CONTENTS

List of Contributors xiii
Preface ix

1 AkzoNobel: Biobased Raw Materials 1
 Alistair Reid, Martijn van Loon, Sara Tollin, and Peter Nieuwenhuizen
 1.1 AkzoNobel’s Biobased Raw Materials Strategy in Context, 1
 1.2 AkzoNobel in the Value Chain, 3
 1.3 Drivers Behind Development of the Biobased Raw Material Strategy, 4
 1.4 Conclusions of the Biobased Chemicals Strategy, 10
 1.5 Implementing the Strategy: Striking Partnerships, 13
 1.6 Experience to Date, 14
 1.7 Measuring, Reporting, and Ensuring Sustainable Sourcing of Biomass, 17
 1.8 Book and Claim, 18
 1.9 Sustainability in the Value Chain: LCA, 19

2 Arizona Chemical: Refining and Upgrading of Bio-Based and Renewable Feedstocks 21
 Godfried J. H. Buisman and Jos H. M. Lange
 2.1 Company Introduction, 22
 2.2 History of Pine Chemicals, 22
 2.3 Modern Biorefining, 28
2.4 The Kraft Pulping Process, 34
2.5 Cradle-To-Gate, 44
2.6 Outlook, 46
2.7 Case Study: Tackifiers From Renewable Pine-Based Crude Tall Oil and Crude Sulfate Turpentine for Adhesive Applications, 49
Acknowledgments, 57
References, 57

3 Arkema: Castor Reactive Seed Crushing Process to Promote Castor Cultivation
Jean-Luc Dubois

3.1 Arkema: Context for Biorenewables, 64
3.2 Introduction to Castor Oil, 65
3.3 Experimental Details, 72
3.4 Results, 77
3.5 Discussion, 85
3.6 Conclusion, 92
Acknowledgments, 93
References, 94

4 Avantium Chemicals: The High Potential for the levulinic product tree
Jan C. van der Waal and Ed de Jong

4.1 Introduction, 97
4.2 Levulinic Production Routes, 101
4.3 The Levulinic Acid Product Family Tree, 107
4.4 Conclusions and Outlook, 116
References, 117

5 C5LT: Biorenewables at C5 Ligno Technologies AB
Kaisa Karhumaa and Violeta Sànchez i Nogué

5.1 Introduction, 121
5.2 Lignocellulosic Ethanol Production: Process, 123
5.3 C5LT Gene Package Technology, 129
5.4 Fermentation of Lignocellulosic Hydrolysates: Remaining Challenges, 136
5.5 Conclusions, 137
Acknowledgments, 138
References, 138

6 Cepsa: Towards The Integration of Vegetable Oils and Lignocellulosic Biomass into Conventional Petroleum Refinery Processing Units
Maria Fé Elía, Olalla de la Torre, Rafael Larraz, and Juana Frontela
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>About Cepsa</td>
<td>142</td>
</tr>
<tr>
<td>6.2</td>
<td>Vegetable Oils</td>
<td>149</td>
</tr>
<tr>
<td>6.3</td>
<td>Lignocellulosic Biomass</td>
<td>167</td>
</tr>
<tr>
<td>6.4</td>
<td>Concluding Remarks</td>
<td>172</td>
</tr>
<tr>
<td>7</td>
<td>DuPont: Biorenewables at E.I. DU Pont DE Nemours & Co</td>
<td>175</td>
</tr>
<tr>
<td>8</td>
<td>Evonik: Bioeconomy and Biobased Products</td>
<td>219</td>
</tr>
<tr>
<td>9</td>
<td>Market Structure and Growth Rates of Industrial Biorenewables</td>
<td>245</td>
</tr>
<tr>
<td>10</td>
<td>Göteborg Energi: Vehicle Fuel From Organic Waste</td>
<td>255</td>
</tr>
</tbody>
</table>

DuPont: Biorenewables at E.I. DU Pont DE Nemours & Co

Michael A. Saltzberg, Armando M. Byrne, Ethel N. Jackson, Edward S. Miller Jr., Mark J. Nelson, Bjorn D. Tyreus, and Quinn Zhu

- 7.1 DuPont History and Strategic Priorities, 176
- 7.2 DuPont’s Innovation Philosophy, 178
- 7.3 DuPont’s Industrial Biorenewable Portfolio 2013, 180
- 7.4 Case History #1: Bio-PDO and Sorona, 182
- 7.5 Case History #2: Development of Yeast-based Omega-3s for Verlasso Harmoniously Raised Salmon, 194
- 7.6 Future Directions for Dupont in Industrial Biorenewables, 210
- 7.7 Summary, 213

Evonik: Bioeconomy and Biobased Products

Henrike Gebhardt, Peter Nagler, Stefan Buchholz, Stefan Cornelissen, Edda Schulze, and Achim Marx

- 8.1 Introduction, 220
- 8.2 Biobased and Bioprocessed Products (1), 225
- 8.3 Products Produced from Biobased Feedstock by Conventional Catalysis (2), 234
- 8.4 Biodegradable Products (3), 239
- 8.5 Enabling Chemicals (4), 239

Market Structure and Growth Rates of Industrial Biorenewables

Gunter Festel

- 9.1 Background for Industrial Biorenewables and Data Sources, 245
- 9.2 Market Overview and Growth Rates, 247
- 9.3 Examples for Biotechnology-Based Products Related to Biorenewables, 252

Göteborg Energi: Vehicle Fuel From Organic Waste

Eric Zinn and Henrik Thunman

- 10.1 The Company, 256
10.2 Sweden’s Renewable Energy Targets and the Role that Biogas Will Play in Meeting these, 256
10.3 Biogas in Transportation: Case Studies Within Göteborg Energi, 257
10.4 The Role of Gasification Technology in the Future as the Demand for Biomass-based Energy and Fuel Grows, 264

11 **Greasoline: Biofuels From Non-food Materials and Residues** 267
Georg Dahmen, Peter Haug, Gunter Festel, Axel Kraft, Volker Heil, Andreas Menne, and Christoph Unger

11.1 Fuels and Chemicals: Necessity of Renewables, 268
11.2 Evolving Markets for Greasoline® Technology, 269
11.3 Technology Overview Greasoline®, 270
11.4 Description of Business Model, 271
11.5 Diesel from Different Raw Materials, 274
 References, 280

12 **Green Applied Solutions: Customized Waste Valorization Solutions for a Sustainable Future** 283
Chunping Xu and Rafael Luque

12.1 Introduction, 283
12.2 The Company, 285
12.3 Projects and Future, 287
12.4 Conclusions and Prospects, 292
 Acknowledgments, 293
 References, 293

13 **Grove Advanced Chemicals: Flox® Coagulants – Environmentally Friendly Water and Wastewater Treatment Using Biodegradable Polymers From Renewable Forests** 295
Bárbara van Asch, Paulo Martins, Filipe Santos, Elisabete Sepúlveda, Pedro Carvalho, Richard Solal, Carlos Abreu, Rui Santos, Jorge Vasconcelos, Philippe Geyr, and Henrique Villas-Boas

13.1 Introduction, 296
13.2 Company Overview, 297
13.3 Coagulation and Flocculation in Water Treatment, 298
13.4 Flox® Coagulants, 298
13.5 Company and Product Certifications, 302
13.6 Case Studies, 303
13.7 Future Perspectives, 320
 References, 321
14 Heliae Development, LLC: An Industrial Approach to Mixotrophy in Microalgae 323
Eneko Ganuza, Anna Lee Tonkovich, and Bárbara van Asch

14.1 Preamble, 323
14.2 Introduction to Heliae Development LLC, 324
14.3 Mixotrophy, 325
14.4 Implementation of Industrial Mixotrophy: A Case Study, 332
Acknowledgments, 339
References, 339

15 InFiQuS: Making the Best of Leftovers 341
Inmaculada Aranaz, Niuris Acosta, María N Mengibar, Laura Calderón, Ruth Harris, and Ángeles Heras

15.1 Brief Description of InFiQuS, 342
15.2 Valuable by-products Under Research by InFiQuS, 345
15.3 Examples of Products Co-developed by InFiQuS, 360
15.4 Market Situation, 362
15.5 Needs of Research: Synergies Between Industry and Academia, 364
References, 366

16 Biorenewables at Mango Materials 371
Allison Pieja, Anne Schauer-Gimenez, Ann Oakenfull, and Molly Morse

16.1 Motivation: the Problems with Plastics Today, 372
16.2 The Bioplastics Industry: An Overview, 373
16.3 Mango Materials – a Novel PHA Production Process, 377
16.4 Mango Materials, the Story, 386
16.5 The Future – new Ideas for Potential Research, 390
Acknowledgments, 391
References, 391

17 Novamont: Perspectives on Industrial Biorenewables and Public-Private Needs 397
Stefano Facco

17.1 State of the Art and Challenges Faced by Biobased Industries, 397
17.2 Wisdom in the Use of Renewable Raw Materials: The Cascading Use of Biomass, 400
17.3 Case Study: Bioplastics in Italy: Going For Growth Despite the Crisis, 401
17.4 The EU Policy Framework and Related Policy Gaps: The EU Strategy on Bioeconomy and the Role of Industrial Policies, 405
References, 407

18 Novozymes: How Novozymes Thinks About Biomass 409
Brandon Emme and Alex Berlin

18.1 The Company, 411
18.2 Case Study: The Transformation of Cellulose to Ethanol, 412
References, 434

19 Organoclick: Applied Eco-Friendly and Metal-Free Catalysis for Wood and Fiber Modifications 437
Jonas Hafrén and Armando Córdova

19.1 Introduction, 437
19.2 Eco-friendly and Organocatalytic Surface Modification of Lignocellulose, 440
19.3 Organocatalytic Cross-linking Between Polysaccharides, 443
19.4 OC Modification of Lignocellulose, 444
References, 449

20 Petrobras: The Concept of Integrated Biorefineries Applied to the Oleochemistry Industry: Rational Utilization of Products and Residues via Catalytic Routes 451
Eduardo Falabella Sousa-Aguiar, João Monnerat Araujo Ribeiro de Almeida, Pedro Nothaft Romano, and Yuri Carvalho

20.1 Introduction, 452
20.2 Glycerol Fermentation, 454
20.3 Hydrotreating, 458
20.4 Decarboxylation, 460
20.5 Conclusions, 464
References, 464

21 Phytonix: Cyanobacteria for Biobased Production Using CO₂ 467
Bruce Dannenberg, Peter Lindblad, and Gary Anderson

21.1 Background: The Coming CO₂ Economy and Circular Economy Principles, 468
21.2 Technology for Cyanobacteria and Direct Photobiological Production, 468
21.3 Phytonix: Path Toward Full Commercialization of the Technology, 475
21.4 n-Butanol: A Valuable Industrial Chemical and Potential "Drop-in" Gasoline Replacement, 482
References, 489
22 Phytowelt Green Technologies: Fermentation Processes and Plant Breeding as Modules for Enhanced Biorefinery Systems 491
Peter Welters, Guido Jach, Katrin Schullehner, Nadia Evremova, and Renate Luehrs

22.1 Introduction, 492
22.2 The Next Step: Beyond Energy Production, 492
22.3 Material Uses of Renewable Poplar Biomass, 494
22.4 Fermentative Production of High-value Compounds, 495
22.5 Cooperations with Chemical Industry, 499
22.6 Toward Optimized Biorenewables: Time-Lapse and Smart Breeding, 502
22.7 Next-Generation Poplars/Plants, 505
22.8 Toward Novel Biorefineries: Networking for Success, 505
References, 506

23 Biorenewables at Shell: Biofuels 507
Jean-Paul Lange, Johan Willem Gosselink, Rob Lee, Evert van der Heide, Colin John Schaverien, and Joseph B. Powell

23.1 Introduction, 509
23.2 Shell and Biofuels, 510
23.3 Development of Advanced Biofuels in Shell, 511
23.4 Challenges Leading to More Research, 535
23.5 Conclusions, 538
References, 539

Index 545