Contents

List of Contributors xix
Foreword xxv

Section 1 Conventional Food Processing 1

1 Drying and Dehydration Processes in Food Preservation and Processing 3
Panagiotis A. Michailidis and Magdalini K. Krokida

1.1 Introduction 3
1.2 Drying kinetics 4
1.3 Different drying processes 4
1.3.1 Hot-air drying 4
1.3.2 Vacuum drying 6
1.3.3 Microwave drying 7
1.3.4 Freeze drying 7
1.3.5 Spray drying 9
1.3.6 Osmotic dehydration 11
1.3.7 Atmospheric freeze drying 12
1.3.8 Sonic drying 13
1.3.9 Heat pump drying 14
1.3.10 Infrared drying 19
1.3.11 Superheated steam drying 23
1.3.12 Intermittent drying 24
1.3.13 Instant controlled pressure drop drying 25
1.3.14 Sun drying and solar drying 25
1.3.15 Supercritical drying 26
1.3.16 Flash drying 27
1.3.17 Pulse drying 27
1.3.18 Pulse combustion drying 28

1.4 Conclusions 28
Abbreviations 29
References 29
## CONTENTS

### 2 Size Reduction Practices in Food Processing 33
A. Chakkaravarthi and Suvendu Bhattacharya

2.1 Introduction 33
2.1.1 Size reduction of solids 33
2.1.2 Process of grinding 35
2.2 Applications of the grinding process 35
2.2.1 Dry grinding 36
2.2.2 Wet grinding 37
2.3 Grinding energy laws 38
2.4 Machinery requirement 39
2.4.1 Crushers 40
2.4.2 Grinders 40
2.5 Mechanism of size reduction 44
2.5.1 Grinding of heat-sensitive and fat-containing materials 45
2.5.2 Cutting of fruits and vegetables 46
2.6 Size reduction of liquid 46
2.6.1 Homogenization 46
2.6.2 Atomization 48
2.7 Conclusions 48
References 48

### 3 Dough Processing: Sheeting, Shaping, Flattening and Rolling 51
B. Patel and O. H. Campanella

3.1 Introduction 51
3.2 Dough sheeting 52
3.2.1 Technology 52
3.2.2 Rheological studies on dough behaviour 63
3.3 Shaping 68
References 71

### 4 Extrusion Processing of Foods 75
Rupesh Kumar Dubey and Suvendu Bhattacharya

4.1 Introduction 75
4.2 Application of extrusion technology 76
4.3 Description of an extruder 77
4.3.1 Type of extruder 78
4.3.2 Components of an extruder 80
4.4 Selected extrusion technology 81
4.4.1 Pasta products 81
4.4.2 Breakfast cereals 84
4.4.3 Texturized vegetable protein (TVP) 85
4.4.4 Snack foods 86
4.5 Post-extrusion treatment 87
4.6 Quality characteristics of product 89
4.7 Equations related to food extrusion 90
4.8 Present status 92
References 93
## CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>The Process of Gelling</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td><em>Shanthilal J. and Suvendu Bhattacharya</em></td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>99</td>
</tr>
<tr>
<td>5.2</td>
<td>Classification of gels</td>
<td>100</td>
</tr>
<tr>
<td>5.3</td>
<td>Gelling process</td>
<td>103</td>
</tr>
<tr>
<td>5.4</td>
<td>Mechanism of gel formation</td>
<td>104</td>
</tr>
<tr>
<td>5.5</td>
<td>Methods for characterization of gels</td>
<td>105</td>
</tr>
<tr>
<td>5.6</td>
<td>Mathematical models</td>
<td>109</td>
</tr>
<tr>
<td>5.7</td>
<td>Conclusions</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>111</td>
</tr>
<tr>
<td>6</td>
<td>Thermal Food Preservation Techniques</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>(Pasteurization, Sterilization, Canning and Blanching)</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>Arthur A. Teixeira</em></td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>115</td>
</tr>
<tr>
<td>6.2</td>
<td>Pasteurization and sterilization</td>
<td>116</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Pasteurization</td>
<td>116</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Sterilization</td>
<td>117</td>
</tr>
<tr>
<td>6.3</td>
<td>Aseptic processing</td>
<td>119</td>
</tr>
<tr>
<td>6.4</td>
<td>Canning</td>
<td>121</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Batch retort systems</td>
<td>122</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Continuous retort systems</td>
<td>123</td>
</tr>
<tr>
<td>6.5</td>
<td>Blanching</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>128</td>
</tr>
<tr>
<td>7</td>
<td>Extraction Processes</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td><em>K. Udaya Sankar</em></td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>129</td>
</tr>
<tr>
<td>7.2</td>
<td>Conventional extraction</td>
<td>129</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Separation of steam volatiles</td>
<td>129</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Solvent extraction</td>
<td>130</td>
</tr>
<tr>
<td>7.3</td>
<td>Advanced extraction processes</td>
<td>130</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Ultrasound assisted extraction</td>
<td>130</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Microwave assisted extraction</td>
<td>131</td>
</tr>
<tr>
<td>7.3.3</td>
<td>High pressure extraction</td>
<td>131</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Applications of supercritical extraction</td>
<td>145</td>
</tr>
<tr>
<td>7.3.5</td>
<td>Addition of co-solvents</td>
<td>146</td>
</tr>
<tr>
<td>7.3.6</td>
<td>Preparation of plant materials for supercritical fluid extraction and operating conditions</td>
<td>147</td>
</tr>
<tr>
<td>7.3.7</td>
<td>Commercialization of SFE technology</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>151</td>
</tr>
<tr>
<td>8</td>
<td>Baking</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td><em>R. Sai Manohar</em></td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>159</td>
</tr>
<tr>
<td>8.2</td>
<td>Bread</td>
<td>160</td>
</tr>
</tbody>
</table>
## CONTENTS

8.2.1 Classification of bread 160
8.2.2 Principles of baking 166
8.2.3 Changes due to baking 169
8.2.4 Packaging 171

8.3 Biscuit 173
8.3.1 Classification of biscuits 173
8.3.2 Ingredients and their role 175
8.3.3 Biscuit processing 178
8.3.4 Lamination 180

8.4 Cake 182
8.4.1 Classification 183
8.4.2 Ingredients and their role 183
8.4.3 Formula balance 186
8.4.4 Mixing process 187
8.4.5 Baking 188
8.4.6 Post-baking operations 189

8.5 Machinery 189
8.5.1 Mixer 190
8.5.2 Oven 191

8.6 Conclusions 192
References 193

9 Frying of Foods 197
Franco Pedreschi and Javier Enrione

9.1 Introduction 197
9.2 Frying as a unit operation 199
9.3 Properties of fried products 202
9.3.1 Physical properties 203
9.3.2 Structural features 205
9.3.3 Sensory attributes 206
9.3.4 Toxic compounds 206
9.4 Machinery of frying 208
9.5 Stability of fried products 211
9.5.1 Water activity and sorption isotherms 211
9.5.2 Sorption isotherms 211
9.5.3 Modelling sorption isotherms 212
9.5.4 Glass transition temperature 213
9.5.5 Glass transition and water diffusion in foods 215
9.6 Conclusions 215
References 216

10 Roasting and Toasting Operations in Food: Process Engineering and Applications 221
Sila Bhattacharya

10.1 Introduction 221
10.2 Applications of the process in specific foods 222
CONTENTS

10.2.1 Coffee 222
10.2.2 Cocoa 225
10.2.3 Popping of cereals 225
10.2.4 Puffing of cereals 226
10.2.5 Toasting of breakfast cereals and snacks 227
10.2.6 Roasting of pulse/legume 229
10.2.7 Roasting of spice 229
10.2.8 Toasting of bread 229
10.2.9 Roasting of meat 229
10.2.10 Roasting of nut 230
10.3 Process modelling 232
10.4 Machinery and methods 235
10.4.1 Puffing gun 235
10.4.2 Batch roaster 236
10.4.3 Continuous roaster/toaster 236
10.4.4 Fluidized bed roaster 237
10.4.5 Microwave roasting 238
10.5 Changes during roasting/toasting 239
10.6 Recent researches 241
10.7 Possible future applications 242
10.8 Conclusions 242
Symbols 243
References 243

11 Micronization and Encapsulation: Application of Supercritical Fluids in Water Removal 249
M. Thereza M. S. Gomes, Diego T. Santos and M. Angela A. Meireles

11.1 Introduction 249
11.2 Supercritical fluid 251
11.3 Developmental stages 251
11.4 Process description and influence of process parameters 252
11.4.1 CAN-BD 252
11.4.2 PGSS drying 257
11.5 Conclusions and future perspectives 262
Abbreviations 263
References 263

12 Flavouring and Coating Technologies for Preservation and Processing of Foods 267
Miguel A. Cerqueira, Maria José Costa, Melissa C. Rivera, Óscar L. Ramos and António A. Vicente

12.1 Introduction 267
12.2 Flavouring of foods 269
12.2.1 Flavours used in preservation and processing of foods 269
12.2.2 Methodologies for flavour encapsulation 273
12.2.3 Applications 279
## 12 Edible coatings for food applications

### 12.3 Edible coatings for food applications

#### 12.3.1 Materials

#### 12.3.2 Properties

#### 12.3.3 Application methods

#### 12.3.4 Food applications

### 12.4 Food flavouring by coating

#### 12.4.1 Methodologies

#### 12.4.2 Influence of flavour incorporation on edible coating properties

#### 12.4.3 Flavour retention and release

#### 12.4.4 Applications

### 12.5 Regulatory aspects and future trends

### References

## 13 Instantization and Agglomeration of Foods

*Siddeeswari Sindawal and Suvendu Bhattacharya*

### 13.1 Introduction

### 13.2 Applications of the technology/process

#### 13.2.1 Cereal-based instant products

#### 13.2.2 Pulse-based products

#### 13.2.3 Vegetable-based foods

#### 13.2.4 Instant products of animal origin

#### 13.2.5 Instant beverage products

#### 13.2.6 Instant dairy products

#### 13.2.7 Miscellaneous instant products

### 13.3 Process technology

#### 13.3.1 Agglomeration

#### 13.3.2 Drying

### 13.4 Scientific principles

#### 13.4.1 Gelatinization and dextrinization

#### 13.4.2 Softening

#### 13.4.3 Changes in protein

#### 13.4.4 Inactivation of antinutritional factors

#### 13.4.5 Improvement in palatability and functional characteristics

### 13.5 Conclusions and future possibilities

### References

## 14 Fortification and Impregnation Practices in Food Processing

*Beate Petersen*

### 14.1 Introduction

### 14.2 Food modification by vacuum impregnation

### 14.3 Food modification by osmotic dehydration

### 14.4 Influence parameters on food modification by VI and OD

#### 14.4.1 Process conditions

#### 14.4.2 Product characteristics

#### 14.4.3 Solution characteristics

### 14.5 Traditional and future applications

### References
## CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.6 Combination of OD and VI with other processes</td>
<td>350</td>
</tr>
<tr>
<td>14.6.1 Pre-treatment processes before OD and VI</td>
<td>350</td>
</tr>
<tr>
<td>14.6.2 Downstream processes after OD and VI</td>
<td>351</td>
</tr>
<tr>
<td>14.7 Conclusions</td>
<td>352</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>353</td>
</tr>
<tr>
<td>References</td>
<td>353</td>
</tr>
<tr>
<td>15 Refrigeration in Food Preservation and Processing</td>
<td>357</td>
</tr>
<tr>
<td>Q. Tuan Pham</td>
<td></td>
</tr>
<tr>
<td>15.1 Introduction</td>
<td>357</td>
</tr>
<tr>
<td>15.2 Changes in foods during refrigeration</td>
<td>359</td>
</tr>
<tr>
<td>15.2.1 Moisture movement</td>
<td>359</td>
</tr>
<tr>
<td>15.2.2 Ice formation and crystal growth</td>
<td>360</td>
</tr>
<tr>
<td>15.2.3 Physiological changes</td>
<td>360</td>
</tr>
<tr>
<td>15.2.4 Biochemical changes</td>
<td>361</td>
</tr>
<tr>
<td>15.2.5 Microbial growth</td>
<td>361</td>
</tr>
<tr>
<td>15.3 Chilling and freezing time prediction</td>
<td>362</td>
</tr>
<tr>
<td>15.3.1 The heat transfer coefficient</td>
<td>362</td>
</tr>
<tr>
<td>15.3.2 Chilling time for a well-stirred liquid</td>
<td>363</td>
</tr>
<tr>
<td>15.3.3 Chilling time for a solid</td>
<td>363</td>
</tr>
<tr>
<td>15.3.4 Freezing time</td>
<td>367</td>
</tr>
<tr>
<td>15.4 Refrigeration equipment</td>
<td>370</td>
</tr>
<tr>
<td>15.4.1 Equipment for the refrigeration of liquids</td>
<td>370</td>
</tr>
<tr>
<td>15.4.2 Equipment for the refrigeration of bulky foods</td>
<td>370</td>
</tr>
<tr>
<td>15.4.3 Equipment for the refrigeration of thin or particulate solids</td>
<td>374</td>
</tr>
<tr>
<td>15.4.4 Vacuum cooling</td>
<td>374</td>
</tr>
<tr>
<td>15.4.5 Cryogenic freezers</td>
<td>375</td>
</tr>
<tr>
<td>15.5 Refrigerated storage and transport</td>
<td>375</td>
</tr>
<tr>
<td>15.5.1 Design and operational factors during storage and transport</td>
<td>375</td>
</tr>
<tr>
<td>15.5.2 Equipment for refrigerated food transport</td>
<td>378</td>
</tr>
<tr>
<td>15.5.3 Controlled atmosphere storage and transport</td>
<td>380</td>
</tr>
<tr>
<td>15.6 Recent developments in food refrigeration</td>
<td>381</td>
</tr>
<tr>
<td>15.6.1 Developments in techniques and equipment</td>
<td>381</td>
</tr>
<tr>
<td>15.6.2 Modelling and simulation of refrigeration processes</td>
<td>382</td>
</tr>
<tr>
<td>15.6.3 Cold chain monitoring</td>
<td>383</td>
</tr>
<tr>
<td>15.7 Conclusions</td>
<td>383</td>
</tr>
<tr>
<td>References</td>
<td>384</td>
</tr>
<tr>
<td>16 Biotransformation in Food Processing</td>
<td>387</td>
</tr>
<tr>
<td>Lalitagauri Ray and Debabrata Bera</td>
<td></td>
</tr>
<tr>
<td>16.1 Introduction</td>
<td>387</td>
</tr>
<tr>
<td>16.1.1 Different techniques of biotransformation</td>
<td>388</td>
</tr>
<tr>
<td>16.2 Production of gluconic acid</td>
<td>389</td>
</tr>
<tr>
<td>16.2.1 gluconic acid production by filamentous fungi</td>
<td>390</td>
</tr>
<tr>
<td>16.2.2 Production by <em>Aspergillus niger</em></td>
<td>390</td>
</tr>
<tr>
<td>16.2.3 Production and recovery of gluconic acid by immobilized biomass</td>
<td>391</td>
</tr>
<tr>
<td>16.3 Ascorbic acid</td>
<td>392</td>
</tr>
<tr>
<td>16.4 Lactose hydrolysis by $\beta$-galactosidase</td>
<td>393</td>
</tr>
</tbody>
</table>
16.5 Invert sugar
16.5.1 Use of enzyme or cell 396
16.5.2 Use of immobilized cells 396
16.6 Production of oligosaccharides
16.6.1 Synthesis of galacto-oligosaccharides 397
16.7 Glucose isomerization 397
16.8 Production of flavour and fragrance
16.8.1 Monoterpenes 399
16.8.2 Curcumin to vanillin 399
16.8.3 Benzaldehyde production 400
16.9 Artificial sweetener
16.9.1 Xylitol 401
16.9.2 Mannitol 401
16.9.3 Sorbitol 402
16.10 Conclusions 403
References 404

Section 2 Advanced Processes

17 Ultraviolet in Food Preservation and Processing
Albert Ibarz, Alfonso Garvín and Victor Falguera
17.1 Introduction 413
17.2 Microbial disinfection
17.2.1 Water 417
17.2.2 Milk 418
17.2.3 Juices 419
17.2.4 Beers and other drinks 421
17.2.5 Liquid egg derivatives 421
17.2.6 Food surfaces and packaging 421
17.2.7 Air disinfection 423
17.3 Mycotoxin elimination 423
17.4 Inactivation of enzymes in juices 425
17.5 Improvement of polymer films 426
17.6 Conclusions 427
References 427

18 Application of Microwave Technology in Food Preservation and Processing
Birgitta Wäppling Raaholt, Emma Holtz, Sven Isaksson and Lilia Ahrné
18.1 Introduction 437
18.2 Background 437
18.3 Principles
18.3.1 Electromagnetic basics of microwave heating 439
18.4 Applications of microwave in food preservation and processing
18.4.1 Pasteurization and sterilization 453
18.4.2 Tempering and defrosting 456
CONTENTS

18.4.3 Drying and puffing 456
18.4.4 Pre-cooking, cooking and coagulation 458
18.4.5 Other microwave food processing applications 460
18.5 Present status and future possibilities 461
  18.5.1 Bottlenecks 461
  18.5.2 Future trends 463
18.6 Conclusions 464
References 465

19 Infrared in Food Preservation and Processing 471
  Ipsita Das and S.K. Das
  19.1 Introduction 471
  19.2 Theory of infrared drying 472
    19.2.1 Mechanism of IR absorption by food 472
    19.2.2 Basic laws of radiation 474
    19.2.3 IR emitters and spectral bands 475
  19.3 Application of infrared energy in food industry 477
    19.3.1 Drying 478
    19.3.2 Baking 484
    19.3.3 Roasting 487
    19.3.4 Blanching 489
    19.3.5 Pasteurization and sterilization 491
  19.4 Conclusions 492
References 495

20 Application of Radiowave Frequency in Food Processing 501
  Francesco Marra, Tesfaye Faye Bedane, Rahmi Uyar, Ferruh Erdogdu and James G. Lyng
  20.1 Introduction 501
  20.2 Principles of RF processing 502
  20.3 Use of RF heating in food processing 503
    20.3.1 Post-harvest treatment for agricultural commodities 503
    20.3.2 Meat processing 504
    20.3.3 Drying and post-baking 505
    20.3.4 Other applications 505
  20.4 Factors influencing RF heating processes 507
    20.4.1 Dielectric properties 507
    20.4.2 Factors influencing dielectric properties of foods 507
  20.5 Computer simulation of RF heating in food processing 508
  20.6 Conclusions 509
References 509

21 Application of Ultrasonics in Food Preservation and Processing 515
  Anet Rezep Jambrak and Zoran Herceg
  21.1 Introduction 515
  21.2 Ultrasound mechanism 516
    21.2.1 Cavitation 518
CONTENTS

21.2.2 Acoustic streaming 520
21.2.3 Equipment producing ultrasound 521
21.3 Application of ultrasound in food processing 522
  21.3.1 Ultrasound and microbial inactivation 522
  21.3.2 Ultrasound as pre-treatment 528
  21.3.3 Ultrasound in filtration 528
  21.3.4 Ultrasound-assisted extraction 529
  21.3.5 Changes in viscosity and texture, polymerization and depolymerization 529
  21.3.6 Oxidation reaction produced by sonication 530
  21.3.7 Ultrasound in enhancing fermentation 530
  21.3.8 Ultrasound-assisted freeze drying 530
  21.3.9 Ultrasound in modification of functional properties 531
21.4 Conclusions 531
References 532

22 Membrane Processing 537
Alfredo Cassano, Carmela Conidi and Enrico Drioli
22.1 Introduction 537
22.2 Terminology and general considerations 538
22.3 Pressure-driven membrane operations 540
22.4 Electrodialysis 544
22.5 Membrane contactors 546
22.6 Membrane bioreactors 552
22.7 Pervaporation 555
22.8 Conclusions 560
  Abbreviations 560
  References 561

23 Nanoparticles and Nanotechnology in Food 567
Shanthilal J. and Suvendu Bhattacharya
23.1 Introduction 567
  23.1.1 Nanotechnology and food 567
  23.1.2 Food nanotechnology in nature 568
  23.1.3 Available literature 569
23.2 Advantages of nanotechnology 569
23.3 Applications in food preservation and processing 570
  23.3.1 Food packaging 573
  23.3.2 Nutraceutical/nutrient/supplement delivery systems 573
  23.3.3 Food sensing and safety 574
  23.3.4 Biopolymers 575
  23.3.5 Nanosensors and nanobiosensors 575
  23.3.6 Biofilms 576
  23.3.7 Nanoscale enzymatic reactor 577
  23.3.8 Enhanced heat and shock resistance of packages 577
  23.3.9 Nanoencapsulates 578
  23.3.10 Metal nanoparticles 579
  23.3.11 Nanoemulsions 580
CONTENTS

23.3.12 Nanofibres 580
23.3.13 Other applications 582
23.4 Process technology 582
23.4.1 Top-down approach 582
23.4.2 Bottom-up approach 584
23.5 Regulatory and safety issues 585
23.5.1 Risks and safety issues 585
23.5.2 Regulatory affairs 586
23.5.3 Precautionary measures 587
23.6 Conclusions 588
References 588

24 High Pressure Processing: Current Status 595
Mukund V. Karwe, Jose Maldonado and Swetha Mahadevan
24.1 Introduction 595
24.2 Heat transfer during high pressure processing 596
24.3 Mass transfer during high pressure processing 601
24.4 Studies on nonuniformity of pressure in solid foods 604
24.5 Effect of high pressure on bioactive compounds in foods 606
24.6 Mechanisms of microbial inactivation during high pressure processing 608
References 610

25 Ozone Processing 617
Fátima A. Miller, Teresa R.S. Brandão and Cristina L.M. Silva
25.1 Introduction 617
25.2 Ozone properties 619
25.3 Ozone generation 620
25.3.1 Corona discharge method 620
25.3.2 Ultraviolet method 621
25.3.3 Electrochemical (cold plasma) method 622
25.3.4 Radiochemical method 622
25.4 Antimicrobial action 622
25.4.1 Inactivation mechanisms 623
25.4.2 Inhibitory spectrum 623
25.4.3 Influential factors on ozone antimicrobial action 625
25.5 Applications of ozone 627
25.5.1 Impact on microbiological and quality characteristics of some products 628
25.5.2 Ozone as a disinfectant of surfaces and equipment 636
25.6 Remarks on health and safety concerns 637
References 637

26 Application of Pulsed Electric Fields in Food 645
Claudia Siemer, Kemal Aganovic, Stefan Toepfl and Volker Heinz
26.1 Introduction 645
26.2 Principle of action 646
26.3 Application  648
   26.3.1 Application in the juice industry  649
   26.3.2 Cell disintegration by PEF  657
26.4 Equipment design  662
26.5 Outlook  664
References  665

27 Ohmic Heating  673
   Cuiren Chen
27.1 Introduction  673
27.2 Applications of OH system  675
27.3 OH heating process and equipment  676
   27.3.1 Process flow  676
   27.3.2 Commercial equipment  677
27.4 Modelling of the OH process  679
27.5 Critical factors of OH processing  683
   27.5.1 Effects of electrical conductivities  683
   27.5.2 Effects of particle size and concentration  684
   27.5.3 Effects of carrier medium viscosity  684
27.6 Sensitivity analysis of the continuous OH system  685
27.7 Conclusions  686
References  688

28 Intelligent Identification System for Poultry Portion Sorting  691
   Adnan Khashman
28.1 Introduction  691
28.2 Automation in poultry processing  692
28.3 Intelligent poultry portion identification  693
   28.3.1 Image acquisition and database construction  694
   28.3.2 Image processing phase  696
   28.3.3 Neural network arbitration phase  698
28.4 Future possible applications  700
28.5 Conclusions  701
References  702

Index  705