Index

Page numbers with suffix t refers to tables and those with f refers to figures

- acrylamide, 207, 241
- aerated gels, 105
- aflatoxin detoxification, 423–425
- agar gel, 103, 105–106f
- agglomeration, 314, 324–329
t - classification, 327t–328t
 machinery, 325–326
- air blast chillers and freezers, 372–373
- amylases, 161–164
- artificial intelligence, 692
- artificial neural network (ANN), 91, 692, 699f
- aseptic processing, 119–121
 Aspergillus niger, 389, 390–391
- atmospheric freeze drying, 12–13
- atomization, 48
- attrition mill, 40, 41–42, 42f
- bakers yeast (*Saccharomyces cerevisiae*), 160, 162, 396
- baking, 87, 166–169
 bread, 160–165
 changes, 169–171
 infrared, 484–487
 machinery, 189–192
 microwave, 459
 ball mill, 40
 banana
 by combined HTST-HAD process, 28
- multiflash drying, 27
- solar drying, 26
- barrel liner, 80
- batch grinder, 37
- batch retort systems, 122–123
 horizontal batch retort, 123f
- benzaldehyde, 400–401
- Bessel function, 141
- biodegradation, 292
- Biot number, 142, 363, 366
- Biot number for mass transfer, 234
- biotransformation
 immobilized biocatalyst, 388–389, 396
 enzymes, 396
 isomerization, 397–398
 flavour and fragrance, 399–401
 immobilized enzymes, 389
 β-galactosidase, 393–395
 inverted sugars, 395–396
 L-ascorbic acid (L-AA), 392–393
 oligosaccharides, 397
- biscuit
 all-in-one method, 173
 classification, 173–175, 174t
 cooling, 182
 creaming, 179–180
 cutting, 181
 ingredients, 175–178
 mixing, 179–180
 packaging, 182
biscuit (continued)
 shaping, 180
 sheeting, 181
 shortening, 181
 gelatinization, 181
 mixers, 179
 rotary moulders, 180
 blanching, 115, 127–128
 infrared, 489–491
 microwave, 459–460
 blower, 236
 Bond’s law, 35
 Bond’s work index, 38
 microwave-dried gum, 36
 food ingredients, 39t
bread, 160–165
 yeast in dough, 162
 Chorleywood method, 165
 cooling, 171
 dough conditioner, 163–164
 emulsifier, 163
 enzyme, 164
 hydrocolloid, 164
 ingredients, 160–165
 leavening agent, 160, 167
 mixing, 166, 167
 packaging, 171–173
 salt, 162
 shortening, 163
 straight dough method, 164–165
 sponge process, 165
 breakfast cereals, 84–85, 227–228
 ingredients, 85
 Brunauer-Emmet-Teller (BET) model, 212
 Bubble dryer, 250, 251, 253f
cake
 aeration, 183
 baking, 188–189
 classification, 183
 flour, 183–184
 hydrocolloid, 186
 ingredients, 183–186
 post-baking process, 189
 mixing, 187–188
 sponge, 183
 calcium chloride (CaCl₂), 85
canning, 117, 121–127
 batch retort system, 122–123, 123f
 caramelization, 169–171
 carbon dioxide, 132–133
 supercritical carbon dioxide, 26
 β-carotene, 420
 carotenoids, 148, 149
 carrot
 solar drying, 26
 supercritical drying, 27
 cavitation, 47, 518–520
 cereals
 popping, 225
 puffing, 226
 chemical sterilizing agents, 120
 chilling time slabs, cylinders and spheres, 364–367
 well-stirred liquid, 363
 chlorination, 184
 chlorofluoro hydrocarbon, 133
 chopping, 46
 coacervation encapsulation, 277–278
 coated or entrapped compound, 274–275
 coating, 87–88
 cold-set gelation, 101, 105
 colloid mill, 37, 47
 crateless retorts, 124
 contact chillers and freezers, 373
 continuous retort systems, 123–126
 continuous roaster/toaster, 235–236
 continuous rotary pressure sterilizer, 124–125, 126f
 continuous spiral roaster, 237f
 conveyor belt dryer, 5, 5f
 conveyerized ovens, 192
 corn curls/balls, 86
 corn-soy-skim milk (CSM), 76
 Crank-Nicolson algorithm, 680
 crispness, 85, 88
 critical compressibility factor, 136
 critical point (CP), 132–133, 146
 critical pressure, 131–132, 134–136, 146
 critical temperature, 131, 132, 135, 137, 138
 critical volume, 136
 crushers, 39–40
 crushing rolls, 40
INDEX

cryogenic freezers, 375
Cryptosporidium, 418
curcumin, 399–400
cyclone, 236
dehydrofreezing, 381–382
desolventizer toaster (DT), 240
dicing, 46, 46t
differential scanning calorimetry (DSC), 284, 285
diffusion, 140, 292
diglycerides, 185
dissolution, 292
dough
c conditioner, 163–164
c cookie and cracker, 191
c corn masa, 52
c fermented, 180
c soft and hard, 53
c layering, 180–182
c proofing, 168–169
c shaping, 68–71
c flattening, 70–71, 168
c rounding, 69, 168
c stress relaxation and strain recovery, 70–71
c ultrasonic knives, 68
c discharge arrangement, 57, 57f
c gluten network, 54–55

c physical characteristics of sheet, 56

c plastic type or soft dough, 56

c reduction ratio, 56

c rheology, 63–68

c roller configuration, 57f

c scale-up, 59–60

c spring-back, 60, 60t

c dry granulation, 329

c dry grinding process, 36–37

c coarse fraction, 36

c malt, 36, 44

c legumes, 36

c wheat, 36

c drying, 87, 127

c atmospheric freeze drying (AFD), 12–13

c heat pump, 14–19, 16f, 17t, 18t, 19f

c hot-air (or conventional) drying (HAD), 4–6

c infrared, 19–23, 478–479, 480t–483t

c osmotic dehydration (OD), 11–12

c pulse, 27–28

c radio frequency (RF), 505

c sonic, 13–14

c spray, 9–11

c sun and solar, 25–26

c superheated steam (SSD), 23–24

c vaccum, 6

c dry texturization process, 86

c edible coatings

c biodegradable, 282

c dipping applications, 286

c electrostatic coating, 286

c flavouring of foods, 269, 270f, 287–293

c flavour retention and release, 291–292

c materials, 281–282, 281t

c plasticizer, 282

c properties, 283–286

c water vapour permeability, 290–291

c electrodialysis (ED), 544–546

c electronic ovens, 192

c encapsulated flavour, 88

c encapsulation, 273–279

c carrier material, 274–275, 275f

c coacervation, 277–278

c extrusion, 279, 277t

c microencapsulation, 276

c encapsulation efficiency, 260

c enrobing, 286

c essential oils (EOs), 271, 272t, 290

c orange, 271

c extraction

c addition of co-solvents, 146–147

c bioactives, 148–149

c conventional, 129–130

c mass transfer equations, 138t

c microwave assisted, 131

c particle size, 147

c ultrasound assisted, 130–131, 529

c using PEFs, 660–662

c extruded flakes, 84

c extruded pellets, 84, 88

c extruder, 76, 87

c components, 80–81
extruder (continued)
 barrel and screw, 80
 kneading block (KB), 80
 mixing disc (MD), 80
 reverse pitch screw element (RPSE), 80
 sensing, control and safety features, 81
 single-screw, 78–79, 79f
 twin-screw, 80, 85–87, 79f
extrusion flavoring, 279
extrusion cooking
 breakfast cereals, 84–85
 equations, 90–91
 list of extruded products, 77t
 meat analogues, 85
 pasta products, 81–84, 82f
 post-extrusion treatment, 87–88
 quality of extruded products, 89–90
 snack foods, 86–87
 texturized plant protein (TPP), see TVP
 texturized vegetable protein (TVP), 83f, 85–86
 turbo-extrusion process, 92
Fick’s law, 140–141, 215
fluidized bed freezers, 374
fluidized bed roaster, 237–238, 238f
fortification
 agitation of samples, 343
 macronutrient, 338
 surface/volume ratio, 341f, 345–346
 time effect, 342
 vacuum impregnation (VI), 338–339, 339f, 347f
Fourier number, 141
free cell membrane bioreactors (FCMBRs), 552
free enzyme membrane bioreactors (FEMBRs), 552–553, 555
freeze drying (FD), 7–9
freezing, 127, 362
 electrostatic field, 382
 freezing rate, 9
 freezing time, 362–370
 geometric constants for freezing, 369t
 mean freezing temperature, 369
fructose, 398
frying, 87, 197
 atmospheric fryers, 208–209
 continuous automatic fryer, 209f
 deep-fat, 198
 physical properties, 203–205
 potato products, 198, 206
 properties of fried products, 202–203
 stability of fried products, 211–215
 structural features, 205
 tortilla and cassava chips, 199
 toxic compounds, 206–208
 vacuum, 210
galacto-oligosaccharides (GOSs), 397
 gellan gel, 103, 105, 106f
 gelled products, 99, 103
 gelling
 characterization, 105–109
 classification, 100–103, 101f
 jelly candy, 104f
 mathematical models, 109–110
 mechanism of gel formation, 104–105
 microscopic characterization, 108f
 raw materials, 100
 rheological properties of sol, 105, 107f
 genotoxic carcinogen, 207
 glass transition temperature, 213–215, 285
 gluconic acid
 by immobilized biomass, 391–392
 microbial production, 389–390
 production by filamentous fungi, 390
 glucose isomerization, 397–398
 gluten network development, 54–55, 57
 Gordon-Taylor equation, 214–215
 Grashof number, 143
 grinding process, 34–35
 energy laws, 38–39
 factors affecting grinding, 41
 fracture of material, 35
 wet, 37–38
 gyratory crushers, 40
Hagen-Poiseulli equation, 91
 half-products, 87
 hammer mill, 40–41, 41f
 heat exchanger, 117, 118f
 heat transfer coefficient, 362, 375
high-power (low-frequency) ultrason, 13–14
high-pressure freezing and thawing, 381
high-pressure processing of foods bioactive compounds, 606–608 heat transfer, 596–599, 600f mass transfer, 601–602, 603f microbial inactivation, 608–610 nonuniformity of pressure, 604–606, 605f–606f high-speed turbine/propeller type mixer, 47 homogenization, 46–48 horizontal mixer, 190 hydrocolloid, 99, 100, 103, 164, 186 hydrostatic sterilizer system, 125–126, 126f

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>microwave roasting or toasting</td>
<td>238–239</td>
</tr>
<tr>
<td>moisture diffusivity</td>
<td>234</td>
</tr>
<tr>
<td>Monte Carlo method</td>
<td>235</td>
</tr>
<tr>
<td>mycotoxin</td>
<td>423–425, 624–625</td>
</tr>
<tr>
<td>nanocapsule</td>
<td>273–274</td>
</tr>
<tr>
<td>nanotechnology</td>
<td>569–570, 571–572</td>
</tr>
<tr>
<td>biopolymers</td>
<td>575</td>
</tr>
<tr>
<td>packages</td>
<td>577–578</td>
</tr>
<tr>
<td>food sensing and safety</td>
<td>574–575</td>
</tr>
<tr>
<td>metal nanoparticles</td>
<td>579–580</td>
</tr>
<tr>
<td>nanoemulsions</td>
<td>580</td>
</tr>
<tr>
<td>nanoencapsulates</td>
<td>574, 578–579</td>
</tr>
<tr>
<td>nanofibres</td>
<td>580–581, 581f</td>
</tr>
<tr>
<td>delivery systems</td>
<td>573–574</td>
</tr>
<tr>
<td>precautionary measures</td>
<td>587–588</td>
</tr>
<tr>
<td>regulatory and safety issues</td>
<td>585–587</td>
</tr>
<tr>
<td>nebulization</td>
<td>250–251, 253f</td>
</tr>
<tr>
<td>process parameters</td>
<td>253–254</td>
</tr>
<tr>
<td>Newton's cooling law</td>
<td>362–363</td>
</tr>
<tr>
<td>Nusselt number</td>
<td>233</td>
</tr>
<tr>
<td>Ohmic heating (OH)</td>
<td></td>
</tr>
<tr>
<td>carrier medium viscosity</td>
<td>684–685</td>
</tr>
<tr>
<td>equipment</td>
<td>676, 677, 678f–679f</td>
</tr>
<tr>
<td>electrical conductivities</td>
<td>683–684</td>
</tr>
<tr>
<td>modeling</td>
<td>679–682</td>
</tr>
<tr>
<td>sensitivity analysis</td>
<td>685–686</td>
</tr>
<tr>
<td>osmotic dehydration (OD)</td>
<td>11–12, 339</td>
</tr>
<tr>
<td>water in product</td>
<td>12</td>
</tr>
<tr>
<td>countercurrent flows</td>
<td>11</td>
</tr>
<tr>
<td>parameters</td>
<td>11–12</td>
</tr>
<tr>
<td>pre-treatment</td>
<td>12</td>
</tr>
<tr>
<td>product/solution ratio</td>
<td>341f, 343</td>
</tr>
<tr>
<td>surface/volume ratio</td>
<td>345–346, 341f</td>
</tr>
<tr>
<td>temperature effect</td>
<td>342</td>
</tr>
<tr>
<td>oven</td>
<td>191–192</td>
</tr>
<tr>
<td>conveyorized</td>
<td>192</td>
</tr>
<tr>
<td>electronic</td>
<td>192</td>
</tr>
<tr>
<td>rack</td>
<td>192</td>
</tr>
<tr>
<td>reel</td>
<td>191</td>
</tr>
<tr>
<td>travelling tray</td>
<td>191–192</td>
</tr>
<tr>
<td>tunnel</td>
<td>192</td>
</tr>
<tr>
<td>ozone</td>
<td>618f</td>
</tr>
<tr>
<td>antimicrobial effect</td>
<td>618, 622–627</td>
</tr>
<tr>
<td>corona discharge</td>
<td>620–621</td>
</tr>
<tr>
<td>dairy products</td>
<td>635–636</td>
</tr>
<tr>
<td>disinfectant</td>
<td>636–637</td>
</tr>
<tr>
<td>disinfection of water</td>
<td>628–629</td>
</tr>
<tr>
<td>dried foods</td>
<td>635</td>
</tr>
<tr>
<td>factors influencing</td>
<td>625–627</td>
</tr>
<tr>
<td>health and safety concerns</td>
<td>637</td>
</tr>
<tr>
<td>packaging</td>
<td>171–173, 182, 189, 268</td>
</tr>
<tr>
<td>panning process</td>
<td>168, 286</td>
</tr>
<tr>
<td>particle morphology</td>
<td>259–260</td>
</tr>
<tr>
<td>pasta products</td>
<td>81–82, 82f</td>
</tr>
<tr>
<td>pasteurization</td>
<td></td>
</tr>
<tr>
<td>equipment</td>
<td>116–117</td>
</tr>
<tr>
<td>infrared energy</td>
<td>491–492, 493t–494t</td>
</tr>
<tr>
<td>microwave</td>
<td>453–455</td>
</tr>
<tr>
<td>peanut oil</td>
<td>423–424</td>
</tr>
<tr>
<td>Peclet number</td>
<td>142</td>
</tr>
<tr>
<td>peeling</td>
<td>46</td>
</tr>
<tr>
<td>penetration theory</td>
<td>142</td>
</tr>
<tr>
<td>permittivity</td>
<td>443–444</td>
</tr>
<tr>
<td>pervaporation (PV)</td>
<td>555–559, 556f</td>
</tr>
<tr>
<td>photochemical reactors</td>
<td>415, 416</td>
</tr>
<tr>
<td>piezoelectric transducer</td>
<td>521</td>
</tr>
<tr>
<td>pin mill</td>
<td>42–43, 43f</td>
</tr>
<tr>
<td>plastic calendering</td>
<td>52</td>
</tr>
<tr>
<td>plate mill. see attrition mill</td>
<td></td>
</tr>
<tr>
<td>Poisson's ratio</td>
<td>109</td>
</tr>
<tr>
<td>polysaccharides</td>
<td>101, 103</td>
</tr>
<tr>
<td>polysorbate</td>
<td>177, 185</td>
</tr>
<tr>
<td>polyunsaturated fatty acids</td>
<td>(PUFAs), 148</td>
</tr>
<tr>
<td>poultry processing plant</td>
<td></td>
</tr>
<tr>
<td>automation</td>
<td>692–693, 694f</td>
</tr>
<tr>
<td>intelligent poultry portion</td>
<td></td>
</tr>
<tr>
<td>identification</td>
<td>693–700, 695f–696f</td>
</tr>
<tr>
<td>pressure homogenizers</td>
<td>47</td>
</tr>
<tr>
<td>pressurized hot water extraction (PHWE)</td>
<td>254</td>
</tr>
<tr>
<td>pre-sterilized fermentation reactors</td>
<td>121</td>
</tr>
<tr>
<td>proofing</td>
<td>168–169</td>
</tr>
<tr>
<td>puffing gun</td>
<td>235–236</td>
</tr>
<tr>
<td>puffing of cereals</td>
<td>226</td>
</tr>
<tr>
<td>pulse combustion drying (PCD)</td>
<td>28</td>
</tr>
<tr>
<td>pulsed electric field (PEF)</td>
<td>350</td>
</tr>
<tr>
<td>cell disintegration</td>
<td>657–662</td>
</tr>
<tr>
<td>commercialization</td>
<td>645–646</td>
</tr>
<tr>
<td>equipment</td>
<td>662–664</td>
</tr>
<tr>
<td>juice industry</td>
<td>649–657</td>
</tr>
</tbody>
</table>
INDEX

711

principle of action, 646–648
pulse drying, 27–28
 combined HTST-HAD process, 27–28
quality of extruded products, 89–90
radio frequency (RF) heating
 computer simulation, 508–509
dielectric properties, 507–508
 drying, 505
 meat processing, 504–505
 post-harvest treatment, 503–504
 principle, 502–503
ready-to-cook (RTC) foods, 75
ready-to-eat (RTE) foods, 75, 84
refrigerated storage and transport systems
 air circulation, 376, 377f
design, 375–378
 refrigerated containers, 378–379
 refrigerated food transport, 378–380
 spatial temperature variations, 376–377
refrigeration
 biochemical changes, 361
 chilling time, 363–367
cold chain monitoring, 383
equipment, 358, 370–375
 modelling and simulation, 382
 moisture movement, 359–360
time prediction, 362–370
 resonant applicators, 442
response surface methodology (RSM), 232
Reynold’s number, 142–143
Rittinger’s law, 35, 38
roasting
 bambara groundnut (BG), 241
 changes, 239–240
 infrared, 487–489
 machinery and methods, 235–239
 meat, 229–230, 235
 modelling of process, 232–235
 nut, 230–231, 235
 pulse/legume, 229
 spice, 229
time and temperature influences, 241
robots, 691
roller mill, 43–44, 44f
rolling-compression mills, 40
rotary moulders, 180
rounding, 168
Schmidt number, 142
shelf-stable foods, 116, 117
Sherwood number, 142
shredding, 46
simultaneous infrared dry blanching and dehydration (SIRDBD), 490
size reduction practices, 259
 chopping, 46
 classification, 34
 cutting, 35, 46
 dicing, 46, 46f
 emulsion, 47
 fruits and vegetables, 46
 machinery requirement, 39–44
 mechanism, 44–45
 snack foods, 86–87
 solar drying, 25–26
sonic drying, 13–14
 feasibility, 14
 mass transfer enhancing method, 14
 mechanism, 13
 reduction of drying time, 14
 sound generators, 14
specific mechanical energy (SME), 89–90
spray drying, 9–11, 250f
 encapsulation, 276–277
 atomization in, 48
 superheated steam, 10
 tomato powder, 10
sprouting process, 36
Stanton number, 142
starch, 103, 202–203, 214, 262, 281f, 282, 288, 291, 315, 361, 450, 503, 506, 531, 568, 575, 578, 627, 676
gelatinization, 170, 229, 239, 330, 486, 685
 hydrolysis, 554, 555
steam infusion heat exchanger, 120f
Stefan-Boltzmann’s law, 474–475
sterilization, 117–119
microwave, 453–455
UHT sterilizing system, 119
still air chillers and freezers, 371–372
stone grinder, 37
sun drying, 25–26
supercritical carbon dioxide (scCO2), 26
supercritical fluids (SCFs), 132, 251
mass transfer equations, 135, 138
phase behaviour of binary systems, 138
physical properties, 132, 146
solubility, 133–138
solvent properties, 133, 135
steady-state mass transfer, 140–141
unsteady-state mass transfer, 141

ternary systems, 139
thermally/chemically modified starch, 87
thermosonication (TS), 525
travelling tray ovens, 191–192
travelling wave applicators, 442
tubular heat exchangers, 370
tunnel ovens, 192
twin-screw extruder, 79f, 80, 85–87
ultrafine grinder, 40
ultrasound
acoustic streaming phenomenon, 520
characteristics of ultrasound waves, 517
equipment, 521
filtration, 524t, 528
mechanism, 516–518, 523t–524t
microbial inactivation, 522–527
modification of functional properties, 531
oxidation reaction, 530
probes, 521
ultrasound assisted extraction, 130–131, 518f, 524t, 529
ultrasound-assisted freezing, 381
ultrasound drying (USD). see sonic drying
UV radiation
disinfection, 417–418, 421
bipolymer films, 426–427
drinking water, disinfection, 417–418
germicidal agent, 423
inactivation of enzymes, 419–421, 425–426
UV spectrum, 414
vacuum drying, 6
quality indicators, 6
vacuum cooling, 374–375
vacuum frying, 210
vacuum impregnation (VI), 338–339, 339f, 347t
pre-treatment process, 350–351
vertical mixers, 190–191
virial coefficient, 136–137
viscoelastic dough
handling, 61
properties, 164, 170
shaping, 68–69
sheeting, 60–61
water
activity in fried products, 211
bread, role in preparation, 161–162
as supercritical fluid, 132
waveguide method, 445
Wein’s displacement law, 475
wet granulation, 329
wet grinding process, 37–38
wet texturization process, 86
wire-cut machines, 180
Young’s modulus, 109–110
zeolite, 12