Absolute risk, 91
Absolute view, 234
Absorbing barriers, 123
Active management, 92
ADV. See Average daily volume
Affine, term (reference), 329n
Affine uncertainty sets, 329–330
Agent optimality, 132
AIG SunAmerica, 340
Algorithmic trading, importance, 456–460
Alpha, 457
basis, 246
constant term, 446n
ratio, 110n
source, 447
Alpha Factor™ method. See Axioma, Inc.
Alpha-stable distribution, 200
American Express Financial Advisors, 430n
AMPL commands, usage, 379n
CPLEX solver, 349n
model file, 355
prompt, 349
subroutines, 359
subset, 334
syntax, usage, 302n
usage, 14, 373n
Ang, Andrew, 54n
Annualized expected returns. See Morgan Stanley Capital International World Index
usage, 27e
Anticipatory actions, 233
Approximate dynamic programming methods, 312
Approximate factor structure, 165n
APT. See Asset pricing theory
AR. See Autoregressive
Arbitrage opportunity, 164
principle, 163–165
Arbitrage Pricing Theory (APT), 13, 118, 136–137
factor models, relationship, 160–168
formulation, 165–167
relative pricing model, 167
restrictions, 136
usage, 162–167
ARCH. See Autoregressive conditionally heteroskedastic
Arithmetic random walk model, 119–122
conflict, 123
drift, inclusion, 120
realization, example, 121e
log price process, 126e
log return (10,000+ steps), 128e
unpredictable processes, 130
Arrow-Pratt risk aversion index, 35
Asset availability, number, 8–9
combination, feasibility, 99e
covariance, 24
issues. See Highly correlated assets
number, increase, 9
price series, 127
simple net return, 116
traded amount, linkage, 105
transaction cost, additive characteristic, 108
Asset (Cont.)
universe, increase, 29–33
weights, continuous ranges (allowance), 429n
Asset allocation
combinatorial problem, 97–101
issues. See Robust asset allocation
models, transaction costs
ignoring, 101
incorporation, 101–106
Asset-asset covariance matrices, 398
Asset-based factors, 418–419
Asset-based independent variables, 416
Asset-liability management, 292
Asset pricing. See Classical asset pricing
models, characteristics, 161–162
Asset pricing theory (APT), 443
Asset probability distributions, assump-
tions, 402–410
Asset returns
covariance matrix, 373
realizations, 294
Asset-specific return, 375
Asset-specific risk, 442
Asymmetric uncertainty set, 322
Autocorrelation consistent covariance
matrix estimation, 152–153
Autocorrelations, slow decay, 125–126
Automation, productivity enhancement,
458
Autoregressive (AR) model, 451
Autoregressive conditionally heteroske-
dastic (ARCH) models, 174–175
Auxiliary scale estimate, 185–186
Average daily volume (ADV), 89
Average pairwise covariance, bounding,
32
Average yearly tracking error, 94e
Axioma, Inc., 339
Alpha Factor™ method, 396–402
usage, 399–401
input, 209n
Portfolio Precision 3.1, 339n
software, 359
Backtests, usage, 35
Backward deviations, 322n
Barra, 171n, 339
Barra Aegis System, 339n
Barrier methods, 280–283. See also
Nonlinear programming
Barrier method search direction, 283
Bartholomew-Biggs, Michael, 101n
Basel Accord, 60
Basel Committee on Banking Supervi-
sion, 60n
Basic feasible solution, 273
Bayesian approaches, 207. See also Future
expected returns estimation
Bayesian dynamic factor models, 175–
176
Bayesian estimation, 387
Bayesian estimators, 207
Bayesian forecasting models, 175
Bayes-Stein estimator, assumption, 376
BD. See Breakdown
Benchmarks, 445–446
exposure constraints, 90–91
level, 56
weights, 90–91, 234
Benders decomposition, example, 359n
Bernoulli variable, 119
Best linear unbiased estimator (BLUE),
148
Beta, slope coefficient, 446n
BFGS. See Broyden Fletcher Goldfarb
and Shanno
Bid-ask bounce effect, 449
Bid-ask spreads, 456
Bilinear utility functions, 402
Binary 0-1 vector, combinations, 286
Binary decision variable, usefulness, 93
Binary enumeration tree, reduction, 287
Binary variables
defining, 354
problems, solving, 355
Binomial distribution, 119
BIRR. See Burmeister Ibbotson Roll
and Ross
Black boxes, 340
Black-Litterman combined estimator, vari-
cance (calculation), 240
Black-Litterman expected return vector,
241
Black-Litterman implied expected returns, 251
Black-Litterman model, 207, 233–243
assumptions, 234–236
considerations/extensions, 241–243
example, 244–253
historical means, usage, 231e
investor view
expression, 236–238
market equilibrium, combination, 238–239
predecessor, 234n
remarks/observations, 239–241
starting point, 234–236
usage, 376–377
Block stochastic programming formulation, creation, 298–301
BLUE. See Best linear unbiased estimator
B/M. See Book-to-market
Bond portfolio management, 292
Book-to-market (B/M) factor, 169
Book-to-price ratio (B/P), 242
Boolean variables, usage, 346
Bootstrapping techniques, 455
Box, G.E.P., 181
Box uncertainty set, 318, 323
B/P. See Book-to-price ratio
Branch-and-bound method, 339n
Branch and bound procedures, 286–287
Breakdown (BD) bound/point, 184
British Bankers Association, 471n
Brokerage commissions, 456
Broyden Fletcher Goldfarb and Shanno (BFGS) method, 279
Burmeister Ibbotson Roll and Ross (BIRR) model, 169
Calendar rebalancing, 412
Capital Asset Pricing Model (CAPM), 3, 13, 118, 132–136. See also
Conditional CAPM
capital market abstraction, 132–133
development, 17n
equilibrium, 232
example, 162
regression equation, 136n
statement, 18
static relationship, 133
validity, 167n
Capital gains taxes, 88
Capital Market Line (CML), 35–41
combination identification, 133
derivation, 39–40
formula, derivation, 39–40
Markowitz efficient frontier, relationship, 38e
relationship. See Optimal portfolio
tangent position, 44
Capital markets
development, 8–9
maturity/growth, 2
CAPM. See Capital Asset Pricing Model
CARA. See Constant absolute risk aversion
Cardinality constraints, 95–96
mixed-integer program, equivalence, 355n
problem, consideration, 99
Cash rates, usage, 239
Cash settlement, risk delivery avoidance, 444n
CBOE. See Chicago Board Options Exchange
CEC. See Certainty Equivalent Controller Center
estimators, 189–190
robust estimators, 188–190
Centering-predictor-corrector method, 338
Central Limit Theorem (CLT)
application, 368–369
diversification, relationship, 19
holding, failure, 125–126
statement, 368n
usage, 19n
Certainty Equivalent Controller (CEC), 431
Certainty equivalent return, 428
Certainty equivalents, concept (application), 428
CGO, 338
Chance-constrained models, 293, 306–308
Chance-constrained stochastic optimization problems, 306
Chance-constrained stochastic problems, 292
Chance-constrained VaR stochastic problem formulation, 408
Chance constraints, 294
CHARISMA research center, 302
Chicago Board Options Exchange (CBOE), 6
Chi-square distribution, 148n
Chi-square variable, 204
Cholesky decomposition, 389
C language, 342
C++ language, 342
Classical asset pricing, 115 definitions, 115–117 econometric models, 117–118 theoretical models, 117–118 Classical mean-variance formulation, 327
Classical mean-variance optimization, 347–354 formulations, alternatives, 34–35 parameters, robust estimation methods, 405n pitfalls, 9–10
Classical mean-variance portfolio, 5 optimization, robust modeling (uncertain parameters), 363
Classical portfolio optimization, 392
Clean surplus relation, 144
CLT. See Central Limit Theorem
Clustering, 173–174 techniques, 140
CML. See Capital Market Line
Coefficients, confidence interval. See Correlation
Coherent risk measures, 62–63, 65 Cointegration, illustration, 452
Combinatorial constraints, 88, 93
Combinatorial problem. See Asset allocation
Combinatorial programming, 267, 285–288
Company-specific risk, 135
Component-wise inequality, 382
Compound return, 116
Comprehensive Perl Archive Network (CPAN), 335
Computational tractability, 305–306
Computer simulations, 66
Computer technology expansion, 2 Internet, relationship, 7–8 Computing technology, development, 7 Conditional CAPM, 136n Conditional VaR (CVaR), 62–69, 305 constraints, 68 portfolios efficient frontier. See Mean-CVaR portfolios optimization problem, 305n Condition numbers, uniformly bounding, 278n Confidence intervals, 200–205. See also Covariance matrices; Mean computation, 205 concept, 202
Confidence level, 201
determination, 242 Conic inclusion constraints, 264 Conic optimization, 264–267 Connor, Gregory, 168n Conservatism, interaction, 387–391 Constant absolute risk aversion (CARA), 48 Constant relative risk aversion (CRRA), 48 investor, logarithmic utility, 74–75 Constrained efficient frontiers, unconstrained efficient frontiers (contrast), 33e
Constraints. See Benchmarks; Turnover interaction, 92 robust counterpart, 433n usage, 259 violation, probability, 318n writing, 106n Continuous optimization problems, optimality conditions, 267–269 Control vector, 309 Convergence criterion, 272 Convex nonlinear programs, subclass, 268
Convex optimization problems, 269 Convex programming N-dimensional space, subset, 263n Convex quadratic programming (QS), 263
Index

Copula functions, 128
usage, 85
Corrective actions, 233
Correlation. See Morgan Stanley Capital International World Index coefficients
certainty interval, 204–205
definition, 204
eexample, 98e
matrices, robust estimation, 197–200
options, 173
usage, 27n
Cost function, 308–309
Country equity indices, mean-variance efficient frontier, 29f
Covariance estimators, 146–157
considerations, 152–155
stationarity, 130
Covariance matrices
decomposition, 218
discounting methods, 175
entries, confidence intervals, 380–384
noise, 13
robust estimation, 197–200
robustness, concepts, 199n
shrinkage technique, 217
usage, 209
CPAN. See Comprehensive Perl Archive Network
CPLEX optimizer, 337, 349
mixed-integer programming solver, 339n
optimization, 430n
review, 358n
CPLEX options, specification, 357
CPLEX solver. See AMPL
Cross-autocorrelations, capture, 451
Crossing networks, attractiveness, 459n
Cross-sectional momentum portfolio, construction, 245
Cross-sectional momentum strategy, 244–247
optimization, 247–253
Cross-sectional standard deviation, 246–247
Cross-trading, ERISA ban, 106n
CRRA. See Constant relative risk aversion
Cumulative empirical distribution function, 182
Cumulative returns covariance matrix, 434
usage, 433
Currency allocations, determination. See Long-term optimal currency allocations
Currency management, 442–445
Currency risk, 442
management, 444–445
reduction, 444
Cutting planes, linear constraints, 287–288
CVaR. See Conditional VaR
DAEM. See Discounted abnormal earnings model
Daily drift, 122
Data absence/truncation, 153
description, 463
frequency, 153–154
Dat files, advantages, 347n
DDM. See Dividend discount model
Decision variables, 299
N-dimensional vector, 317
number, 307
Decomposition, usage, 275
Deltas, magnitude, 371
Derivatives, usage. See Portfolio management
Diagonal matrix, variances (containing), 374
Diagonal matrix. See Return
Differentiability, usage. See Optimization problems
Dimensionality problem, 429
Dimensionality reduction techniques, usage, 13
Dirac delta function, definition, 84n
Directives, 357
Disaster level, 56
Discontinuous utility function, 73
Discounted abnormal earnings model (DAEM), 144
Discounted cash flow approach, 141
Discrete and polytopic uncertainty sets, 329
Discrete programming, 267
Dispersion measures, 54–56
Distribution-free, properties, 181–182
Diversifiable risk, 135
factors, 161
Diversification
benefits, 18–21, 469
indicators, 212
notion, extension, 19n
relationship. See Central Limit Theorem
Dividend discount model (DDM), 140–146
usefulness, 143
Dividend payout, 116
Dollar holdings, 108n
Dominated portfolios, elimination, 99
Downside measures, 54, 56–69
Downside risk
consideration, 405
decrease, 212
measures, development, 57
Drift, 120
Duality theory, 316
Dual norm. See Euclidean norm
Dual problems, 270–271
Dual variables, 279
usage, 269
Dynamic factor models, 452
Dynamic multifactor model, 175–176
Dynamic programming, 308–312
impact, 428
methods, 291
problems, 309
representation, 310

EDBOM. See Edwards-Bell-Ohlson model
ECNs. See Electronic Communications Networks
Econometric models. See Classical asset
pricing
sophistication, 451–453
Economic theory of choice, 41–42
Econophysics, 32
Edwards-Bell-Ohlson model (EBOM), 144
formula, 145
Efficient frontier, 22, 208–211. See also
Realized out-of-sample efficient frontiers
contrast. See Constrained efficient frontiers
linear characteristic, 39n
minimum proportion, usage, 98e
widening, low-correlated assets
(increase), 31e
Efficient market hypotheses, 3
Efficient portfolios. See Feasible efficient portfolios;
Markowitz efficient portfolios
weights, 28e
Eigenvalues, 193
appearance, 159
distribution. See Random matrices;
Random walks
ratio, 345
Electronic Communications Networks (ECNs), 457n
Elkins/McSherry, 416
Ellipsoidal uncertainty sets, 318–319, 322–324
Elliptical distributions, 49
Elliptic distributions, robust estimation, 199
Elliptic norm, 315n
EM. See Expectation maximization
Equality, mean-squared sense, 166n
Equality constraints, 26n
Equally weighted portfolio, portfolio
summary statistics, 223e
Equally-weighted portfolios, performance, 148
Equilibrium market price. See Risk
Equity investment, growth, 228e
Equity securities, consideration, 235n
Error covariance matrix, estimation, 386
Error maximizers, 14, 211, 222
Error term variances, diagonal matrix, 378
Estimated frontiers, 208–211
Estimation, robust frameworks, 207
Index

Estimation error, 54
impact, 365
sensitivity, 211–213
Estimators, portfolio, 151
ETL. See Expected tail loss
Euclidean norm, 315n, 378. See also
 Symmetric positive semi-definite matrix
dual norm, 327
Euro-dollar forward, implementation, 108
EVaR. See Exact sample VaR
Event risk, 442
Evolver, spreadsheet optimization solver, 336n
Exact sample VaR (EVaR), 409
Ex ante true market portfolio, mean-variance efficient characteristic, 167n
Execution, immediacy, 457
Exogenous insights, incorporation, 232–233
Exogenous predictors, impact. See Regression
Expectation maximization (EM) algorithm, 153
Expected excess return vector, 236
Expected returns
error, 373
estimates, 386
 uncertainty, 368–377
estimation
difficulty, 235n
error, minimization, 390
portfolio summary statistics, 231e
example, 98e
forecasting, 139
maximization formulation, 34
relationship. See Stocks
standard deviation, trade-off, 27
vector, 67, 327n
worst estimates, 371
Expected return/standard deviation coordinate, 39n
Expected risk, forecasting, 139
Expected shortfall, 63
Expected tail loss (ETL), 63
Expected utility maximization problems, 45
Explicit dual slack variable, 382
Exponential utility function, 47
Factor-based market impact model, 419–422
Factor correlation, absence, 167n
Factorized uncertainty sets, 330
Factor loadings, matrix, 378
Factor models, 13, 161, 377–380
 estimation, robustness, 396–402
issues/considerations, 170–172
practice/usage, 168–172
relationship. See Arbitrage Pricing Theory
Factor returns, covariance matrix, 378
Factor structure. See Approximate factor structure; Strict factor structure
Fair equilibrium, 107
Fair value, 141
Fat tails, 406
F-distribution, 320
Feasible efficient portfolios, 22e
Feed-back intervention, 233
Feed-forward intervention, 233
Finance, dynamic factor models (introduction), 171n
Financial economics, physical science mathematics (relationship), 2–7
Financial forecasting models, 10–11
Financial models, approximate models, 117–118
Financial optimization software, 339–340
Finite-dimensional distribution, 130
First-order condition, 372
First-order convergence, 278
First-order derivatives, 341
First-order Taylor expansions, 284n
Fisher z transform, 205
Fixed income indices, 176
Floating point operations per second (flops), usage, 7n
Forecasting
 factors, 416
 power, 169
Fortran language, 342
Forward deviations, 322n
Fourth-dimensional cube, 76
Fourth moment tensors, symmetry, 77
Free cash flows, 142
Frobenius norm, defining, 219n, 330n
Full generality. See Return
Full-scale optimization, 402
Fundamental factor models, 169–170
Fund compositions, long-term historical performance, 446
Future expected returns estimation, Bayesian approaches, 229–253

GAMS, 334
commands, usage, 379n
subroutines, 359
usage, 359n, 373n
GARCH. See Generalized autoregressive conditionally heteroskedastic
Gateaux derivative, 183
Gaussian copula, density, 85
Gaussian distribution retrieval, 82
Gaussian distribution, variance, 203–204
Gaussian marginal distributions, 86
General equilibrium theories (GETs), 118, 131–132, 363
empirical adequacy, 131n
Generality, loss, 266
Generalized autoregressive conditionally heteroskedastic (GARCH) models, 140, 174–176
multivariate extensions, 174
Generalized Least Squares (GLS) estimators, 238–239
Generalized stochastic programming objective, 297–298
General linear constraints, 91–92
General nonlinear programming problems, 284–285
General quadratic constraints, 91–92
General utility function, 46
Generic optimization problem. See Investors
Genetic algorithms, usage, 336n
Geometric programs (GP), 263
Geometric random walk model, 122–124
drawback, 124
drift, inclusion, 123
independent realizations, 124e
unpredictable processes, 130
GETs. See General equilibrium theories
Global equity investment strategy, 444
Global minimum variance (GMV) portfolio, 22–23
calculation, 67
inclusion. See James-Stein shrinkage estimator
rebalanced monthly, portfolio summary statistics, 224e
underperforming, 251
usage, 227–228
volatility, 229e
Global optimal solutions, 263
Global optimization techniques, guarantees, 101n
website references, 334n
Global solutions, contrast. See Local solutions
GLS. See Generalized Least Squares
GMV. See Global minimum variance
GNU LP Kit, 334
GNU MathProg language, 334
Goal programming (GP) program, 78
Gordon formula, 450
Gordon model, 144
GP. See Geometric programs; Goal programming
Grantham Mayo Van Otterloo and Company (GMO), 422
Gross domestic product (GDP). See Nominal GDP
Gross error sensitivity, 184
Growth, value (contrast), 418
Hessian changes, 282
Hessian matrices, positive definite value, 278n
Heteroskedasticity, 152
Higher moments empirical estimation, 54
estimation, 80–81
inclusion. See Portfolio optimization; Portfolio selection
Highly correlated assets, issues, 213
Historical performance, forecasts, 146
Holding constraints, 89–90
Huber weighting function, 195 results, 197

IAPMs. See International asset pricing models
Ibbotson Associates, 340
IBM BlueGene/L system, Linpack record, 7n
IC. See Influence curve
Ice cream cones. See Second-order cones
ID. See Independently distributed
Idiosyncratic return, 165
Idiosyncratic risk, 20
IID. See Independent and identically distributed
Ill-conditioning, 344. See also Optimization problems
Implied expected returns, technique, 235n
Implied volatility, 140, 173
Importance sampling, 302
Independent and identically distributed (IID) random variables, 120
Independent and identically distributed (IID) random vectors, 148n
Independent and identically distributed (IID) security returns, 147
Independent and identically distributed (IID) sequence, 122
Independent and identically distributed (IID) time series, 150
Independently distributed (ID) processes, 125
Index replicating portfolio, monthly tracking error, 94e
Index tracking error, minimization, 92–93
Indifference curves, 41–43, 43e points, placement, 42–43
Inequality constraints, 26n, 259 introduction, 25n
Inequality sign points, 352
Influence curve (IC), 183–184
Information/noise, separation, 199n
Information ratio, 110n
Institutional investors, portfolio rebalancing, 417
Integer constraints, 88, 93
Integer programming (IP) problem, 267
Integer programs, 333n
Integer variables, usage. See Mean-variance optimization
Interest rate swaptions, 6
Interior-point algorithms, 280n
Interior-point methods, 272–273. See also Nonlinear programming
Internal rate of return, 143
International asset pricing models (IAPMs), 443n
Internet, relationship. See Computer technology
Interquartile range (IQR), 190, 191
Investment fractionability, 96
funds, evaluation, 441n
management industry, quantitative techniques, 1–9
strategies, application, 176–177
Investors
decision-making process, 42
generic optimization problem, 75
utility function, 428n, 429n
IP. See Integer programming
IQR. See Interquartile range
Iterative procedure, convergence, 107n
ITG, MI model development, 422
ITG/Opt, portfolio optimization portfolio, 339, 339n
i-th order statistic, 186
James-Stein estimator, 374–376
James-Stein shrinkage estimator, 375, 387
James-Stein shrinkage estimator, GMV portfolio (inclusion), 230e
Japan Index, daily returns (1986-2005), 196e
Joint distribution, 85. See also Return
JP Morgan/Reuters, 60
Karmarkar, Narendra, 264n
algorithm, 273
Karush-Kuhn-Tucker (KKT) conditions,
268, 280
KKT. See Karush-Kuhn-Tucker
Kurtosis
impact. See Two-asset portfolios
matrices, 76–77
preferences, 72
robust counterparts, 81
standard deviation, 74n
tensor, 76

Lagrange multipliers
usage, 28n, 268
Lagrangian function, 270
Large-cap stocks, 169
Large-scale optimization problem, 342
Large-scale portfolio optimization prob-
lems, 257–258
Law of one price, 163
Least median. See Squares estimator
Least median of squares (LMedS), 187–
188
Least squares (LS) estimate, 320
Least squares (LS) estimator. See Re-
weighted least squares estimator
Least squares (LS) regression models,
374–375
Least trimmed of squares (LTS) estima-
tor, 187–188
L-estimators, 186
Leveraged portfolio, 39
Leverage points, presence, 193
Lifetime Optimizer, usage, 430n
LINOS optimizer, 337
Linear constraints, 88, 325–328
usage, 89–92
Linear convergence, 278
Linear matrix inequality (LMI), 326n, 382
Linear model, realization, 121–122
Linear objective function, 423n
Linear optimization problems, 102
Linear programming (LP), 261–262,
272–276, 285–288
fundamental theorem, 274
problem, feasible set, 273
simplex method, 273–276
Linear transactions costs, 110n
Line-search methods, 276. See also
Nonlinear programming
Line search strategy, 277
Liquidity, 170, 459
constraints, 176
high levels, 444n
Liquidnet, attractiveness, 439n
LMedS. See Least median of squares
LMI. See Linear matrix inequality
Local convergence, 278
Local optimal solutions, 263
Local shift sensitivity, 184
Local solutions, global solutions (con-
trast), 260e
Logarithmic barrier function, 281
Logarithmic utility function
example, 75
usage, 48n
Lognormal increments, 125
Lognormal model, 124–127
Log price process, 126n, 127n
Log return, definition, 117
Long-only constraints, 89
Long-run equilibrium, 447
Long-short equity, exposure, 446
Long-Term Capital Management (LTCM),
176
Long-term historical performance. See
Fund compositions
Long-term optimal currency allocations,
determination, 445n
LOQO optimizer, 337
Loss function, 63
Loss risk constraints, 263n
Low-correlated assets, increase. See Effi-
cient frontier
Lower partial moment, 59–60
LP. See Linear programming
LS. See Least squares
LTCM. See Long-Term Capital Manage-
ment
l-th order stationary process, 130n
LTS. See Least trimmed of squares
Lu, Sa, 78n
M+1 degrees of freedom, 320
Macroeconomic factor models, 169
Macroeconomic variables, 452
MAD. See Mean-absolute deviation;
 Median absolute deviation
Malevergne, Yannick, 54n, 81n, 86n, 159n
 mean-variance approach, 81–86
 multidimensional case, 84–86
 one-dimensional case, 82–84
Marginal rate of substitution (MRS), 79–80
Market capitalization, 418
Market equilibrium, tilt, 240
Market frictions, considerations, 430n
Market impact cost (MIC), 415, 419, 456
Market impact (MI), 415–420
 costs, measurement, 418
Market model, 170
Market portfolio, 37
 term, usage, 37n
 variance, 134–135
Market risk, 162
 premium, determination, 235n
Market value, relationship. See Stocks
Market variables, 63
Markowitz, Harry M., 2n, 17, 23n,
 35n, 48n, 49n, 57n, 59n, 72n,
 233n, 363n, 367n, 402n
 award, 17n
 classical framework, 23
 mean-variance framework, 21
 portfolio problem, 316–317
 portfolio theory, simplicity, 154
Markowitz benchmark-relative efficient
 frontiers, 210e
Markowitz efficient frontier, 210e
 relationship. See Capital Market Line
Markowitz efficient portfolios, 22e
Mathematical optimization, 257
Mathematical programming, 258–267
MATLAB, 383
 Optimization Toolbox, 346
 output, 352–353
 usage, 14, 338, 350
Matrices. See Covariance matrices
 arrays, manipulation, 352
 null space, 399n
 product, diagonal elements, 381
pseudo-inverse, definition, 400n
 robust estimation. See Correlation
Maximal Sharpe ratio optimization
 problem, 37–38
Maximization objectives, 297n
Maximum likelihood estimation (MLE), 168
Max-min problem, 371
Mean, confidence intervals, 202–204
Mean-absolute deviation (MAD), 55–56
Mean absolute deviation (MeanAD), 190
Mean-absolute moment, 56
MeanAD. See Mean absolute deviation
Mean-CVaR95%, mean-variance effi-
 cient portfolios (comparison), 69e
Mean-CVaR optimization approach, 67–68
Mean-CVaR portfolios, efficient front-
 iers, 68e
Mean-risk models, 313n
Mean-risk objective function, defining,
 293
Mean-risk setting, 12–13
Mean-risk stochastic models, 303–306
Mean-risk stochastic problems, 292
Means, autocorrelations/time-dependence, 126
Mean-standard deviation, 55
 optimization, generalization, 430
Mean-variance analysis
 MPT, relationship, 17
 overview, 21–23
Mean-variance approach, 55
Mean-variance efficient frontier, 22. See
 also Country equity indices
 mean-CVaR efficient frontier, rela-
 tionship, 69
Mean-variance efficient portfolios, com-
 parison. See Mean-CVaR95%
Mean-variance optimization, 17, 23
 formulations, alternatives. See Classi-
 cal mean-variance optimization
 framework, instability, 213
 integer variables, usage, 354–358
 large data requirements, 215
 practical problems, 208–215
 sensitivity, 149
Mean-variance optimization, classical framework, 24–35
Mean-variance optimized portfolios, 149
Mean-variance portfolio optimization, usage, 17–18
risk aversion formulation, portfolio summary statistics, 225e
Mean-variance risk aversion formulations, transaction costs (inclusion), 102
Median, definition, 189
Median absolute deviation (MAD), 190
M-estimators, 185–186
basis. See Robust regressions forms, alternatives, 194
MI. See Market impact
MIC. See Market impact cost
MILP. See Mixed-integer linear program
Minimax problem, solution, 188–189
Minimization objectives, 297n
Minimization problem, value, 316
Minimum holding constraints, 95
Minimum variance portfolios, 22
MINLP, 338
MINOS, usage, 316
Minvarint.mod, 355–356
Minvar.m, 351
Minvar.mod, 348–349
MIP. See Mixed-integer programming
Mixed estimation, 208
technique, 238
Mixed-integer linear program (MILP), 346
Mixed-integer problems, 353n
Mixed-integer programming (MIP) problem, 267
Mixed-integer programs, 285
Mixing conditions, 19n
MLE. See Maximum likelihood estimation
Model-based trading strategies, 447–456
Model file, creation, 347
Model risk management, 12
mitigation, 392
Model robustness, concepts, 313n
Modern financial economics, development, 2
Modern Portfolio Theory (MPT), 2, 17
investment process, 23e
relationship. See Mean-variance analysis
Mod files, advantages, 347n
Moment of order, square root, 82
Momentum strategy, 448–449
annualized volatility, comparison, 247e
equity growth, 246e
profit decrease, 244
summary statistics, 248e
Monotonicity, property, 63n
Monte Carlo sampling methods, 303
Monte Carlo simulation, 364
usage, 442
Monthly tracking error. See Index replicating portfolio
Morgan Stanley Capital International (MSCI) Barra model, 171
Morgan Stanley Capital International (MSCI) World Index, 463
annualized expected returns/standard deviations/correlations, 30e
changes, 93
correlation matrix, 470e
country equity indices, 27
country indices, 220, 245
daily returns, statistics, 466e, 467e, 468e
data set, 80–81
equity, growth, 221e, 246e, 250e
market capitalization weights, 464e–465e
monthly volatility, optimized strategy (monthly portfolio volatility comparison), 251e
MSCI Standard Methodology Book, 466
one-year rolling volatility, 469e
portfolio rebalancing, 220–229
volatility, 222e
summary statistics, 226e, 249e
tracking portfolio, construction, 92–93
two-year rolling correlations, 471e
Mortgage-backed securities, portfolios, 301
MOSEK optimizer, 337
MRS. See Marginal rate of substitution
Multiaccount optimization, 106–110
difference, 110
formulation, 107–108
Multiobjective optimization problem, 79
Multi-period optimization, 423
Multi-period portfolio allocation model, development, 427–435
Multistage models, value (expectation), 293
Multistage portfolio allocation problem, 429n
Multistage problems, dimension (reduction), 303
Multistage stochastic linear programs, 296
Multistage stochastic methods, 294–303
considerations, 301–303
Multistage stochastic programming models, 294
completion, 298
usage, 309–310
Multistage stochastic programming problems, 358
Multivariate random vector, formula, 197–198
Multivariate random walk model, 127–130
Myopic (short-sighted) behavior, 21

NASDAQ, stock trade, 421
N-dimensional confidence region. See Parameters
N-dimensional portfolio vector, 63
N-dimensional variable, 284
N-dimensional vector, 277
NEOS. See Network Enabled Optimization System
Nested Benders decomposition, 302
Netlib repository, 338–339
Network Enabled Optimization System (NEOS), 335
Guide, access, 336n
Server, access, 336n
Newey-West corrections, 152
Newton-type methods, 276. See also Nonlinear programming
drawbacks, 278–279
Nippon Oil
daily returns (1986-2005), 191e
regression, 195
NLP. See Nonlinear programming
Nominal GDP, 145
Nonanticipativity condition
representation, 296
writing, 300
Nondeterministic polynomial time, 100
Non-discrete numbers, asset holding representation, 312n
Nondiversifiable risk factors, 161
Nonlinear constraint, 88, 382n
Nonlinear expressions, Schur complements (recognition), 382n
Nonlinear problems, 431n
Nonlinear programming (NLP), 259, 276–285
barrier methods, 279–284
interior-point methods, 279–284
line-search methods, 276–279
Newton-type methods, 276–279
packages, usage, 77
problem, 281–282
Nonlinear solvers, 316
Nonnegative variables, 109
difference, 369n
Nonparametrical property, 181–182
Nonparametric estimator, 150–151
Nonrobust formulation, 367
Nonstationary process, 452n
Nonsystematic return, 165
Nonsystematic risk, 135
acceptance, 167
Nontrivial linear combination. See Securities
Nonzero weight, obtaining, 366
Normal VaR (NVaR), 406, 409
Normative theory, 18
Northfield Information Services, 339
Northfield Optimizer, 339n
NP-complete, 100
NP-completeness, definition, 100n, 329n
Numerical optimization, 257
Numerical Recipes, 338
NVaR. See Normal VaR

Objective function, 259
Off-diagonal entries, 266
One-day lagged sorting, 245
One-month LIBOR, 471, 472e
OPL Studio (ILOG), 335
Optimal asset weights (ranges), 99% CVaR sample optimization (usage), 404e
Optimality, principle, 311
Optimal multiperiod portfolio allocation tools, 430n
Optimal policy/control, 311
Optimal portfolio allocation decision, considerations (incorporation), 424–427
CML, relationship, 44e
computation, 56
rebalancing
optimizer, usage, 422–435
problem, 11–12
selection, 41–45
usage, 43–45
weights
calculation, 26–27
formula, 36–37
sensitivity, 445n
Optimization algorithms, process, 272–288
duality theory, 269–272
modeling languages, 334, 373n
matrix trace capability, 381n
performing, 422–424
data files, usage, 347n
software, 333–340
considerations, 340–346
solver, 314n
technical area, 258
techniques, 26

uncertainty, impact, 291
software specialization, 358–360
usage. See Reverse optimization
Optimization problems collapse, 79
computation properties, 321
constraints, 341
dense/sparse problems, contrast, 341–342
derivative information, usage, 341–342
derifferentiability, usage, 345–346
dimension, reduction, 109n
formulation, 341, 347
global solution, 260
ill-conditioning, 344–346
equations, 344–345
implementing/solving, 333
medium-size/large-size problems, contrast, 341–342
numerical issues, 343–344
optimizer, usage, 342–344
progress, monitoring, 342–343
results, analysis, 343
robust counterpart, 409n
scaling, 344–346
smoothness, usage, 345–346
solution process, 340–343
solver-friendliness, 369n
structure, knowledge, 353n
types, robust counterparts, 325
user interface/settings, 342
Optimized strategy equity growth, 250e
monthly rebalancing, portfolio summary statistics, 252e
Optimizer selection, 341–342
usage. See Optimal portfolio
Option pricing purposes, 154
OSL/SE, 302, 358
OTC. See Over-the-counter
Oustry, Francois, 387n, 407n
Out-of-sample data, 454
Out-of-sample performance, 211
Out-of-sample testing, 12
Out-of-the-money calls/puts, sale, 441n
Overfitting, cause, 455
Index

Overperformance, 55
 penalization, 59
Overshoot variables, 96–97
Over-the-counter (OTC) derivatives, 441

Pairs trading, 453
Pairwise covariances, robust estimation, 199
Parameters
 regression-based factor model estimates, uncertainty sets (usage), 319–325
 vector, N-dimensional confidence region, 372–373
Pareto optimal outcome, 110n
Passive management, 92
Past loser portfolio, 448
Past shocks, sum, 122, 452n
Past winner portfolio, 448
PCA. See Principal component analysis
Peer group, outperforming, 101
Penalty parameter, 345
PENOPT, 338
Pension funds, asset/liability management, 301
Per-shared residual income, 145
PERT. See Program Evaluation and Review Technique
PGP. See Polynomial goal programming
Physical science mathematics, relationship. See Financial economics
Piecewise-linear approximations. See Transaction costs
Piecewise-linear function, 104e, 423
Pivotal quantities (pivots), 201
distribution, degrees of freedom, 203
Policy vector, 309
Polyhedral norms, 321
Polyhedral uncertainty sets, 319
Polyhedron, concept, 326n
Polynomial goal programming (PGP) approach, 78
 usage. See Portfolio optimization
Polytope, 273
Polytopic uncertainty set, 318–319, 329
Portfolio. See Leveraged portfolio
 choice, framework, 45–50
 constraints, usage, 88–101
 CVaR, minimization, 407
 efficient frontier, calculation, 99
 expected return, enhancement, 440
 GMV, equivalence, 28
 holdings, nonsmooth/nonconvex function, 62
 loss, excess, 61n
 manager
 beliefs, differences, 147
 parameter selection, 97
 mean, function, 45
 performance, benefits, 377
 rebalancing, 11–12, 410–413, 422–424
 necessity, 208
 optimizer, usage. See Optimal portfolio
 resampling techniques, 364–367
 residual return/risk, ratio, 110n
 Sharpe ratio, usage, 441n
 standard deviation, 20, 431n
 summary statistics. See Equally weighted portfolio; Expected returns; Global minimum variance portfolio;
 Mean-variance portfolio
 theory, concepts, 7
 turnover, 89
 variance, 425
 argument, 154–155
 worst-case value, 381
 volatility
 comparison. See Morgan Stanley Capital International World Index
 control, 155
Portfolio allocation
 consideration, 422–424
 model, development. See Multiperiod portfolio allocation model
 performance, 72
 process (inputs), uncertainty (incorporation), 214–215
 single-period ideas, 427
Portfolio management
 book overview, 12–14
 book purpose, 9–12
 derivatives, usage, 440–442
 program evaluation, 155–157
 review technique, 155–157
Portfolio optimization
 book overview, 12–14
 book purpose, 9–12
 formulation, 91
 higher moments (inclusion), polynomial goal programming (usage), 78–80
 performing, 89
 problems, 49
 implementation, examples, 346–358
 procedures, correction, 400n
 robust modeling, uncertain parameters. See Classical mean-variance portfolio optimization usage. See Robust mean-variance portfolio optimizations
 Portfolio returns, 58
 distribution, 306n
 robustification, impact (study), 385
 Portfolio risk, 91
 characteristics, modification, 440
 decrease, 31–32
 estimation, 172
 measures theory, advances, 53
 Portfolio selection
 higher moments
 inclusion, 70–77
 mathematics, 76–77
 practice, 87n
 theory, 23
 utility expansions, inclusion, 70–77
 Portfolio weights
 positive/negative values, 33
 representation, 96
 Posit, attractiveness, 459n
 Position, sale/purchase (timing), 459n
 Positive homogeneity, property, 63n
 Positive semidefinite matrix, 265n, 382n
 Positive theory, 18
 Postoptimization, 95
 Posttrade measures, prices (usage), 414
 Premium Solver Platform, 336n
 Pretrade measures, prices (usage), 414
 Price
 distribution, 124
 equilibrium, restoration, 163
 momentum, 418
 volatility, 418
 Price/book (P/B) ratio, 449
 Price/dividend (P/D) ratio, 449
 Price/earnings (P/E) ratio, 449
 Price process, realizations, 127e
 log price processes, correspondence, 129e
 Primal-dual interior point method, 269, 283–284
 Primal problems, 270–271
 value, 316
 Principal component analysis (PCA), 168, 408n
 Prior distribution, 232
 Probability
 density function, 83
 distribution, 183, 387, 406
 subjective interpretation, 232
 Probability theory, Tschebycheff bound
 (multi-dimensional version), 407n
 Productivity enhancement. See Automation
 PROF language, 338
 Program Evaluation and Review Technique (PERT), 156
 Projected Lagrangian method, 337
 Proportional minimum holding constraints, 98–99
 Proprietary trading, application, 176–177
 Pseudo-inverse, 400. See also Matrices
 QMIP. See Quadratic mixed integer program
 QP. See Quadratic program; Quadratic programming
 QS. See Convex quadratic programming
 Quadratic constraints, 88, 328–331.
 See also General quadratic constraints
 usage, 89–92
 Quadratic convergence, 278
 Quadratic mixed integer program (QMIP), 97
 Quadratic optimization problems, 102–103
 Quadratic optimization program, conversion, 369n
Quadratic programming (QP), 262–263
Quadratic program (QP), 26, 97
Quadratic risk of error function, 151n
Quadratic utility
 function, 47, 47n
 usage, 48
Qualitative robustness, 182–183
Quantile-based risk measure, 405
Quantitative analyst (quant), term (usage), 6n
Quantitative investment management, 439
Quantitative return-forecasting techniques, 447–456
Quantitative risk-return optimization, application, 4
Quantitative robustness, 182–183
Quasi-Newton method, 337
Random coefficient realizations, assumptions, 314
Randomization techniques, 455
Random matrices, 157–160
 eigenvalues, theoretical distribution, 159e
Random Matrix Theory (RMT), 157
Randomness, denotation, 425n
Random process, realizations, 295n
Random variable, central moments, 74
Random walk models, 118–131. See also
 Arithmetic random walk model;
 Geometric random walk model;
 Multivariate random walk model;
 Simple random walk model
 application, 118n
Random walks, eigenvalues (distribution), 159e
Range rebalancing, 412
Rational investor, behavior, 367
Raw descriptors, 169
Realized out-of-sample efficient frontiers, 410e
Real-world portfolios, zero portfolio variance, 20
Real-world utility functions, 73
Rebalancing. See Calendar rebalancing;
 Morgan Stanley Capital Interna-
tional World Index; Portfolio;
 Range rebalancing; Threshold rebalancing
 costs, 429
 optimizer, usage, 413. See also Opti-
 mal portfolio
 portfolio summary statistics. See
 Optimized strategy
Reduced gradient method, 337
Regression equations, 192
models
 exogenous predictors, impact, 449–450
 selection/testing, 453–456
 robust estimators, 192–200
 robustness, illustration, 195–197
 spuriousness, 453
Regression-based factor model estimates,
 uncertainty sets (usage). See
 Parameters
Rejection point, 184
Relative pricing model. See Arbitrage
 Pricing Theory
Relative view, 234
Report of the President's Working Group
 on Financial Markets, 176n
Resampled portfolio weights, 365
Residual income valuation model (RIM),
 140–146
 error sensitivity, 144
 fair value, denotation, 146
Residual risk, 135
Residual variance, estimate, 241
Resistant estimators, 183–185
R-estimators, 186
Return
 consideration, 2
 covariance matrix, 236
 forecasting, 392
 joint distribution, 82
 multifactor model, 129–130
 process, dependencies (full general-
 ity), 127–128
 stationary process, 131
 uncertainty, 149
 volatilities, diagonal matrix, 173
Return covariance matrix estimates, uncertainty, 377–384
Return on equity (ROE), 145
Reversal models, 448
Reversal strategy, 448–449
Reverse optimization, usage, 235n
Reward function, 308–309
Reweighted least squares (RLS) estimator, 187–188
RIM. See Residual income valuation model
Risk. See Portfolio risk
coherent measure, 63n
consideration, 2
constraint, equal sign (replacement), 34n
equilibrium market price, 40–41
exposures, 90
forecasting, 392
management/mitigation. See Model risk
minimization optimization models, 397
premium, 41, 161
risk-free rate, addition, 41
RiskAver, 220, 221
Risk aversion
formulation, 35. See also Mean-variance portfolio
parameter, calibration, 227n
Risk factors, 161
constraints, 90
estimation, 171
Risk-free asset
assumption, 36
inclusion, 39n
presence, 41–45
zero variance, 36
Risk-free rate, investment, 41
Risk measure, 63n. See also Coherent risk measures
invention, race, 53–54
RiskMetrics, usage, 60
Risk minimization formulation, 25
Risk model performance (decomposition), risk model accuracy/forecasted risk level (usage), 397e
RiskOptimizer, spreadsheet optimization solver, 336n
Risk/return analysis, mathematical core, 425n
Risk-return optimization routines, recommendations, 11
Risky assets, short-selling restrictions (absence), 36n
RLS. See Reweighted least squares
RMT. See Random Matrix Theory
Robust asset allocation, issues, 396–410
Robust correlation coefficient, definition, 199–200
Robust counterparts, 314, 371. See also Optimization problems
Robust covariance, definition, 199
Robust efficient frontiers, 390e
Robust estimation, 10–11, 179. See also Correlations; Covariance
Robust estimators. See Center; Regression; Scale; Spread
statistical estimation technique, 5
Robustification, impact (study). See Portfolio returns; Turnover
Robust mean-variance formulations, 368–384
Robust mean-variance portfolio optimizations, usage, 386–387
Robust modeling, uncertain parameters. See Classical mean-variance portfolio optimization
Robust multiperiod optimization problem, NxT constraints/variables (inclusion), 435n
Robustness, 402–410. See also Qualitative robustness; Quantitative robustness; Regression
concept, 9–10, 395
definition, 182
Robust optimization, 312–331, 432
methodology, 364
methods, 291–292
philosophy, 294
reference, 313
Robust parametric value-at-risk (RPVaR), 409
approximation, 405–410
Robust portfolio allocation, 11, 367–391
models, 392–393

Robust portfolio management, trends/direction, 395
Robust property, 181–182
Robust quantitative investment framework, concept, 10
Robust regressions
 estimate, 197
 M-estimators, basis, 194
 W-estimators, basis, 194–195
Robust Sharpe ratio optimization, 384–386
Robust statistics, 181–192
 coinage, 181
 illustration, 190–192
 intuition, 179–180
ROE. See Return on equity
Rolling horizon
 problem, 433
 usage, 433n
Round lot constraints, 96–97, 100
Roy, Andrew D., 57n, 60n
 safety first, 57–59
RPVaR. See Robust parametric value-at-risk
Safety first. See Roy
Sample CVaR, 409
Sample mean estimators, 146–157
 considerations, 152–155
Sampling
 frequency, increase, 153
 inherent risks, 403–405
 techniques, 435
Scale
 estimates, 189
 robust estimators, 188–190
Scaling. See Optimization problems
 factor, 245
 matrix, 326n
Scenarios, form, 305
Scenario tree, 298
 example, simplification, 299e
Schur complements, 382
 recognition. See Nonlinear expressions
SDP. See Semidefinite program
SDPT3 solver, 335–337
Search direction, 277
Second-order cone program (SOCP), 263, 264
 absolute values, containment, 369n
 constraints, 331, 379n
 convex optimization problems, 431n
 modeling interfaces, specialization, 373n
 problems, 336n, 373n
 solver, 329, 379
 VaR problem, formulation, 409n
Second-order cones (ice cream cones), 264
Second-order convergence, 278
Second-order derivatives, 278
Second order stationary process, 130n
Second-order Taylor expanses, 284n
Second-stage optimization, 423
Securities
 nontrivial linear combination, 137
 return, systematic impact, 166–167
Securities transaction, nonexecution, 421n
Security market line (SML), 135–136
SeDuMi solver, 335–337, 383
 Sell variables, introduction, 109n
Semidefinite matrices, cone, 265
Semidefinite programming, interior point methods (complexity results), 266n
Semidefinite program (SDP), 263, 265, 380
 constraints, 331
 duality, complication, 271n
 exception, 271–272
 modeling interfaces, specialization, 373n
 problems, implementation, 383n
 YALMIP problem, 383n
Semideviation, definition, 304
Semideviation-type risk measures, 63n
Semivariance, 59
Sensitivity analysis, 291
 importance, 213
Sequential linear programming (SLP), 284n
Sequential quadratic programming (SQP), 263
 approach, 284–285
 implementations, 285
Sharpe, William F., 3n, 17, 35n, 133n, 151n, 162n, 170n, 217n, 235n, 321n
classical single-index factor model, 151
Sharpe ratio, 321
basis, 246
maximization, 410
optimization. See Robust Sharpe ratio optimization
sample, 250
usage. See Portfolio
Shocks, sum. See Past shocks
Shortfall probability, 212
Short-selling constraints
absence, 66
addition, 33–34
effect, 33e
Short-selling restrictions, absence. See Risky assets
Short-term portfolio performance, importance, 443
Shrinkage, 207
covariance matrix estimators, 219–220
estimation, 215–229, 386
estimators, 207, 386
portfolios, 151n
intensity, 216, 219n
target, 217–218, 230e, 375
techniques, 150
Simple net return. See Asset
Simple random walk model, 119
Simplex method, 272–273. See also Linear programming
Single-factor model, 218
equations, 397–398, 401–402
Single-number descriptors, 179
Single-period mean-risk optimization, 305
Single-period portfolio allocation problems, 424
Single-period portfolio return, 431n
Single-period rebalancing formulations, 435
Single-step optimization, 423
Size factor, 169
Skew
impact. See Two-asset portfolios
preferences, 72
robust counterparts, 81
standard deviation, 74n
tensor, 76
SLP. See Sequential linear programming
Small-cap stocks, 449
SML. See Security market line
Smoothness, usage. See Optimization problems
SNOPT, 338
SOPC. See Second-order cone program
Solution robustness, concepts, 313n
Sornette, Didier, 54n, 81n, 86n, 159n
mean-variance approach, 81–86
multidimensional case, 84–86
one-dimensional case, 82–84
Sparse matrix techniques, 342
Special Projects Office, 156n
Spectral decomposition, 379
Spectral norm. See Symmetric positive semi-definite matrix
SPInE, 302
Spread, robust estimators, 190
SQP. See Sequential quadratic programming
Squares estimator. See Reweighted least squares estimator
least median, 187
least trimmed, 187
S-shaped utility function, 73
S-shape utility functions, 402
Standard deviations. See Morgan Stanley Capital International World Index
example, 98e
incoherence, 63n
usage, 27n, 39n
Standard forms, 261
Standardized third/fourth central moments, 74n
Standard & Poor’s 500 (S&P500) covariance matrix, 160
Starting vector, usage, 342
State-space models, 452
Static models, focus, 179n
Stationary models, 130–131. See also Trend-stationary models
Stationary process, 130n
Statistical factor model, 168–169
Statistical shrinkage, 370
Steepest descent, method, 277–278
Stein paradox, 216
Stochastic optimization problem, block-matrix formulation, 297
Stochastic programming, 293–308
approach, actions (sequence), 298e
methods, 291
software, information/website, 359n
Stochastic volatility models, 175–176
Stock index futures, usage, 444n
Stock picking, 447
Stock price process, 122
Stocks, market value/expected return (relationship), 143e
Strict factor structure, 165n
Strictly stationary process, 130
Strict white noise, 120
Strongly stationary process, 130n
Strong white noise, 120
Structured stochastic volatility (SV) models, 175
Subadditivity, property, 63n
Suboptimal portfolios, 72
Subrahmanyam, Avanidhar, 244n
Sungard (WealthStation), 340
Super Bowl theory, 455
Supply/demand equilibrium, 132
SV. See Structured stochastic volatility
Symmetric matrices, 330
space, inner product, 381n
Symmetric positive semi-definite matrix, Euclidean/spectral norm, 330n
Systematic risk, 133, 162
factor, 166
Tail risk, 442
Tail VaR, 63
Tangency portfolio, 37
term, usage, 37n
Targeted expected portfolio return constraint, replacement, 25n
Targeted expected return, 34
Taylor expansion, 442
TC. See Transaction costs
Tchebycheff’s inequality, usage, 58n
Tensor notation, usage, 77
Termination criterion, 272
Test set, 455
Test statistic, 365
Theorem of Fisher, 203
Theoretical models. See Classical asset pricing
Theoretical value, 141
Theory of choice. See Economic theory of choice
Third moment tensors, symmetry, 77
Three-dimensional cube, 76
Threshold rebalancing, 412
Tiered uncertainty sets, 324
Time horizon, level (arbitrariness), 126
Time-variation, correlation exhibition, 469, 471
Time-varying variance, 130
T-M-1 degrees of freedom, 320
TOMLAB environment, 338, 355
Total transaction costs, 105
Tracking error, 91. See also Average yearly tracking error; Index replicating portfolio
absence, 444n
computation, 429
constraints, 90–91
minimization. See Index tracking error
Tracking portfolio, construction. See Morgan Stanley Capital International World Index
Trade-based factors, 416–418
Trade-based independent variables, 416
Trade execution, importance, 456–460
Trades, market impact, 106
Trading costs, observation, 110
Trading risks, hedging, 426
Training set, 455
Transaction costs (TC). See Linear transactions costs; Total transaction costs
description, nonlinear functions (usage), 107n
fair distribution, 106
inclusion. See Mean-variance risk aversion formulations
Transaction costs (Cont.)
incorporation. See Asset allocation
low levels, 444n
modeling, 104e, 413–422
models, incorporation, 101–102
piecewise-linear approximations, 103–
106
piecewise-linear functions, 104–105
understanding, 413–422
Transaction size constraints, 95
Transfer entropies, 128
Transitory impact matrix, 426n
Translational invariance, property, 63n
Trend-stationary models, 130–131, 136
Treynor-Black model, 234n
Trimmed mean, 186, 189
True covariance matrix, 209
True frontiers, 208–211
True portfolio allocation problem for-
mulation, expression, 426
Turnover
constraints, 89
generation, 449
robustification, impact (study), 385
Two-asset portfolios, 70
skew/kurtosis, impact, 71e–72e
Two-dimensional Cartesian plane, con-
sideration, 26
Two-point discrete probability distribu-
tion, 404
Two-stage models, value (expectation), 293
UIP. See Uncovered interest-rate parity
Uncertain parameters
vector, 315
worst-case realization, 388
Uncertainty. See Expected returns; Return;
Return covariance matrix esti-
mates
impact. See Optimization
tolerance, total budget, 371n
Uncertainty sets. See Asymmetric uncer-
tainty set; Box uncertainty set;
Ellipsoidal uncertainty sets; Poly-
hedral uncertainty sets; Poly-
topic uncertainty set
conic constraint, expression, 326
construction, 324
definition, 377
definition, appropriateness, 391
distance, scaling, 371n
restrictions, 389
selection, 317–325, 368
usage. See Parameters
Unconstrained efficient frontiers, contrast.
See Constrained efficient frontiers
Unconstrained optimization problem,
259–260
Uncovered interest-rate parity (UIP), 445n
Undershoot variables, 96–97
Unique risk, 135
Unit root process, 452n
Unstructured estimator, 150–151
Unsystematic risk, 133, 135
elimination, 163
Upper bound matrix, derivation, 380
Upstairs market transaction, 421n
User-defined tolerance, 272
Utility expansions, inclusion. See Port-
folio
Utility functions, 42. See also General
utility function; Quadratic util-
ity function
differences, 47e
graphical form, 42–43
information, 45–50
usage, 41–43. See also Logarithmic
utility function
Value asset-specific risk, 442
Value-at-Risk (VaR), 60–62. See also
Conditional VaR; Exact sample
VaR; Normal VaR; Robust para-
metric VaR; Sample CVaR
assignments, 61
defining, methods, 61
JP Morgan development, 60
losses, magnitude, 62
optimization, number (size), 307n
portfolio problem, 215
risk measure, 62
Value function
approximation methods, 312
estimation, 310–311
Vanguard Group, index fund creation, 4
VAR. See Vector-autoregressive
VaR. See Value-at-Risk
Variables
change, 433n
empirical covariance, 198
Variance. See Gaussian distribution
autocorrelations/time-dependence, 126
Variance-covariance matrix, 128
entries, number, 129
estimation, 197
fluctuations, 158e
Vector arrays, manipulation, 352
Vector-autoregressive (VAR) model, 451
Volatility, 120. See also Implied volatility
correspondence, 122
estimation, approaches, 172–176
models. See Stochastic volatility models
prespecification, 34
Volume-weighted average price (VWAP),
415, 459
calculation, 414
Von Mises variables, 83n
VWAP. See Volume-weighted average price
Wagner Math Finance, 340
Weakly stationary process, 130n
Webpages, availability (study), 8n
W-estimators, basis. See Robust regressions
White noise, 120. See also Strict white noise; Strong white noise
term, 123
Winsorized mean, 189
Winsorized standard deviation, 190
Winsor’s principle, 185
Wishart distribution, 148n
World Wide Web, usage, 8
Worst-case expected portfolio return,
minimization, 369
Worst-case model misspecification, 214
Worst-case portfolio performance, improve-
ment, 391
Worst-Case VaR (WVaR), 409
WVaR. See Worst-Case VaR
XPRESS optimizer, 337
YALMIP language, 338, 381n, 383
Zero-mean, finite-variance uncorrelated
variables, 120
Zero-mean stationary process, 131
Zero net alpha-adjustment, 387–391
Zero net alpha adjustment method, 323
ZIMPL, 334