Index

Note: page numbers in bold type indicate a page containing important information about an entry, such as a definition or basic usage.

Γ₂ for amplitude modulation characterization, 344
AM-AM conversion, 360, 521, 529, 573, 578
AM-demodulation, 348, 572
AM-PM conversion, 409
cross-modulation, 356, 573
for CW signals, 344
for modified 8PSK signals, 344
for Rayleigh distributed signals, 344
intermodulation, 352
SNR improvement, 380

Adjacent channel, 160
Adjacent channel power or leakage ratio, 160, 509, 517
degradation due to
AM-AM conversion, 377, 519
AM-PM conversion, 409, 519
analog noises, 519
LO phase noise, 259, 518
Adjacent channel selectivity, 170
AM-demodulation, 172, 346, 367, 572, 632
Amplitude noise, see Bandpass noise
Analog to digital conversion, 287
dynamic range, 290, 540, 556, 569, 676, 681
degradation due to timing jitter, 294
effective number of bits, 292, 299
linearity, 296, 569
INL, DNL, 297
missing codes, 298
monotonicity, 298
SFDR, SINAD, 298
noise shaping, 299
quantizer, 267
overload, 267
full scale, 267, 290
uniform model, 267

Analytic
field, 83
signal, 8, 29, 201

Antenna
directivity, 94
effective area, 96
gain, 95
isotropic, 94
radiation characteristic vector, 80
Automatic frequency correction, 140, 165, 238, 669, 693
Automatic gain control, 137, 169, 676
decoding table, 551, 677
hysteresis, 647, 680
set point, 550, 558, 676
Available power, 109, 202
gain, 187
Back-off, 138, 325, 615
for clipping minimization, 507, 545, 556, 613
for cross-modulation minimization, 357
for desensitization minimization, 336
for EVM minimization, 362
for SNR improvement, 386, 391

© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Bandpass noise, 32
 additive decomposition
 parallel vs. orthogonal decomposition, 39, 234, 388, 402, 409
 phase vs. amplitude noise, 42, 235, 402, 409
 Gaussian, 34, 43, 242
 noise bandwidth, 34
 stationary, 17, 18, 35, 708
Bandpass nonlinearity, 404, 663
Bandpass signal, 4
 constant amplitude vs. compression, 359, 377, 416
 Gaussian, 34
 instantaneous amplitude, 28, 38, 84
 moments of, 343
 instantaneous frequency, 28, 38, 84, 250
 power, 23
 stationary, 18, 707
Bernstein’s theorem, 294, 481
Bit error rate, 167, 176
 in-band, 168, 338, 373, 561
 out-of-band, 168, 215, 337, 358, 560
Boltzmann constant, 185
Burst shaping, see Power control
Carrier phase shift
 due to LNA gain switch, 107, 180, 679
 due to PA gain switch, 107, 166, 614
Carson bandwidth, 47
Cauchy principal value, 10
Channel selection, 288, 512, 554
Clock spurs, 488, 524
Code division multiple access, 56, 121, 165, 286, 363
Code domain
 power, 366
 error, 366
Coherent reception, 142, 166, 452
Complementary cumulative distribution function, 26, 66
Complex envelope, 10
 Cartesian vs. polar representation, 12
 field, 76, 82, 99
 stationary, 710
 trajectory, 13, 53, 605
 transformation due to nonlinearity, 339
Complex exponential
 positive vs. negative, 14, 419
Compression
 compression point, 324
 cross-compression point, 336, 358
Continuous wave, 28, 313, 698
CORDIC, 595, 604, 628, 673
Correlation, 206, 697
 autocorrelation, 704
 coefficient, 206, 207
 cross-correlation, 704
Costas loop, 142
Crest factor, 24, 290, 295, 506, 542
 Gaussian waveform, 66
 GMSK, 49
 modified 8PSK, 56
 OFDM waveform, 64
 WCDMA waveform, 59
Cross-modulation, 353, 370, 563
Cumulative distribution function, 26
d’Alembert’s equation, 82
Desensitization, 171, 337
Digital to analog conversion, 302
 aperture effect, 304, 306, 500, 513, 595, 662
 dynamic range, 306, 510
 degradation due to sampling frequency error, 672
 effective number of bits, 306
 linearity, 306, 502, 525
 INL, DNL, 306
 monotonicity, 306
 SFDR, SINAD, 306
 noise shaping, 306
Duplexer, 150
Direct current offset, 489, 631, 680
 as an ADC DR reduction, 681
 cancellation, 335, 558, 630, 682
 due to second order nonlinearity, 319, 334, 349, 683
 dynamic, 335, 683
 static, 335, 683
Dithering, 274, 274
Doherty, 613
Doppler
 effect, 130, 670
 U-shaped spectrum, 132
Downlink, 145
Duplex
 distance, 168
Index

frequency division, 146
full, 146, 150, 168, 172, 498, 533
half, 148, 150
time division, 146, 648
Duplexer, 150
Duty cycle, 456
Dynamic range, see Analog to digital conversion and Digital to analog conversion

Electromagnetic interference, 482
Electromagnetic propagating modes
plane wave structure, 80, 99
transverse electric, 99
transverse electromagnetic, 99
transverse magnetic, 99

Envelope tracking, 616
Equivalent electrical generator
Norton, 204
Thévenin, 201, 225

Error vector magnitude, 163, 525
due to AM-AM conversion, 362, 374, 504, 526, 535, 567
due to AM-PM conversion, 409, 504, 526, 567
due to analog noise, 525
due to filtering, 263, 525, 569, 661
due to finite image rejection, 448, 525
due to LO leakage, 526
due to LO phase noise, 525
due to quantization noise, 525
linear, 265, 525, 559, 569, 661
nonlinear, 264, 362, 374, 409, 662
Even order rejection ratio, 478

Fading
large scale, see Path loss
Rayleigh, 34, 125
small scale, 127, 137
spectrum, 132

Far-field radiation condition, 78
Filter
anti-aliasing, 70, 288, 302, 533, 537, 556
channel, 32, 170, 263, 555, 692
complex, 427, 427, 637
harmonic, 516
image reject, 199, 253, 422, 590, 634
complex, 427
real, 422
reconstruction, 34, 68, 304, 500, 514, 662

Fourier transform
as an isometry, 22
of a product of signals, 6
of a signal with Hermitian symmetry, 6, 705
of a time reversed signal, 17
of a time shifted signal, 88
of the complex conjugated of a signal, 6
of the time domain derivative of a signal, 85

Free space
permeability, 74
permittivity, 74
Frequency
division, 239
multiplication, 238
Frequency aliasing, 250
Frequency conversion, 417
complex, 20, 418, 423, 434, 437, 589, 633, 654, 684
complex envelope transformation in, 253
homodyne vs. heterodyne, 198, 420, 588, 633
infradyne vs. supradyne, 16, 197, 254, 259, 420, 431, 434, 449, 592, 593
quadrature, 425
real, 419, 589, 633
Frequency planning, 174, 338, 419, 482, 523, 564, 590, 634
Frequency pulling, see RF oscillator
Fresnel zones, 122
Friis formula for noise, 214, 216
transmission equation, 97
Full scale, 138, 290, 505, 548

Gamma function, 38, 244, 400
Gauss’s laws, 75
Gaussian bandpass process, see Normal random vectors
Green’s function, 77
Guard period, 153

Hard limiter, 243, 393
intercept points, 394
saturated power, 397
Harmonic mixing, 174, 487, 533, 537, 565, 568, 632, 634, 685
Heisenberg uncertainty principle, 120, 272
Helmholtz’s equation, 76
Hilbert transform, 9, 70, 700, 702
for complex frequency conversion, 434
for image reject mixers, 432
Index

Huygens sources, 74
Hybrid phase shift keying, 58

Image frequency
receive side, 197, 421
transmit side, 421, 444

Image rejection, 440
improvement due to
imbalance compensation, 638, 657, 687
limitation due to
duty cycle imbalance, 465, 476
delay imbalance, 471, 476
gain and phase imbalance, 431

Image rejection ratio, 440, 466, 471

Image signal
as a noise, 447
receive side, 451
transmit side, 447
receive side, 450, 537, 568, 634, 637, 684
transmit side, 421, 502, 585, 589, 654

In-phase vs. in-quadrature components, 8, 425

Injection locking, see RF oscillator
Input spurious rejection, 174, 487, 565
Insertion loss, 150, 191, 196, 215, 517

Instantaneous amplitude, see Bandpass signal
Instantaneous frequency, see Bandpass signal

Intercept point, 316, 322, 329
input vs. output, 317, 332
IP2, 316
IP3, 322
of the hard limiter, 394

Interference formula, 241, 701

Intermodulation distortion, 171, 316, 338, 350, 561
IMD2, 315, 350
IMD3, 321, 352
IMDk, 329

Intersymbol interference, 59, 163, 264, 364

Jensen’s inequality, 345
Joule effect, 91

Kirchhoff’s laws, 105

Level diagram, 504, 505, 539, 540
Linearization techniques, 613, 662, 689
envelope elimination and restoration, 626
feedforward, 622, 662, 691
linear amplification using nonlinear components, 626

negative feedback, 618, 662, 691
predistortion, 363, 625, 662, 690
complex gain, 666
mapping, 664
LNA gain switch, 549, 678

Local oscillator, 418
frequency error, 165, 179, 669, 691
leakage, 165, 489, 504, 585, 630
self-mixing, 490, 630, 680
phase noise, 242, 244, 250, 256, 504, 536, 568
sinusoidal waveform, 418
square waveform, 243, 453, 483, 501, 503, 533, 537

Lowpass signal, 4, 413

Lumped vs. distributed regimes, 105

Matching
amplitude, 106
power, 107, 109

Maxwell’s equations, 74
Medium access strategy, 145
Memory effect, 407, 511, 520

Mixer
as a chopper, 243, 256, 453, 500, 513, 516, 533, 537, 565, 586
image reject, 431
noise factor, 198

Modulation
complex vs. real, 12, 50, 339
constellation, 13, 264
GMSK, 45, 277, 445, 599
modified 8PSK, 42, 50, 258, 344, 357, 363, 606
QAM, 57, 142, 162, 164, 166, 264
QPSK, 57
trajectory, see Complex envelope

Multi-antenna systems, 117
Multiple access
frequency division, 146
single carrier, 66
time division, 146, 648

Narrowband modulation condition, 85, 99, 101, 200

Neumann factor, 244
Noise, 177
additive vs. multiplicative or distortion, 178, 183, 210, 256, 357, 362, 448, 451, 507, 519, 526, 569, 638
Index

analog avalanche, 184 burst, 184 flicker, 184, 631 shot, 184 thermal, 34, 184
Ohm’s law, 91 Origin offset, 165, 491, 651, 680 suppression, 165, 492 Orthogonal frequency division multiplexing, 60, 264, 280, 344, 357, 363, 368, 372, 374, 511, 554, 690 Path loss, 127, 155, 169, 585, 676 free space, 94, 97 Peak to average power ratio, 24 Gaussian waveform, 66, 614 GMSK, 48 modified 8PSK, 53, 606 OFDM waveform, 66 WCDMA waveform, 59 Peak value, 26 Phase locked loop, see RF synthesizer Phase noise, see Bandpass noise Planck constant, 185 Power cross-spectral density, 705 spectral density, 16, 705 Power amplifier, 93, 612 linearization techniques, see Linearization techniques switched gain, 509, 615 Power control long-term average, 155, 644 short term, 153, 648 Power wave, 115 Poynting theorem, 92 vector, 92 Probability density function Gaussian or Normal, 35 Rayleigh, 36, 344 Rayleigh–Rice, 38 Processing gain, 177 Propagation channel, 115 as a FIR filter, 117, 121 equivalent lowpass, 117, 121 coherence bandwidth, 56, 119, 133 coherence time, 133 multipath, 118 Pulse shaping filter, 13, 46, 50, 58, 163 Quality factor, 233, 512, 555 Quantization noise, see Noise Rake receiver, 121 Receiver maximum gain, 540 minimum gain, 543
Receiver architecture
 direct conversion or zero-IF or homodyne, 71, 172, 334, 346, 451, 485, 492, 497, 629, 684
 heterodyne, 633
 low-IF, 426, 427, 451, 635, 684
 PLL demodulator, 71, 639
Reciprocal mixing, 262, 537, 561, 563, 568, 572, 577
Reflection coefficient
 amplitude, 102
 power, 110, 204, 222, 223, 227, 229
Resistance integral theorem, 114
Return loss, 111
RF oscillator
 digitally controlled, 238
 frequency pulling, 94, 249, 484, 565, 586, 601, 628
 injection locking, 94, 151, 249, 484, 565, 586, 592, 628
 LC tank, 232
 ring, 232
 voltage controlled, 238
RF synthesizer, 232
 all digital phase locked loop, 68, 597
 fractional phase locked loop, 600, 672
 phase locked loop, 238, 597, 639
 two-point phase locked loop, 600, 608
Sampling theorem
 aliasing, 270, 288
 reconstruction, 302
Saturated power, 325
 input vs. output, 325
 of the hard limiter, 397
Scattering parameters, 115
Sideband, 5
 positive vs. negative, 6, 14, 197, 418
 selection, 15
 upper vs. lower, 412
Signal to noise power ratio, 176, 567
 degradation due to
 additive noises, 570
 AM-AM conversion, 362, 374, 564, 573, 577
 AM-demodulation, 346, 367, 572, 632
 cross-modulation, 357, 373, 563, 573, 577, 630
 finite image rejection, 450, 568
 intermodulation distortion, 353, 561
 linear EVM, 569
 LO phase noise, 254, 561, 563, 572, 577
 noise factor, 231
 noise temperature, 230
 nonlinear EVM, 362, 374
 quantization noise, 571
 improvement due to
 AM-AM conversion, 44, 377, 402
 Slew rate, 481
 Spectral regrowth, 157, 353, 367, 667
 due to AM-AM conversion, 374, 519, 564, 577
 due to AM-PM conversion, 409, 519
 due to cross-modulation, 370, 564, 577
 due to LO phase noise, 258
 due to second order nonlinearity, 367
 due to timing jitter, 296
 Spectrum emission mask, 157, 256, 377, 444, 488, 514, 517
 Spurious
 emissions, 157, 174, 484, 488, 524, 565, 585
 responses, 174, 487, 489, 565, 632, 634
 Stationarity, 704, 707
 second order or weak or wide sense, 704, 707
 strict sense, 707
 Stokes' theorem, 92
 Switching transient, 154, 648
System band
 RX, 168, 489, 554, 561
 TX, 489, 512, 516, 589, 594, 596, 651
 Time mask, 154
 Timing advance, 153
 Timing jitter, 246, 293
 Total harmonic distortion, 298, 415
 Transmission line
 characteristic impedance, 102
 equations, 102
 input impedance, 104
Transmitter architecture
 direct conversion or zero-IF or homodyne, 49, 68, 408, 491, 497, 584, 651
 heterodyne, 338, 421, 485, 588, 651
 PLL modulator, 49, 250, 597, 648
 polar, 54, 69, 604, 617, 626, 673
 real-IF, 595, 654
 variable-IF, 338, 593
 TX
 leakage, 150, 172, 498, 533
 noise in RX band, 150, 535, 567
Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uplink</td>
<td>145</td>
</tr>
<tr>
<td>Voltage standing wave ratio</td>
<td>105</td>
</tr>
<tr>
<td>Voltage nodes</td>
<td>106</td>
</tr>
<tr>
<td>Volterra series</td>
<td>407</td>
</tr>
<tr>
<td>Walsh–Hadamard codes</td>
<td>57, 365</td>
</tr>
<tr>
<td>Wave</td>
<td></td>
</tr>
<tr>
<td>impedance</td>
<td>80, 99, 402</td>
</tr>
<tr>
<td>length</td>
<td>78</td>
</tr>
<tr>
<td>Zonal bandpass filter</td>
<td></td>
</tr>
<tr>
<td>number</td>
<td>77, 99</td>
</tr>
<tr>
<td>vector</td>
<td>79</td>
</tr>
<tr>
<td>Wireless cellular standards</td>
<td></td>
</tr>
<tr>
<td>GSM</td>
<td>45, 137, 148</td>
</tr>
<tr>
<td>GSM/EDGE</td>
<td>50, 137, 606</td>
</tr>
<tr>
<td>LTE</td>
<td>148, 370, 375, 511, 553</td>
</tr>
<tr>
<td>WCDMA</td>
<td>31, 57, 148, 286, 364</td>
</tr>
</tbody>
</table>

Zonal bandpass filter, 253, 359, 416, 431, 434