding period return (HPR)
computation of, 51–52
continuously compounded returns, 229, 232
money market yield, 60–61
money-weighted rate of return, 53, 57
price relative, 228
rates of return formula, 74
time-weighted rate of return, 54, 55–56, 57
Holding period yield (HPY), 61, 62–63
Homoskedasticity, 408–409, 504
Hurdle rate, 47
Hypothesis testing
acceptance region, 288
alternative hypothesis, 284–285
beta estimation via, 360–362
confidence intervals and, 289–290, 289n, 358–359
critical thinking decision making, 283n
data mining, 268–269
definition, 258, 282, 283
equity risk premiums example, 284–292
hypothesis definition, 283
hypothesis statements, 284–285
inflation forecast evaluation, 362–364
joint hypothesis testing, 365n
linear regression, 362–364
Mann–Whitney U test, 314
mean oriented, 292–308
nonparametric tests, 314–318
null hypothesis formulation, 284–285
one-sided hypothesis tests, 284, 288, 290, 362–364
parametric tests definition, 314
parametric vs. nonparametric tests, 318
population variance known, 297, 297n
population variance unknown, 262–265, 293–297, 299–308
power of a test, 287, 287n
p-value approach to, 291–292, 292n
rejecting the null, 284, 288–290 (see also Rejecting the null hypothesis)
rejection points, 288–289, 288n, 292
scientific method, 283, 283n
significance level, 286–287
significance tests, 344–347
sign test, 314
as statistical inference, 258, 282
statistical significance, 288, 291
steps of, 283–291
Student’s t-distribution, 262, 286
test statistic calculation, 285–286
t-tests, 292–297
two-sided hypothesis tests, 284, 288–289, 290, 292, 388n
Type I errors, 286–287, 416
Type II errors, 286–287
variance oriented, 308–313
Wilcoxon signed-rank test, 314
z-tests, 286, 288–289, 297–299
I
Inconsistent probabilities, 155–156, 156n
Incremental cash flows, 44n
Independence
binomial distribution assumption, 206, 212
central limit theorem, 218
definition, 161
earnings per share as, 162
independence vs. uncorrelatedness, 183
independently and identically distributed, 229
multiplication rule for, 161, 162–163
mutual fund performance, 163–164
portfolio variance, 180
random variable independence, 183
screening stocks and, 162–163
Independently and identically distributed (IID), 229
Independent variables
ANOVA, 366
autoregressive models, 462
linear combinations of, 393n
linear regression, 347, 348, 351, 356
log-log regression models, 387–388
log transformations, 394n
macroeconomic factor models, 534
multicollinearity, 419–422
multiple linear regression, 386–388, 386n, 392–393
pairwise correlations, 419–420, 420n
perfect collinearity, 393n, 419, 419n
population regression coefficient testing, 399–402
randomness of, 351n, 393n
time-series misspecifications, 431–435
Indexes
correlations among stock return series, 340–341
S&P 500 Index (see S&P 500 Index)
survivorship bias, 271–272
Indexing bonds, 250–251
Inferential statistics. See Statistical inference
Inflation premium and interest rates, 3
Inflation rates
CPI (see Consumer Price Index)
growth and inflation rate correlation, 332–333, 344–345
inflation factor risk premium, 536
interest rate relation heteroskedasticity, 411–413, 414, 417–419
linear regression of forecast bias, 364–366
linear regression with stock returns, 354
surveys of, 336n
time-series model instability, 483–485
Information ratio, 545, 545n
In-sample forecast errors, 481, 514
Integration, 167n, 215, 216
Interest coverage ratio, 217–218
Interest rates
annual percentage rate, 12n
definition, 2
effective annual rate, 12–13
future value lump sum formulas, 5, 6, 9
as growth rates, 28
inflation relation heteroskedasticity, 411–413, 414, 417–419
macroeconomic factor models, 533–537
periodic interest rate, 12
Rule of 72, 31n
simple interest, 4
solving for, 27–28
stated annual interest rate, 9–13
tables of factors vs. calculators, 6n
time value of money definitions, 2–3
Intergenerational data mining, 269, 269n
Internal rate of return (IRR)
as bond yield to maturity, 46
caveats, 47, 47n
computation of, 47–48, 49, 53n
definition, 46
IRR rule, 47–51
money-weighted rate of return, 46, 52–53
Interpolation for quantiles, 104–105
Interquartile range, 111n
Intervals
Chebyshev's inequality, 121–123
certainty intervals definition, 258, 260
certainty intervals of population mean, 261–268
frequency distributions, 75–76, 75n, 78
lognormal distributions, 232
modal interval, 94
normal distribution standard deviations, 129, 130, 220–221
prediction intervals, 369–372, 399
Interval scales, 72
Inverse probability, 184
Invested capital (IC), 362–364, 370–371
IRR. See Internal rate of return
J
Japan Treasury bills, 3n
Jarque–Bera (JB) statistical test, 138n
Joint normal distributions, 219
Joint probability function, 181–183
K
Kurtosis
definition, 70, 134, 135
excess kurtosis, 132, 134–135, 134n, 219
fat tails, 220
leptokurtic distributions, 134, 135, 136
mesokurtic distributions, 134, 135
normal distributions, 219
platykurtic distributions, 134, 135
sample excess kurtosis, 135–138
sample kurtosis, 135, 219n
L
Labeling problems, 189–190
Large-capitalization stocks
Carhart four-factor model, 532–533
factor model comparison, 539–541
growth vs. value, 396–398
mean returns, 100–101, 110
returns of, 340–341
Russell 1000 Index, 162–163
S&P 500 Index, 126
Leptokurtic distributions, 134, 135, 136
Level of significance. See Significance level
Likelihoods, 185
Limit order execution, 160–161
Linear association, 329–330, 332, 333–334
Linear combinations, 219, 230, 393n, 402n
Linear interpolation for quantiles, 104–105
Linear least squares. See Linear regression
Linear regression
- Assumptions, 351–352, 351n, 352n
- Beta estimation, 360–362
- Coefficient of determination, 356–358, 402
- Cross-sectional data, 348, 372
- Definition, 347, 348
- Dependent variable, 347, 348, 351n, 356
- Durbin–Watson statistic, 471–472, 471n
- Economic forecast evaluation, 352–353
- Error term, 348, 351, 351n, 352n
- Estimated parameters, 348–349
- Hypothesis testing, 358–366
- Independent variable, 347, 348, 351n, 356
- Limits of models, 372
- Linear trend models, 463–465, 467–469
- Measurement error, 434–435
- Multiple independent variables, 356–357, 386
- (See also Multiple linear regression)
- One independent variable, 347–356, 435
- Parameter instability, 372
- Prediction intervals, 369–372
- Random walk differencing, 486–489, 491–493
- Random walk with drift, 489
- Regression coefficients, 348
- Regression residual, 349, 354
- Standard error of estimate, 345–356
- Stationarity tests, 435, 435n
- Time series, more than one, 507–512
- Time-series covariance stationary, 472–473, 472n
- Time-series data, 348, 372, 462
- Uncertainty, 354–356
- Linear trend models, 463–465, 467–469, 471–472, 473n
- Liquidity investment style, 108–110
- Liquidity premium and interest rates, 3
- Logistic distributions, 436, 436n
- Logit models, 436, 436n
- Log-linear trend models, 466, 469–472, 473n
- Log-log regression models, 387–388
- Lognormal distributions, 200, 213, 226–232, 228n
- Lognormal variables, 227–228
- Log transformations for wide ranges, 394n
- Longitudinal data, 253n
- Long-term debt markets, 63–64
- Look-ahead bias, 272, 274
- Lump sums, 4–13, 16–19, 35–36

M
- Macroeconomic factor models, 533–537, 539–541
- Mann–Whitney U test, 314
- Marginal probability, 156, 156n
- Market model regression, 182
- Market portfolio return, 527
- Market timing, 235–238, 423, 423n
- Market-to-book ratio, 433, 433n
- Maturity date pull to par value, 201
- Maturity premium and interest rates, 3
- Mean. See also Arithmetic mean
 - “average” versus, 87n
 - Of Bernoulli random variables, 211
 - Of binomial random variables, 211
 - Chebyshev’s inequality, 121–123, 218
 - Geometric mean, 30n, 54, 55, 98–102
 - Geometric vs. arithmetic, 100–102, 101n, 103
 - Harmonic mean, 102–103
 - Harmonic vs. geometric vs. arithmetic, 103
 - Hypothesis testing of differences between, 300–308, 314
 - Hypothesis testing of single means, 292–297, 314
 - Hypothesis tests concerning, 292–308
 - Linear regression line, 350
 - Lognormal distributions, 227–228
 - Mean absolute deviation, 111–113, 119
 - Mean excess return, 126
 - Mean of deviations, 112
 - Mean reversion, 477
 - Normal distributions, 129, 219
 - Of populations equal, 366n
 - Skewness, 129
 - As typical outcome measure, 90, 110–111
 - Weighted mean, 95–98
- Mean absolute deviation (MAD), 111–113, 119
- Mean returns
 - Across equity markets, 88–89
 - Arithmetic mean returns, 100–101
 - Constant-proportions strategy, 97
 - Deviation sum of zero, 90
 - Dispersion, 111 (See also Dispersion)
 - Geometric mean returns, 99–101
 - Multivariate normal distributions, 219
 - Mutual funds, 128
 - Risk evaluation, 112–113
 - Skewness, 129
 - As typical outcome measure, 90, 110–111
 - Weighted mean, 95–98
Mean reversion, 477
Mean squared error (MSE), 415
Mean–variance analysis, 224–226
Measurement errors, 433–435
Measurement scales, 72–73
Median
as 50th percentile, 107
definition, 90–91
extreme values and, 91, 92–93
normal distributions, 129, 219
skewness, 129, 129n
Mergers and acquisitions, 406–407
Mesokurtic distributions, 134, 135
Mode
calculating, 94–95
definition, 93
modal interval, 94
normal distributions, 219
skewness, 129, 129n
Modeling. See also Forecasting
arbitrage pricing theory, 527–533
CAPM, 526–527 (see also Capital asset pricing model)
CPI model, 478–480 (see also Consumer Price Index)
data mining definition, 268
forecast model comparison, 481–482
heteroskedasticity and, 410
model specification, 422–423, 475–477, 478n
Monte Carlo simulations for, 233
multifactor models, 525–526 (see also Multifactor models)
out-of-sample tests, 269, 423
probit models, 436–437, 436n
root mean squared error, 481–482, 512
time-series forecasting steps, 512–514
time series with unit root, 491–493, 507–512, 510n
trend models, 462–472
Modern portfolio theory (MPT)
definition, 526
diversification benefit, 180
expected return as reward measure, 175, 529
mean–variance analysis, 224–226, 526
multifactor models and, 526–527
normal distribution, 218, 224, 526
variance of return as risk measure, 175
Momentum
Carhart four-factor model, 532, 533
investment style, 108–110
“momentum” stocks, 532–533
Money market yields, 59–64
Money-weighted rate of return, 46, 52–53, 54, 56–58
Monte Carlo simulations
analytical methods versus, 238
applications of, 233
central limit theorem test, 256–257
definition, 232, 256n
historical simulation versus, 238
market timing vs. buy and hold, 235–238
normal distribution, 297n
overview of, 233–234
probability distributions and, 200, 214, 232, 233, 256n, 297n
simulation trials, 234
VAR estimation, 233
Moody’s Investors Service, 94–95, 212
Mortgage-backed security simulations, 233
Mortgages, 31–32, 35
Motley Fool “Foolish Four,” 270
Moving-average time-series models
autoregressive moving-average models, 504
autoregressive versus, 494, 497, 513n
lagging large movements, 495–496
plotting, 494–496
simple moving average, 494–496, 496n
time-series models, 496–498, 496n
12-month moving averages, 494n
MSCI, 88–89, 158, 175–180, 210
Multicollinearity, 419–422
Multifactor models
arbitrage pricing theory, 527–533
for asset allocation, 542
Carhart four-factor model, 529, 532–533, 543–544
factor analysis models, 534
factor definition, 525
factor model comparison, 539–541
factor sensitivity, 536, 538
fundamental factor models, 534, 537–541
macroeconomic factor models, 533–537, 539–541
modern portfolio theory and, 526–527
for portfolio construction, 549–551
principal components models, 534
pure factor portfolios, 529
for return attribution, 542–544
for risk attribution, 545–549
standardized beta, 538
statistical factor models, 534
for strategic decisions, 551–552
strengths of, 526
total risk attribution, 546
Multinational corporation valuation, 393–396, 398–399
Multinomial formula, 190
Multiple coefficient of determination (multiple R^2)
adjusted R^2, 402–403
definition, 390, 390n
multicollinearity, 420–421
Multiple linear regression
adjusted R^2, 402–403
assumptions, 392–398, 393n
assumption violations, 408–422
cross-sectional data, 387, 393
data nonlinearity, 425–429
data scaling, 387–391, 425, 429–431
data transformations, 387–391, 425–431
definition, 386
degrees of freedom, 390, 390n
dependent variable, 386–387, 392–393
dependent variable prediction, 398–399
dummy variables for, 403–407
Durbin–Watson statistic, 416–418
forecasting the past, 433
formula, 386–387
functional form of, 423–425
heteroskedasticity, 408–415, 411n, 422
independent variables, 386–387, 386n, 392–393, 393n
linear trend models, 463–465, 467–469
log-log regression models, 387–388
mergers and acquisitions and returns, 406–407
model specification, 422–435
month-of-year effects on returns, 404–405
multicollinearity, 419–422
mutual fund regression analysis, 396–398, 396n, 420–421
partial regression coefficients, 391–392, 392n
perfect collinearity, 393n, 419, 419n
population regression coefficient testing, 399–402
random walk differencing, 486–489, 491–493
random walk with drift, 489
regression coefficients, 387, 391–392, 392n
samples pooled poorly, 431
serial correlation, 415–419
standard error of estimate, 399
stationarity tests, 435, 435n
time series, more than one, 507–512
time-series covariance stationary, 472–473, 472n
time-series data, 387, 393, 462
time-series misspecification, 431–435
uncertainty, 399
valuation of corporations, 393–396
Multiplication rules
counting, 189–190
expected value of uncorrelated variables, 183
independent events, 161, 162–163
probability, 157, 159
Multivariate normal distributions, 219, 526
Mutual funds
arithmetic mean returns, 100–101
Bayes’ formula for evaluation, 184
geometric mean returns, 100–101
hypothesis test on population variance, 309–310
market timing model specification, 423, 423n
performance predictability, 157–159, 163–164
sample standard deviation, 118–119
sample variance, 118–119
Sharpe ratios, 128
skewness, 132–134
Spearman rank correlation coefficient, 316–317
t-test of population mean, 294–295
Mutually exclusive projects, 45, 50–51

N
Natural logarithm
antilogarithm conversion, 391, 391n
geometric mean, 99
independent variables with wide ranges, 394n
log-linear trend models, 466, 469–471
log-log regression models, 387–388, 426
lognormal distributions, 200, 226–232
nonlinearity of data, 426–429
rules for, 13, 31
Negative serial correlation, 415n, 416n, 417, 417n, 471n
Negative skew, 129, 131
Net income, 342–343, 343n, 346–347
Net present value (NPV), 44–51
Newey–West serial correlation correction, 418, 418n
Nodes of tree diagrams, 170, 212, 213–214
Nominal risk-free interest rate, 3
Nominal scales, 72, 73, 94, 538, 538n
Nonlinear relation, 333–334
Normal linear regression model assumptions, 351–352
Normal random variables, 219, 219n, 220, 220n, 221
Notation
cdf of standard normal variable, 222n
“change in,” 388n
complements of events, 164
correlation, 180
double summation signs, 178
factorials, 189
Greek for population parameters, 284n
hats over symbols as estimated, 206n, 348n
intervals, 75n
observations, 348, 387, 393
outcomes, 201n
random variables, 201n, 202
rejection points, 288
reliability factors, 261, 261n
Roman italics for sample statistics, 284n
unconditional probability, 153, 156
NPV. See Net present value
Null hypothesis
acceptance region, 288
definition, 284
formulation, 284–285
power of a test, 287
p-value, 291–292, 292n
rejection of, 284, 286–290 (see also Rejecting
the null hypothesis)
sample size and, 347n
significance level, 287
Type I and II errors, 286–287, 416
O
Objective probabilities, 154
Observations
autocorrelations computed and, 476n
notation of, 348, 387, 393
paired observations, 304
random observations, 235, 315n
to ranks for nonparametric tests, 314–318
time-series logical ordering, 471n
t-tests, 315n
Odds of probability, 154–155
Off-diagonal covariance, 178n
Omitted variable bias, 178n
One-tailed hypothesis tests, 284, 288, 290,
362–364
Opportunity costs
definition, 2
interest rates as, 2–3
IRR rule, 47
net present value discount rate, 45–46, 49, 51
Optimization, 112n
Option pricing models
Binomial (see Binomial option pricing model)
Black–Scholes–Merton (see Black–Scholes–
Merton option pricing model)
continuously compounded returns, 228n, 230
Monte Carlo simulations for, 233–235
volatility, 230, 231–232
Options
skew of returns, 220
underlying assets, 230n
volatility, 230
Ordinal scales, 72, 73
Ordinary annuities, 13, 14–15, 19–24, 26
Ordinary least squares (OLS)
definition, 463n
linear trend models, 463
multicollinearity and, 419
multiple linear regression model, 392, 392n
negative serial correlation and, 416n
positive serial correlation and, 415–416, 417–418
Outcomes
counting, 188–191
cumulative distribution function, 202
definition, 152
discrete uniform distribution, 202
event probability, 153, 188
notation for, 201n
possible for random variables, 201
probability distribution definition, 200
probability function, 202
random variable definition, 152, 200
sum to one, 202
Outliers, 334–336, 366
Out-of-sample forecast errors, 481–482, 514
Out-of-sample tests, 269, 423
Own covariance, 178

P
Paired comparisons test, 304–308
Paired observations, 304
Pairs arbitrage trade, 155
Pairwise correlations and multicollinearity, 419–420, 420n
Panel data, 253n, 348n
Parameters
autoregressive moving-average models, 504
confidence intervals, 258, 260–268, 283
definition, 71, 248
estimated of linear regression, 348–349. See also Estimation
equations, 87, 115
Greek letters for, 284n
lognormal distributions, 227
multivariate normal distributions, 219
normal distributions, 129, 219
one-factor APT model, 529–530
parameter instability, 372
parametric tests definition, 314
parametric vs. nonparametric tests, 318
point estimators, 258–259, 260, 283
r-distributions, 263, 293
Partial regression coefficients, 391–392, 392n
Partial slope coefficients, 391–392, 392n
Pearson coefficient of skewness, 129n
Percentiles, 90n, 103–108, 222
Perfect collinearity, 393n, 419, 419n
Performance appraisal
analyst coverage probit model, 436–437
binomial distribution for, 205–206, 208–211
block broker evaluation, 205–206, 208–210
definition, 51
fundamental factor models, 534, 537–541
investment manager, 210–211
money-weighted rate of return, 53
risk-adjusted performance, 59
sample selection bias, 271–272
style analysis correlations, 337–338
time-weighted rate of return, 53, 54
Performance attribution, 538–541, 542–549
Performance measurement
Bayes’ formula for, 184
correlations among measures, 342–343, 343n, 346–347
free cash flow explained, 429–431
holding period return, 51–52
linear regression hypothesis testing, 362–364
money market yields, 59–64
money-weighted rate of return, 46, 52–53
MSCI EAFE Index, 210
mutual fund regression analysis, 367–369, 369n, 396–398, 396n, 420–421
Sharpe ratio for, 127, 128
time-series data for, 460–461
time-weighted rate of return, 53–59
tracking error, 210
Periodic rate of return, 60
Permutations, 191, 191n
Perpetuities, 13, 24–26
Persistence of returns, 157–159
Platykurtic distributions, 134, 135
Point estimators, 258–259
Populations
definition, 71, 221n
hypothesis definition, 283
nonparametric tests, 314–318
parameter confidence intervals, 258, 260–268, 283
parameter point estimators, 258–259, 260, 283
parameters, 71, 87, 115
parameters in Greek letters, 284n
parameters via samples, 248
parametric tests definition, 314
population mean, 86–87, 221, 221n, 283
population mean and ANOVA, 292n
population mean confidence intervals, 261–268
population mean hypothesis tests, 292–308
population median, 91n
population mode, 93n
population regression coefficient, 399–402
population standard deviation, 114–116, 221, 293
population variance, 114, 115–116
population variance known, 297, 297n, 308–313
population variance unknown, 262–265, 293–297, 299–308
samples versus, 71
sampling more than one, 252–253, 372
underlying samples, 248, 249, 253–254, 255n, 256–257
Portfolio expected return
arbitrage pricing theory, 528–529, 530–532
calculation of, 176, 181
Carhart four-factor model, 532–533
as function of individual securities, 174
as measure of reward, 175
variance and, 175–180
Portfolio returns
hypothesis testing comparisons, 301–302, 306–308
joint normal distribution, 219
performance (see Performance measurement)
safety-first rules, 224–226
Portfolio standard deviation of return, 181–182
Portfolio variance of return
covariance, 176–180
as function of individual securities, 174
as measure of risk, 175, 176
well-diversified portfolios, 528
Positive serial correlation, 415, 417n, 471n
Positive skew, 129, 131, 132
Posterior probability, 186
Power of a test, 287, 287n
Prediction errors, 478n
Prediction intervals, 369–372, 399
Present value
compounding frequency and, 18–19
discount rate and, 18, 62–63
future value equivalence, 35–37
money-weighted rate of return, 46, 52–53
series of cash flows, 19–27
single cash flow future value, 4–13
single cash flow present value, 16–19
solving for annuity payment size, 31–35
solving for growth rate, 28–30
solving for interest rate, 27–28
solving for number of periods, 30–31
Price
arbitrage pricing theory, 527–533
Asian call options, 233–235
binomial model for, 204–205, 206–208, 212–214
bond pricing, 201
capital asset pricing model, 526–527 (see also Capital asset pricing model)
Center for Research in Security Prices, 272
fundamental factor models, 534, 537–541
heteroskedasticity and models, 410
lognormal distributions for, 213, 227, 228–230
as random variable, 201, 228
stock return and price relationship, 228–230
Priced risk, 527
Price relatives, 228, 229
Price-to-book ratio (P/B), 271–272, 532
Price-to-earnings ratios (P/Es)
arithmetic mean analysis, 92–93
definition, 92
earnings per share correlation, 93
fundamental factor models, 534
linear regression explaining, 348
median analysis, 92–93
nonstationary, 509n
stock market returns and, 509
Principal, 4
Principal components models, 534
Prior probabilities, 185, 188
Probability
addition rule, 159–161
a priori probability, 154
Bayes’ formula, 184–188
conditional probability, 156–159, 156n, 160–161
correlation, 174–183 (see also Correlation)
counting, 188–191, 207
covariance, 174–183 (see also Covariance)
default risk premium, 173–174
definition, 153
Dutch Book Theorem, 156, 156n
empirical probability, 153–154
estimation via normal distributions, 226 (see also Estimation)
events, 152, 153 (see also Events)
expected value, 98, 166–169 (see also Expected values)
inconsistent probabilities, 155–156, 156n
inverse probability, 184
joint probability function, 181–183
Probability (continued)
likelihoods, 185
limit order execution, 160–161
marginal probability, 156, 156n
Monte Carlo simulations, 200 (see also Monte Carlo simulations)
multiplication rules, 157, 159, 161, 162–163
objective probabilities, 154
odds of, 154–155
outcomes, 152, 153 (see also Outcomes)
perturbation probability, 186
prior probabilities, 185, 188
probability distributions, 200–214 (see also Probability distributions)
random variables, 152, 153
subjective probability, 154
sum to one, 98, 153, 166, 186, 188
total probability rule, 164–166, 169–173
tree diagrams, 169–170, 172, 205, 212–214
unconditional probability, 156–157
variance, 167
Probability density function (pdf)
definition, 202
lognormal distributions, 227
normal distributions, 218
uniform random variable, 214, 215
Probability distributions
binomial, 200, 204–214
bond price modeling, 201
cdf, 202 (see also Cumulative distribution function)
continuous uniform, 214–218
continuous vs. discrete, 201
definition, 200
discrete uniform, 202–204
discrete vs. continuous, 201
historical simulations, 238
lognormal, 200, 220–232
Monte Carlo simulations, 200, 214, 232–238
normal, 200, 218–226 (see also Normal distributions)
probability function, 202 (see also Probability function)
random numbers vs. observations, 235
r-distribution, 263 (see also r-distributions)
test statistics, 286
uniform, 200, 202–204, 214–218
Probability function
Bernoulli random variables, 204
binomial random variables, 206–211
continuous uniform random variables, 256
definition, 202
discrete uniform distributions, 202–204
Probability mass function (pmf), 202n
Probit models, 436–437, 436n
Pseudo-random numbers, 235n
Pure discount instruments, 59–60
p-value
approach to hypothesis testing, 291–292, 292n
definition, 291
for F-test, 391n
for null rejection, 359–360, 391
for regression coefficient, 391
spreadsheet calculation, 292n
Q
Q-statistic, 475n
Quadruple witching days, 313
Qualitative dependent variables, 435–437
Quantiles, 103–110
Quartiles, 103–110
Quintiles, 103–110
Quoted interest rate, 9–10
R
R^2. See Coefficient of determination; Multiple coefficient of determination
Random number generation, 204, 204n, 214, 235, 235n
Random numbers, 235, 235n, 249
Random observation generation, 235
Random observations, 235, 315n
Random sampling, 248–251
Random variables
Bernoulli random variables, 204–205
binomial random variables, 206
central limit theorem, 218, 230, 230n
continuous, 167n, 201, 202, 214–216
(see also Continuous random variables)
covariance and, 178n, 473n
covariance with itself, 178
definition, 152, 200
discrete, 167n, 200–204, 202n
discrete uniform distributions, 202–204
earnings per share as, 200
expected value, 166–169
independence definition, 183
joint probability function, 181–183
lognormal variables, 227–228
multiplication rule for expected value, 183
normal random variables, 219, 220
notation for, 201n
possible outcomes, 201
price as, 201, 228
probability distribution of, 153, 200, 202
(see also Probability distributions)
return as, 152, 200
sample mean as, 254
sample statistics as, 250, 254, 258
significance tests, 344–347
standardizing, 221
uniform, 214–216, 235
variance of, 167, 178n
Random walks
as autoregression, 485
covariance stationarity, 461, 473n, 486–489
covariance stationarity determination, 435, 489–493
definition, 435, 485
differencing, 486–489, 491–493
exchange rates as, 486
mean-reversion level undefined, 486, 489
random walk with drift, 485n, 489, 490n
random walk with drift and trend, 490n
unit root test, 489–493, 490n
Range of data
bond pricing, 201
definition, 111
frequency distribution construction, 74
interquartile range, 111n
log transformations for wide ranges, 394n
risk evaluation, 112–113
Ranked data, 314–318
Rates of return
as continuous random variables, 201
frequency distributions for, 74–81
geometric mean for compound, 30n, 98, 102
interest rates, 2
internal (see Internal rate of return [IRR])
money-weighted, 46, 52–54, 56–58
stock return and price relationship, 228–230
time-weighted, 53–58
Ratio averaging, 103
Ratio scales, 72, 73
Real risk free interest rate, 3
Receivables mean number of days, 295–296,
295n
Regimes in time series, 483, 512
Regression analysis
analysis of variance, 366–369
assumptions, 351–352, 351n, 352n, 392–398
assumption violations, 408–422
autoregression (see Autoregressive [AR] models)
beta estimation, 360–362
coefficient of determination, 356–358, 402
confidence intervals, 369–372
cross-sectional data, 348, 372, 387
data nonlinearity, 425–429
data scaling, 387–391, 425, 429–431
data transformations, 387–391, 425–431
dependent variables, 347, 348
dummy variables for, 403–407
Durbin–Watson statistic, 416–418, 471–472, 471n
error term, 348, 351, 351n, 370
forecasting the past, 433
functional form of, 423–425
heteroskedasticity, 408–415, 411n, 414n, 422
hypothesis testing, 358–366
independent variables, 347, 348
limits of models, 372
linear regression, 347, 386 (see also Linear regression; Multiple linear regression)
linear trend models, 463–465, 467–469
model specification, 422–435
multicollinearity, 419–422
operating cost expected value, 171–173
parameter instability, 372
partial regression coefficients, 391–392, 392n
perfect collinearity, 393n, 419, 419n
random walk differencing, 486–489,
491–493
random walk with drift, 489
regression coefficient instability, 482–485
regression coefficients, 348, 387, 391–392, 392n
regression coefficients of population,
399–402
regression residual, 349, 354
residual error, 462
samples pooled poorly, 431
serial correlation, 415–419
small sample unbiasedness, 259n
standard error of estimate, 354–356
stationarity tests, 435, 435n
time series, more than one, 507–512
time-series covariance stationary, 472–473, 472n
time-series data, 348, 372, 387, 462
time-series misspecification, 431–435
uncertainty, 354–356, 399
Regression sum of squares (RSS), 367
Regression, 386n
Reinvestment risk, 47, 51, 51n
Rejecting the null hypothesis
 DW statistic and serial correlation, 417–418, 417n
 hypothesis testing procedure, 286–290, 291–292
 one- vs. two-tailed hypothesis tests, 284
 positive serial correlation, 416
 p-value indicating, 359–360, 391
 sample size and, 347n
 Type I and II errors, 286–287
 Rejection points, 288–289, 288n, 296, 297–298, 311
Relative dispersion, 123–125
Relative frequency, 76, 77, 85
Relative skewness. See Skewness
Residual autocorrelations, 475
Residual error, 462
Return distributions
 annual vs. shorter holding periods, 136
 central tendency, 70
 dispersion, 70 (see also Dispersion)
 frequency distributions, 73–81
 Jarque–Bera statistical test, 138n
distribution, 70, 134–138
 normal distributions for, 129, 130, 220–221, 227
 option returns skew, 220
 Sharpe ratio and symmetry, 127
 skewness, 70, 121, 127, 129–134
 variance vs. semivariance, 121, 121n
Return on invested capital (ROIC), 362–364, 370–371
Returns
 across countries, 80–81, 88–89
 active return, 542–544
 arbitrage pricing theory, 527–533
 attribution of, 538, 545–549
 compound returns, 99–102
 continuously compounded returns, 228n, 229–230
 correlations, 338–342, 345
 excess (see Excess return)
 expected returns calculation, 176, 181 (see also
 Expected returns)
 histograms of, 82, 83
 historical (see Historical returns)
 holding period return (see Holding period return)
 independently and identically distributed, 229
 linear regression of inflation and stock return, 354
 macroeconomic factor models, 534–535, 537
 mean returns (see Mean returns)
 mergers and acquisitions and, 406–407
modeling via normal distribution, 220 (see also Modeling)
 month-of-year effects, 404–405
 mutual fund regression analysis, 396–398, 396n, 420–421
 persistence of, 157–159
 portfolio (see Portfolio returns)
 price-to-earnings ratio and, 509
 as random variables, 152, 200
 rates of (see Rates of return)
 stationarity, 229n, 252, 435, 435n
 stock return and price relationship, 228–230
time-series autocorrelations, 497–498
Risk
 active risk, 545–549, 546n
 arbitrage, 528, 528n
 attribution of, 538, 545–549
 capital asset pricing model, 527
 priced risk, 527
 risk premium, 529
 systematic risk, 526–527, 532–533
 total risk attribution, 546
Risk-adjusted performance, 59, 111, 127–128
Risk assessment
 coefficient of variation, 123–125
 conditional variance for, 171
 diversification, 180
 frequency distributions for, 78
 Monte Carlo simulations for, 233
 normal distribution for, 226
 portfolio variance for, 175
 range and mean absolute deviation, 112–113
 safety-first rules, 224–226
 semideviation measure, 120–121
 semivariance measure, 120–121
 shortfall risk, 224
 standard deviation measure, 111, 120, 121
 stress testing/scenario analysis, 226
 uniform distributions, 218
 value at risk (VAR), 226
 variance measure, 111, 120, 121
Risk-free rate
 probability overview, 156–157, 173–174, 223
 real risk-free interest rate, 3
 risk premium definition, 285
 Sharpe ratio, 126–128, 225, 252–253
 T-bills for, 3, 127, 173, 412n
Risk premiums, 3, 173–174, 284–292, 529, 536
Robust standard errors, 414, 414n, 418n, 422
Robust t-tests, 293
ROIC. See Return on invested capital
Root mean squared error, 481–482, 512
Rounding errors, 9n
Rule of 72, 31n
Russell 1000 Index, 162–163
Russell 2000 Growth Index, 338
Russell 2000 Index, 126
Russell 2000 Value Index, 338

Safety-first rules, 224–226
Sample mean
central limit theorem, 254–258
cross-sectional mean, 88–89
definition, 87–88
distribution of, 254–258
expected value versus, 166
population mean estimation, 221, 249, 258
sample size, 255, 255n, 257
sampling distribution normality, 262
standard error of, 255, 255n, 266

Samples
definition, 71, 248
in- vs. out-of-sample forecast errors, 481–482
out-of-sample tests, 269, 423
populations versus, 71
sample period length, 483
samples pooled poorly, 431
sampling, 248–254 (see also Sampling)
sampling error, 249, 254
statistics (see Sample statistics)
Sample selection bias, 271–272, 273, 290
Sample size
autocorrelations computed and, 476n
autoregressive moving-average models, 504
central limit theorem and, 255, 257, 352n
correlation coefficient significance, 345–347
estimator consistency, 259, 434n
estimator unbiasedness and efficiency, 259
finite population correction factor, 255n, 294n
“large” meaning, 255, 255n, 262, 293n
nonnormal underlying, 255n, 293n
sampling distribution and, 259
selection of, 266–268, 266n
t-distribution, 263
Type I and II errors and, 287
z-alternative, 262
zero correlation rejection, 347n
z-test vs. t-test, 296

Sample statistics
definition, 71, 248
as random variables, 250, 254, 258
Roman italic letters for, 284n
sample correlation coefficient, 332
sample covariance, 332, 332n
sample excess kurtosis, 135–138
sample kurtosis, 135, 219n
sample mean, 87–89, 221
sample median, 91n
sample mode, 93n
sample skewness, 131–134, 219n
sample standard deviation, 117–120, 221,
230n, 293, 332
sample variance, 116–117, 118–119, 230n, 332
sample variance and degrees of freedom, 263–264
sampling distribution of, 250, 254
standard error of, 255

Sampling
bias in investment research, 268–274
bond indexing, 250–251
cross-sectional data, 253–254
data-mining bias, 268–271
definition, 248
finite population correction factor, 255n, 294n
look-ahead bias, 272, 274
out-of-sample tests, 269, 423
sample selection bias, 271–272, 273
sample size, 255, 255n, 257, 266–268
(see also Sample size)
sampling distribution of statistic, 250, 254
(see also Central limit theorem)
sampling error, 249, 254
sampling plan, 249, 251
simple random sampling, 248–250
stratified random sampling, 250–251
survivorship bias, 271–272, 273
time-period bias, 272–273, 274
systematic sampling, 249
time-series data, 251–253
underlying nonnormal, 255n, 256–257
underlying populations differ, 253–254

S&P 500 Index
Chebyshev’s inequality, 122–123
cumulative frequency distributions, 84–85
ever excess kurtosis, 132
expected value, 98
histograms of returns, 82, 83
holding period returns, 74–80
mean return comparison, 301–302
means vs. standard deviation, 120
portfolio expected return and variance,
175–180
positive excess kurtosis, 136
returns and inflation rate, 334–335
as sample, 248
skewness, 132
Sarbanes–Oxley Act (2002), 298–299
Scales of measurement, 72
Scatter plots
correlated data, 330, 331
definition, 328–329
economic forecast evaluation, 337, 353
EV/IC fitted regression line, 363
hetero- vs. homoskedasticity, 409
inflation rates and stock returns, 354
outliers, 334–335
regression of linear vs. nonlinear data, 427
uncorrelated data, 329, 331
Scientific method, 283, 283n
Seasonality, 499–503, 513
Selected American Shares (SLASX)
arithmetic mean, 100–101
geometric mean, 100–102
mean absolute deviation, 112–113
range, 112–113
sample standard deviation, 118–119
sample variance, 118–119
Sharpe ratio, 128
Selling short, 155n
Semideviation, 120–121
Semilogarithmic scales, 138–139
Semistandard deviation. See Semideviation
Semivariance, 120–121, 121n
Serial correlation
autoregressive models, 474–477
consequences of, 415–416, 419n, 422
consistent standard errors, 418n
correcting for, 418–419
Durbin–Watson statistic, 416–418, 417n
first-order serial correlation, 415
forecasting model steps, 513
negative, 415n, 416n, 417, 417n, 471n
positive, 415, 417n, 471n
prediction errors, 478n
regression analysis, 415–419
residuals in time-series models, 476n
testing for, 416–418, 416n
trend models, 471–472, 471n
Sharpe ratio
confidence interval for population mean of,
262–263, 265
definition, 111, 126, 252
exchange traded funds vs. T-bills, 126–127
negative, 127
performance measurement, 127
safety-first ratio similarity, 225
Shortfall risk, 224–226
Shorting stock, 155n
Short-term debt markets, 59–64
Significance level
linear regression hypothesis testing, 359–360
p-value, 291–292, 292n, 359–360, 391
specifying, 286–287
Significance tests
correlation coefficient, 344–347
heteroskedasticity and, 408
t-test of significance, 359
Sign test, 314
Simple interest, 4, 60
Simple linear regression. See Linear regression
Simple moving average, 494–496, 496n
Simple random sampling, 248–250
Simulation, 200, 214, 232–238
Skewness
binomial distributions, 207
calculating, 131–134
definition, 70, 129, 131
lognormal distributions, 207
normal distributions, 129, 130, 207, 218, 219
option returns, 220
Pearson coefficient of skewness, 129n
sample skewness, 131–134, 219n
S&P 500 Index, 132
variance vs. semivariance, 121
Small-capitalization stocks
Carhart four-factor model, 532–533
mean annual returns, 110
month-of-year effects, 404–405
returns of, 340–341, 532
Russell 2000 Index, 126, 338
Spearman rank correlation coefficient, 315–317
Spreadsheets
internal rate of return, 53n
money-weighted rate of return, 53, 53n
normal cumulative distribution function, 221
precision of, 6
p-value calculation, 292n
series of cash flows, 26–27
Spurious correlation, 336
Standard deviation
Bernoulli random variables, 212
bond pull to par value, 201
Chebyshev’s inequality, 121–123, 218
coefficient of variation, 123–125
definition, 114, 167, 230n
earnings per share forecast, 168
geometric mean return correlation, 101n
investment style comparison, 109–110
mean absolute deviation versus, 119
normal distributions, 129, 130, 219, 220–221
normal random variables, 219n
population standard deviation, 114–116, 221, 293
portfolio standard deviation of return, 181–182
of return, 111
as risk measure, 111, 120, 121, 218
sample standard deviation, 117–120, 221, 230n, 293, 332
semideviation, 120–121
tracking risk, 210n
volatility, 230, 230n
Standard error of estimate
adjusted, 418–419, 418n
heteroskedasticity and, 410, 414, 414n
linear regression, 354–356
multiple linear regression, 399
robust, 414, 418n, 422
serial correlation and, 415, 418–419
serial-correlation consistent standard errors, 418n
Standard error of sample statistics, 255, 255n, 266, 285–286, 294n
Standard error of time-series regression, 481–482
Standardized beta, 538
Standard normal distributions
definition, 220
hypothesis testing, 286, 289
probability estimation, 226
p-value via, 291
standardizing random variables, 221
standard normal probabilities, 222, 558–559
Standard normal random variable (Z), 221
Standard & Poor’s bond ratings, 73n
Starbucks’ sales
Durbin–Watson statistic, 471, 472
linear trend regression, 467–469
log-linear regression, 469–471
seasonality, 499–501
Stated annual interest rate, 9–13, 12n
Stationarity
covariance stationary, 472–473, 472n (see also Covariance stationarity)
definition, 229n, 252
differencing random walks, 486–489, 491–493
forecasting model steps, 513
nonstationarity definition, 435
past vs. future, 473
stationarity tests, 435, 435n
Statistical factor models, 534
Statistical inference
ARCH, 507
definition, 71, 258, 282
Statistical significance, 288, 291
Statistics. See Sample statistics
Stocks
beta estimation via regression, 360–362
binomial model for price movement, 204–205, 206–208, 212–214
correlations, 340–342
dividends as distributions, 74
fundamental factor models, 534, 537–541
global vs. US, 307–308
inflation rates and stock returns, 354
large-cap (see Large-capitalization stocks)
lognormal model for price, 213
market timing, 235–238, 423, 423n
mergers and acquisitions and returns, 406–407
“momentum” stocks, 532–533
month-of-year effects, 404–405
mutual fund regression analysis, 396–398, 396n, 420–421
return and price relationship, 228–230
estimation (see Estimation)
heteroskedasticity and, 408, 410–411, 422
hypothesis testing (see Hypothesis testing)
multicollinearity and, 419, 422
nonparametric, 317–318
serial correlation and, 415–416, 419n, 422
serial correlation of regression errors, 415–419
time series as covariance stationary, 472–473, 472n
Statistical methods
ANOVA, 366–369 (see also Analysis of variance)
central tendency, 70, 86 (see also Central tendency)
dispersion, 70, 111 (see also Dispersion)
frequency distributions, 73–81, 82–83 (see also Frequency distributions)
geometric vs. arithmetic means, 100–102, 101n, 103, 138–139
graphing data, 81–85 (see also Graphical representations of data)
kurtosis, 70, 134–138 (see also Kurtosis)
measurement scales, 72–73
populations, 71 (see also Populations)
quantiles, 103–110
samples, 71 (see also Samples)
skewness, 70, 121, 127, 129–134 (see also Skewness)
statistical inference, 71 (see also Statistical inference)
statistics definition, 70–71
Statistical significance, 288, 291
Stocks (continued)
return attribution, 542–544
returns and inflation rate, 334–335
returns and price-to-earnings ratio, 509
screening criteria as independent, 162–163
selling short, 155n
small-cap (see Small-capitalization stocks)
T-bills versus, 126–127
time-series returns model, 497–498, 498n
“value” stocks, 532–533
Stratified sampling, 250–251
Stratum of stratified sampling, 250–251
Stress testing/scenario analysis, 226
Student’s t-distribution, 262n. See also t-distributions
Subjective probability, 154
Summation signs doubled, 178
Sum of squared errors (SSE), 367
Sunk costs, 44n
Survey of Professional Forecasters (SPF), 336, 366, 412
Survivorship bias, 271–272, 273, 290
Systematic risk
capital asset pricing model and, 526–527
Carhart four-factor model, 532–533
information ratio, 545n
Systematic sampling, 249

T
Target semideviation, 121
Target semivariance, 121, 121n
Tax issues in cash flow, 44n
T-bills. See US Treasury bills
t-distributions
degrees of freedom, 263–264, 293
fat tail modeling, 220n
frequently referred to values, 264, 264n, 560
hypothesis testing, 262, 286
one-sided critical values of t, 264n, 560
population mean confidence interval, 262, 263–265
“Student” pen name, 262n
Test statistic of hypothesis testing
definition, 285–286
differences between means, 300–308
on population variance, 308–313
population variance unknown, 293–297, 299–308
power of a test, 287
p-values from, 290
rejection points, 288–289, 288n, 297–298, 311
single mean, 293–296
statistical significance, 288

Time-series data
ARCH, 504–507, 507n
autocorrelations of, 474, 474n
challenges of, 462
cointegrated, 509–510, 509n, 511
covariance stationary, 472–473, 472n, 473n, 486
current and previous period relation, 472
definition, 251, 460
earnings per share independence, 162
exponential growth, 466, 466n, 469–471, 493n, 501n
Fisher effect, 412–413
forecasting the past, 433
GARCH, 507n
heteroskedasticity, 504–507
linear regression, 348
logical ordering of, 471n
longitudinal data, 253n
mean reversion, 477
multiple linear regression, 387, 393
mutual fund performance, 157–159, 163–164
nonnormality of, 352n
observation notation, 348, 387, 393
panel data, 253n, 348n
parameter instability, 372
random walk differencing, 486–489, 491–493
random walks, 435, 485 (see also Random walks)
regimes, 483, 512
regression misspecification, 431–435
sample period length, 483–485
sampling, 251–253
seasonality, 499–503
seasonal lag, 499
Sharpe ratio computation, 252–253
small sample unbiasedness, 259n
stationarity tests, 435, 435n
time series mean, 88, 97
unit root test, 489–493, 507–509
Time-series models
advanced topics in, 512
arbitrage pricing theory, 527–533
ARCH, 504–507
autocorrelations of error term, 474–477, 474n
autoregression challenges, 462
autoregressive models, 472–485, 494
autoregressive moving-average models, 504
chain rule of forecasting, 478
CPI model, 478–480 (see also Consumer Price Index)
forecasting model performance, 481–482
(see also Forecasting)
forecasting model steps, 512–514
GARCH, 507n
heteroskedasticity, 504–507
linear trend models, 463–465, 467–469, 471–472, 473n
log-linear trend models, 466, 469–471, 469–472, 473n
more than one time series, 507–512
moving average, 494–498
multiperiod forecasts, 477–480
regression coefficient instability, 482–485
sample period length, 483–485
seasonality, 499–503
serial correlation of residuals, 476n
Starbucks’ sales, 467–471, 472
Trend models
correlated errors, 471–472
Durbin–Watson statistic, 471–472, 471n
forecasting model steps, 513
linear, 463–465, 467–469, 471–472, 473n
log-linear trend models, 466, 469–472, 473n
moving average, 494–498
serial correlation, 471–472, 471n, 513
trend definition, 462
Treynor–Black appraisal ratio, 545n
Trials, 204, 205–206, 234
Trimmed mean, 90n
Trimodal distributions, 93
T. Rowe Price Equity Income Fund (PRFDX)
arithmetic mean, 100–101
geometric mean, 100–102
mean absolute deviation, 112–113
range, 112–113
sample excess kurtosis, 136–138
sample standard deviation, 118–119
sample variance, 118–119
Sharpe ratio, 128
skewness, 132–134
T-tests
bivariate normal distributions, 315n
heteroskedasticity and, 408
hypothesis testing of differences between means, 300–308, 314
hypothesis testing of single mean, 292–297, 314
hypothesis testing with linear regression, 358–359, 358n
paired comparisons test, 304–308
p-values via spreadsheet function, 292n
robustness, 293
t-test of significance, 359
z-tests versus, 296, 296n
Two-tailed hypothesis tests
definition, 284
instead of one-tailed, 388n
p-value, 292
rejection points, 288–289
significance level and confidence interval, 290
Type I errors (α), 286–287, 416
Type II errors (β), 286–287
U
Uncertainty
 error term of regression, 370
 forecasting via time-series models, 512
 multiperiod forecasts, 478
 regression analysis, 354–356, 399
Unconditional heteroskedasticity, 410–411
Unconditional probability, 156–157, 156n, 164–166
Underlying assets, 230, 230n
Underlying populations
 nonnormal, 255n, 256–257, 293n
 samples from differing, 253–254
 sample statistics estimates of, 248, 249
Unequal cash flows, 15–16, 26–27, 32–35
Uniform distributions, 200, 202–204, 204n, 214–218, 235
Uniform random variables, 214–216, 235, 256–257, 256n
Unimodal distributions, 93
United Kingdom
 consol bonds, 24
 equivalent annual rate, 12n
 Treasury bills, 3n
United States (US)
 annual percentage yield, 12n
 CPI model, 478–480 (see also Consumer Price Index)
 T-bills (see US Treasury bills)
US Treasury bills
 bank discount basis, 59–60, 62–63
 correlation of bonds and T-bills, 346
 discount, 59
 effective annual yield, 61–63
 exchange traded funds versus, 126–127
 face value, 59
 holding period yield, 61, 62
 international equivalents, 3n
 liquidity premium, 3
 as pure discount instruments, 59–64
 regressing on predicted inflation, 411–413, 414, 417–419, 432–433, 434–435, 508
 risk-free interest rate, 3, 127, 173, 412n
Unit normal distribution, 220
Unit root test, 489–493, 507–512, 510n
Univariate normal distributions, 219
Up transition probability, 212–213
Utility functions, 224n
linear regression hypothesis testing, 362–364
multiple linear regression for, 393–396
predicting EV/IC ratio, 370–371
Tobin’s q, 394–396, 398–399
Value/growth investment style, 108–110
“Value” stocks, 532–533
VAR (value at risk), 226, 233
Variance
 Bernoulli random variables, 211, 211n, 212
 binomial random variables, 211
 conditional variances, 171
 confidence intervals, 309n
 constant plus random variable, 178n
 constant times random variable, 178n
 covariance, 176–180
 covariance effect on, 178
 definition, 113–114, 167, 211n
 diagonal vs. off-diagonal, 178, 178n, 179
 differentiation of, 112n
 earnings per share forecast, 168
 forecast model errors, 481–482
 hypothesis testing on single variance, 308–310
 hypothesis testing on two variances, 310–313
 lognormal distributions, 227–228
 multiperiod vs. single-period forecasts, 478n
 multivariate normal distributions, 219
 normal distributions, 129, 219
 own covariance as, 178
 population variance, 114, 115–116
 population variance known, 297, 297n
 population variance unknown, 262–265, 293–297, 299–308
 portfolio expected return and variance, 175–180
 random variables, 167, 168
 returns pre- and post-crisis, 312–313
 as risk measure, 111, 120, 121
 sample variance, 116–117, 118–119, 230n, 332
 semivariance, 120–121, 121n
 stationarity, 229n, 252 (see also Stationarity)
 unconditional variance, 171n
Volatility
 definition, 230, 230n
 option pricing models and, 230, 231–232
 pre- and post-crisis, 312–313
 quadruple witching days, 313
 well-diversified portfolios, 528
W
Weakly stationary. See Covariance stationary
Weighted average cost of capital (WACC), 44n, 362–364, 370–371
Weighted averages of portfolio return, 219
Weighted mean
 arithmetic mean as, 96n
 expected value, 98, 166–169
 harmonic mean as, 103
 market indexes as, 98
 mean returns, 95–98
 portfolio expected return as, 175
 total probability rule, 164–166
 weights sum to one, 165–166, 176, 181
White-corrected standard errors, 414n
Wholesale clubs, 86n
Wilcoxon signed-rank test, 314
Winsorized mean, 90n
Working capital management, 44

Y
 Yield to maturity (YTM), 46, 63–64

Z
 z-alternative, 262–263
 z-distributions. See Standard normal distributions
 Zero coupon bonds, 173–174
 z-tests
 hypothesis testing, 286, 288–289, 297–299, 314
 p-value via spreadsheet function, 292n
 rejection points, 296, 297–298
 t-tests versus, 296, 296n