Abbreviations, 341–342
Absorptive capacity, team success and, 176–178
Accident rate, 219–220. See also Safety
Accidents, speed as the cause of, 116–117
Accountability, lack of, 116, 129–130
Accurate data, time required to produce, 140. See also Data accuracy/integrity
Achievable objectives, 164
Adams, Douglas, ix
Advanced study design, “best practical” rating of, 212
Africa, permitting problems in, 67, 234
African projects, 29
Agency staff, 174–175
Agreements
informal, 181–182
technical input for, 165
Alberta, Canada, megaprojects in, 70, 72–73
Alliance contracting
as an extreme form of incentivized reimbursable schemes, 291
features of, 290–294
Alliance contracts, 257
failure of, 260
responsibility and, 293–294
Alliance projects, project outcomes and, 261–262
Alternative organizational models, 191–197
Analysis, statistical tests used in, 33
Analysts, experienced, 26
Ancillary facilities, Basic Data requirements for, 139–140
Appraisal process, for petroleum E&P, 142–143
As-built drawings/design, unwillingness to maintain, 144–145
Asia, permitting problems in, 67
Asset FEL, 243. See also Front-end loading (FEL)
Asset loss, 148
Asset value degradation, 114
“Assumed” permit rating, 244
“A Team,” myth of, 284–285
Australia, engineering resources in, 311
Australian projects, 29
Authorization estimate, 44
Average project cost, 29
Bad deals, walking away from, 54
Bank financing, 88–89. See also Financing
Bankruptcy, project failure and, 219
Basic Data, 137–158, 341. See also Basic Data entries; Basic Technical Data; Data entries; Information entries completion and availability of, 146–148
Basic Data (continued)
effects of late arrival of, 224–225
expensive and difficult-to-obtain, 153–154
incorrect, 148–155
for petroleum production projects, 140–145
for various project types, 138–145
as a warning sign of trouble, 329
Basic Data delivery, timing of, 147
Basic Data development, 21
accelerating, 156
skimping on, 153–154
Basic Data errors
consequences of, 145–146
expense associated with, 155
root causes of, 155–157
speed as a cause of, 155–156
Basic Data failures, preventable, 157–158
Basic Data protocol, as an antidote to failure, 157–158
Basic Data requirements
for expansion/modernization projects, 144–145
for minerals developments, 143–144
Basic Technical Data, 99
Benchmarking, systematic, 36
“Benchmark schedule,” 248, 318
“Best practical” FEL, 214, 222. See also Front-end loading (FEL)
“Best practical” FEL index, 262
“Best practical” rating, 211, 212
BHP Hot Briquetted Iron Project, 12
Bias, 341. See also Sample bias
Bidder qualification representation, verification of, 273
Bidders, prequalifying, 111, 272
Bidding, government-controlled, 272–273. See also Competitive bidding
Bids, pricing risk into, 280
Boards of directors, 13
Boeing 777, development of, 195–196
BP, 209. See also BP entries
BP Macondo blowout, 58
BP Thunder Horse semi-submersible platform, 12
Brainstorming, structured, 322
Bribery, local content requirements and, 71
Bulk material quantities, padding, 286–287
Bureaucratic form, 189–190
Business and project core team, 102
Business cases
development of, 24
weak, 206
Business consultants, outsourced model
theory of, 125–128. See also Business professionals
Business contracts, self-enforcing, 131–133
Business decision makers, ignorance of, 115
Business education, 125
curricula for, 335
Business-effective results, vii
Business executives, unprepared, 53. See also Business directors;
Business leaders; Business managers; Businesspeople; Business professionals
Business issues, bringing to closure, 103
Business leaders, preparedness of, ix
Business leadership, alignment with project leadership, 82
Business management, schedule pressure and, 226
Business managers, mistakes made by, 1–2. See also Business executives
Business objectives. See also Business purpose
clarity of, 162–163
comparative advantage and, 79–80
FEL duration and, 238
meeting, vii
as project drivers, 80–82
Business parameters, input about, 99
Businesspeople, involvement in major capital projects, 134. See also Business executives
Business professionals, 21. See also Business executives
education of, 251
Business/project team interface, 82
Business purpose, gates and, 202
Business-technical divide, 333–335
Business value, maintaining, 215
“Buy-in and hook” phenomenon, 20

California, regulatory climate in, 66
Capital. See also Financing
defined, 15
lack of accountability for, 129–130
megaprojects as creators and destroyers of, 11–22
Capital cost estimates, 207
Capital cost measurement, 33–34
Capital investment, feasibility of, 24
Capital portfolio, effective governance of, 203
Capital project activity, lull in, 124–125

Capital projects
partner approach to, 87–88
pathologies afflicting, 133–134
research on, 23
Case study write-ups, 33
Cash flows
bank focus on, 89
partner’s, 88
Central Asia, permitting problems in, 234
Central Asian projects, 28
Change, as a warning sign of trouble, 328–329
Chavez, Hugo, 96–97
Chemical processing, Basic Data errors in, 154
Chemical projects, 27
cost estimation for, 76
Chevron-led Gorgon project, 64
Chinese projects, 28–29
Citizens’ lawsuits, 121
Civil unrest, risk premiums for, 281
Clear business objectives, 79–80
Clear objectives, team development and, 82–83
Climate considerations, 60–61
Closure, failure to reach and enforce, 106–107
Collaboration, among professionals, vii
Commodities
demand for, 16
global prices for, 19
Commodity chemical companies, 55
Common goals, pursuing, 1
Communication
within organizations, 189
by team leaders, 179
in traditional project models, 192
work process and, 164
Communication team, 99
Companies, greedy, 2. See also Business entries; Corporate entries; Organizational entries

Company culture, 86
Company reputations, 96
Company strategy, 77
Comparative advantage
 assessing, 77–83
 business objectives and, 79–80
 fashioning, 169
Competing projects, 73
 equity interest in, 87
Competitive bidding process, 267
Complete scheduling, criticality of, 319–321
Complex projects, 13
Confidentiality, respecting, 22
Conflict–cooperation game, 93–94
Conflict–of-interest situations, 152
Construction management
 backbone of effective, 297–298
 mixed contracts and, 296–298
Construction management staffing, 298
Construction management systems, 298
Construction safety, 44–47
Construction schedules, extended, 40
Consulting services, xii
Continuity, of team leadership,
 180–182
Contract(ing) approach(es)
 dangers of, 253–254
 external financing and, 266–267
 influence of sponsor capabilities on,
 264–265
 types of, 254–259
Contracting, 253–303
 government-controlled, 272–274
 “new and improved” approaches to,
 302–303
 as a warning sign of trouble, 329
Contracting decisions, 254
Contracting strategies
 amount of FEL required for, 226
 central issues in, 263–266
 Contractor hours/fees, controlling,
 288–290
Contractor personnel
 hiring of, 127
 versus owner personnel, 303
Contractor ranks, staffing problems
 with, 174
Contractor risk, 6–7
Contractors
 in alliance arrangement, 291–292
 inability to substitute for owner teams, 162
 joining projects prematurely, 178
 owner understanding of, 300–303
 relying on, 60
 rewarding, 339
 selecting, 254
 sponsor rating of, 262–263
 success versus failure of, 253
Contractor systems, adequacy of, 307
Contractor teams, attributes of,
 284–285
Contractor work, versus owner work,
 126–127
Contracts
 matching to situations, 7
 project outcomes and, 259–263
 role of, 293
 use of incentives in, 288
Contractual forms, 20
Control, priorities for, 308–312. See also Controls
Controls, shaping, 305–306
Conversion to lump-sum contracts
 strategy, 255–256
Convertible lump-sum contract, 268
Cooperation, internal, 129
Core owner team, members of, 166–167
Core project team, 165
Core project team/business interactions, 82
Corporate decisions, 21
Corporate exploration strategies, 54–55
Corporate governance, 123–134
Corporate governance problem, 205
Corporate resources, access to, 77
Corruption Perceptions Index (CPI), 67–68, 234
Corruption problems, measuring, 69
Cost. See also Average project cost;
Capital cost entries; Megaproject costs; Monte Carlo cost risk simulations; Project cost; Sunk costs
sacrificing for schedule, 112–114
sacrificing quality for, 111–112
Cost-benefit analysis, reasons for, 74–75
Cost-effectiveness, 43
Cost estimate overrun, 326–327
Cost estimates, 75–76, 204–205 reliable, 25
secrecy of, 273
Cost growth, 44, 122
measurement of, 33–34
new technology and, 149–150
Cost minimization, incentives related to, 269
Cost of capital, 108, 109
Cost of goods sold (COGS), 79
Cost outcomes, 38–39
Cost overruns, 7, 19, 38–39
permitting problem and, 67
schedule overruns and, 112–113
Cost performance, FEL and, 215–217
Cost pressure, results of, 317
Cost reduction, 5–6
Cost risk simulations, 324–327
Cost trade-offs, 107–109
Country advance teams, 59–60, 71
Craft, hiring of, 298
Craft labor issues, 72
Craft labor shortages, risk premiums for, 282–283
Cross-functional communication, 157
Crude oil, 17
Cultural considerations, 71–72
Currency exchange risk, premiums for, 283
Cutting-edge technology relationship to risk of failure, 151
startup time and, 150
DART rate. See Days Away from work, Restricted work duties, job Transfer (DART) rate
Data, lack of access to, 23. See also Basic Data entries; Late data
Data accuracy/integrity, accountability for, 157. See also Accurate data
Data acquisition, timing of, 23–26
Data collection process, 26–30
for a petroleum reservoir, 142–143
Data collection protocols, 26
Days Away from work, Restricted work duties, job Transfer (DART) rate, 45, 46, 219, 220
DCF rate of return calculations, 107–108
Deals enforceable, 96
importance of, 3–4
Decentralized companies, 338
Decision and execution framework, vii
Decision makers educating, 158
project success and, 85–86
Decision making, vii
 for contract selection, 264
Decision points
 establishing, 97
 removal of, 94–95
Deep cooperation, generating, 1
“Definitive” permit rating, 244
Deliverables, 100
Design. See Detailed design;
 Engineering design; Front-end engineering design (FEED);
 “Full design specification”;
 Organizational design; “Percent design complete” measure; Project design
Design/material delivery, sequencing of, 297
Design mobilization, 25–26
Detailed design, 210
Detailed engineering, 309–311
Detailed engineering schedule, drivers of slip page in, 310
Detailed schedules, 318–319
Difficult-to-obtain data, 153–154
Discipline
 in front-end loading, 338
 in the shaping process, 336
Division points, 202, 203
Downward labor productivity spiral, 73
Drawings, late, 311
“Drop-in, drop-out” liaisons, 183
Dysfunctional teams, 183–184
E&P capital project organizations, technical functions of, 247–248. See also Exploration and production (E&P)
E&P megaprojects, flow of problems in, 250
E&P projects
 project leadership turnover in, 246–248
 schedule aggressiveness of, 248–250
Economically marginal projects, 151–152
Economic differences, between owners and contractors, 302
Economic profit motive, 14
Effective megaproject teams
 conditions necessary for, 159–160
 precursors to, 160–165
Electronic organization charts, 188–189
Employment, downstream or secondary, 74. See also Labor entries; Personnel; Staff; Staffing
Engineering
 changes disruptive to, 200
 dividing up, 182–183
 formal education and, 126
 lack of interest in, 128
Engineering center, 337
Engineering contractors, 125–128
Engineering design. See also Front-end engineering design (FEED)
 “best practical” rating for, 211
 parameters governing, 137
Engineering disciplines, rebuilding, 175
Engineering-intensive projects, 40–41
Engineering organizations, radical downsizing of, 131–132
Engineering problems, 306
Engineering, procurement, and construction (EPC), 18, 341. See also EPC entries
Engineering, procurement, and construction management (EPCm), 257, 341. See also EPCm entries
Engineering progress
 measuring, 314
 monitoring, 309
 reports of, 312
Engineering scope, 94
Engineering services, 73
Engineering slippage, 309–311, 312
“Engineering task complete” measure, 211–212
Environment. See Harsh physical environment/climate;
 Institutional environments;
 Labor-short environments;
 Physical environment; Political environment; Project environment
Environmental damage, of prior projects, 64
Environmental disasters, 19
Environmental permitting process, 94
Environmental risks, 120
EPC contracting, sponsors and,
 296–297. See also Engineering, procurement, and construction (EPC)
EPC contractors, 127, 289, 296
EPC industry, capabilities of, 126
EPC lump-sum approach, blame transfer and, 278–279
EPC lump-sum bids, 266
EPC lump-sum contracting, 89, 255–256
 drivers of success and failure in, 267–285
 key pitfalls in, 267–269
 use on megaprojects, 258–259
EPC lump-sum contracts
 advantages and disadvantages of, 277–278
 creative use of, 274–276
 pricing of risk in, 279–285
 project outcomes and, 260–261
 wholesale risk transfer on, 276–279
EPC lump-sum projects, success rates for, 259
EPC marketplace, effect of outsourcing on, 131–133
EPCm contractor, 289–290. See also
 Engineering, procurement, and construction management (EPCm)
EPCm reimbursable contracts, 257
EPC reimbursable contracts, 256
EPC services
 deprofessionalization of, 339
 oversupply in, 279
EPC services market, as a central issue in contracting strategy, 265–266
EPC work, project managing contractors and, 175
 Equipment vendors, 187–188
 Escalation adjustments, 33–35
 Estimates, reducing, 5–6
 Estimating errors, 111–112
 Execution planning, 212
 most difficult aspect of, 213
 safety and, 219–220
 Execution risk, control of, 305–332
 Execution schedules, 40
 realistic, 318
Existing facilities, modernizing, 144
Expansion/modernization projects,
 Basic Data requirements for, 144–145
Expensive Basic Data, 153–154
Exploration and production (E&P), 238, 244–246. See also E&P entries
External financing, contract approach and, 266–267. See also Financing
Extractive projects, 18–19
Exxon, 65
ExxonMobil, 96
Fabrication slippage, 321
Facilities, modernizing existing, 144
Failed projects, vii. See also Project failure
versus successful projects, 47–50
Failure(s) shaping errors/omissions leading to, 103–110
spectacular, 43
Failure mode, Basic Data delivery and, 147
Fatalities, work-related, 45, 46
“Fee-at-risk” approach, 286
Feedback, obtaining, 161–162
FEED contractors, 60, 210–211, 268, 269, 295. See also Front-end engineering design (FEED)
FEL-0 process, 23. See also Front-end loading (FEL)
FEL-1 phase, 24–25, 100–101, 176
FEL-1 quality, assessment of, 203
FEL-2 assessing, 206–209
FEL-2 index rating, 213–214
FEL-2 phase, 25, 101, 146, 205 “best practical,” 214
time required for, 238
FEL-3 assessing, 209–215
FEL-3 framework, 210
FEL-3 index rating, 213–214
design tasks for, 210 disagreements about, 211
time required to execute, 238
FEL funding issue, 226
FEL index, 171, 203–204, 220, 221, 309. See also FEL-2 index rating;
FEL-3 index rating; IPA FEL index
FEL process, 201–202, 203
Field hours-to-bulk material ratio, 317
50/50 joint venture situations, 86, 183–184, 211
Final closure, achieving, 95–97
Financing, of major projects, 13. See also
Bank financing; Capital entries;
Cost entries; External financing;
Money entries; Nonrecourse financing; Reimbursable entries
Fixed-price contracting, 255–256
Fixed-price contracts, 6–7, 39
Forecasts, reliable, 208
Foreign exchange relationships, changes in, 35
Forward-going economics trap, 5
Forward selling, 341–342
Front-end development work, 177
Front-end engineering design (FEED), 56, 341. See also FEED contractors controls at the beginning of, 311–312
Front-end loading (FEL), 202–206, 341. See also FEL entries
accidents and, 117
Basic Data problems and, 224–225
as the best capital investment, 338–339
“best practical,” 214, 222
cost performance and, 215–217
failure to complete, 251
geographic remoteness and, 228–229
importance of, 215–221
improving, 223–226
missing functions during, 170–171
in petroleum development projects, 243–246
production performance and, 218–219
project context and, 227
quality of, 171
safety performance and, 219–221
schedule performance and, 217–218
success and, 221
time required to execute, 236–238
Front-end loading phases, 203–204
time spent on, 156
Front-end planning, mixed strategy
and, 296
Front-end spending, 4–5
“Full design specification,” 212
Full-funds authorization, 208
Functional cooperation, 161–162
Functional leads, 166
Functions
comparative advantage and, 169
knitting together, 162
miscommunication among, 156–157
moral hazard/control and, 171–172
Game against nature, 92–93
“Gas hypothesis,” for petroleum project
schedule aggressiveness, 249
Gates, purpose of, 201–202
Geographic complexity, of
megaprojects, 187
Geographic dispersion, of megaproject
teams, 182–183
Geography, influence on contract
type, 259
Global economic growth, megaproject
effect on, 19
Global economy, rapid changes in, 17
Global markets, 58
Global megaprojects market, 73
Global recession, 123
Glossary, 341–342
Goals. See Common goals; Objectives;
Production goals; Safety goals
Gorgon project, 64
Governance. See Corporate governance
Government approval process, 94
Government-controlled bidding,
272–273
Government-controlled contracting,
272–274
Government corruption, 67–68
Government rules, changes in, 273–274
Governments. See also Host
governments; Non-governmental
entries
permitting problems with, 232–236
preference for whole project
lump-sum contracting, 259
Government stakeholders, dealing with,
96–97
Greed, 2
Gulf of Mexico requirements, 68–70
Harsh physical environment/climate,
risk premiums for, 281–282
Hazards and operability (HAZOP)
studies, 199–201
Higher-risk projects, reimbursable
contracts for, 285–290
“Highly entrepreneurial” companies, 25
High-profile projects, 121
Hiring, outside, 176
Host governments, problems with,
229–230
Hub and satellite model, 192–194
problems with, 194
Human decisions, failure of, 19
Human resources (HR)
inventory of, 336
organizations related to, 176
Hydrocarbon processing projects, 27
Hypothesis testing, 32
Incentive contracting, rapid expansion
of, 133
Incentive contracts, 284
Incentives
 philosophical problems with, 288
 problems related to, 130–131
 safety, 47
Incentive contracting schemes,
 reimbursable contracts and, 286–288
Incomplete Basic Data, 148
In-country labor, 72
Independent contractors (ICs), 174–175
Independent Project Analysis, Inc. (IPA), vii, 342. See also IPA entries
 research program at, 12
Industrial firms, relationship with
technical functions, 124
Industrial firm strategy, 335
Industrialization, of China and India, 16
Industrial megaproject activity,
 projection of, 17–18
Industrial megaprojects, 12. See also
 Industrial projects
 defined, 13–15
 increase of, 16
 quality in, 291
 staffing, 173–176
 track record of, 2
Industrial projects. See also Industrial megaprojects
 getting lost in, 11
 quality of, 3330
Inexperienced owners, Basic Data and,
 154–155
Inflation, effect on costs, 33–34
Informal agreements, 181–182
Information, verifying, 155. See also
 Basic Data; Data entries
Information acquisition process, 54
Information flow, 186, 204
Information technology (IT), 306
Infrastructure, remote, 230
Infrastructure additions, 62–63
Infrastructure development, 12, 17
 as a megaproject requirement, 139
Injury rates, 45
Inside organizations, cooperation of, 161
Institutional environments, 64–65, 232, 234
 strong, 91–92
 weak, 96
Insufficient appraisal, 142–143
Integrated teams, 168–172, 224
 developing, 169
 involvement and proactive stance
 of, 172
 owner involvement in, 172–173
 responsibility for, 169–170
Integration managers, 195
Interface management, 184
 strong, 276
Interface managers, 196
Internal cooperation, need for, 129
Internal rate of return (IRR), 108
International contractors, partnership
 arrangements with, 337
International oil companies, 17, 55
Intervention planning, 312
Invitations to bid (ITBs), 306
Invitation to bid (ITB) package, 265
IPA assessments, of FEL-2, 206–207
IPA database, industrial sectors in, 27
IPA data collections, 23
IPA evaluations, 25, 26, 44–45, 289
IPA FEL index, 201. See also FEL index;
 Front-end loading (FEL)
IPA megaprojects database, 20, 27–29
 sponsoring companies in, 29–30
IPA projection of industrial megaproject
 activity, 17–18
IPA research, 154
 methodology for, 31–33
Index

Iron Law of Oligarchy, 155
Issues, partner alignment on, 104

Jemima principle, 47–50
Joint-stock companies, core pathologies afflicting, 133–134
Joint venture agreements, 225
Joint venture partner people, recruiting, 177
Joint venture partner personnel, integrating, 183–184
Joint venture partners, 186–187

Kashagan oil field development, 99
Key functions, importance of, 81–82
Key project people, inclusion of, 334
Key team topics, 165–182
 team size, 165–168
 timing of team formation, 165
Kill criteria, 95
 “Kill points,” 98

Labor, for remote locations, 230. See also Employment; Personnel; Staff; Staffing
Labor issues, 72–73
Labor productivity problems, 331
Labor-short environments
 antidote for, 318
 examples of, 316–318
 megaproject survival in, 313–322
Labor supply issues, 231–232
Large capital projects, failures in, 124
Large engineering projects, 20
Large-project risk, 13
Large projects, drivers for, 16
Late data, consequences of, 147
Late engineering, results of, 314–316
Lead sponsor(s), 94
 inexperienced, 154
Lead sponsor approach, 122
Lease concessions, 113
Licensed technology packages, 153
Limited appraisal, 142
Liquefied natural gas (LNG). See also
 Natural gas prices
 climate considerations for, 61
 scope elements of, 187
Liquefied natural gas megaprojects
 success of, 49
 team size of, 167
Liquefied natural gas projects, 27, 42. See also LNG complex joint venture
Liquidated damages, 269–270
LNG complex joint venture, 155. See also Liquefied natural gas entries
Local content, 105–106, 209
 advantage of, 71
 providers of, 212–213
Local content requirements, 68–71
 informal versus formal, 70
 for petroleum development, 240–241
 risk premiums for, 280–281
 specific versus general, 70–71
Local labor, 119
 issues involving, 72–73
Local partners, in country advance teams, 60
Local presence, importance of, 63–64
Local projects, competing, 73
Location, effect on cost, 34–35
Losses, carrying, 7
Low bids, results of accepting, 270–272
Low-cost engineering centers, 314
Low-cost feedstock advantage, 79
Lump-sum contracting
 advantages and disadvantages of, 292
 bank insistence on, 266–267
Lump-sum contracts, 6–7, 39
Lump-sum projects, owner intervention in, 274–276

Maintenance records, for existing facilities, 144
Management. See also Interface management; Senior management behavior
accountability of, 123
geographic dispersion and, 182
Manufacturing/operating organizations, differences among, 161
Market timing, irrelevance for megaprojects, 209
Market turnabouts, 59
Materials delivery, sequencing of, 297. See also Bulk material quantities
Materials management, 297–298
Megaproject activity, pace of, 17–18
Megaproject alliances, failure of, 290–294
Megaproject context, understanding, 57–73
Megaproject costs, FEL duration and, 237
Megaproject details, importance of, 3–4
Megaproject development, speed in, 115–116
Megaproject disasters, 12
Megaproject failure
erroneous and incomplete Basic Data and, 137
root causes of, 21
seven key mistakes related to, 1–8
Megaproject groups, 37–38
“Megaproject handbook,” ix
Megaproject literature, 19–20
Megaproject location, 60–63
Megaproject management training programs, 337
Megaproject mistakes, 1–8
Megaproject operability, new technology and, 149–150
Megaproject organization, complexity as the nemesis of, 186–188
Megaproject organizational problems, characteristics of, 189
Megaproject organizations, structuring, 190–191
Megaproject overstaffing, 168
Megaproject personnel, as team players, 159
Megaproject principles, 13
Megaproject results
E&P and, 239
effect of new technology on, 149–153
Megaprojects. See also Industrial megaprojects; Large entries; Projects
Basic Data types for, 138–145
career destruction and, 130
contracting approaches for, 254–259
corporate governance and, 123–134
corporate support for, 24–25
cost risk for, 216
as creators and destroyers of capital, 11–22
dangerous, 46
degree of front-end loading in, 222–223
execution of, 305
failure of, 19
fragility of, 50
global context for, 59
importance of, 18–19
infrastructure development required for, 139
integrated teams for, 168–172
joint-stock companies and, 123
key questions concerning, viii
labor supply issues related to, 231–232
leadership turnover in, 180–182
local reaction to, 63–64
new technology in, 148–149
pace of, 3
as path-breaking ventures, 78
pathologies afflicting, 134
permitting problems associated with, 232–236
political and institutional environment of, 64–66
political nature of, 26
program format for, 196–197
reasons to study, 15–16
relatively poor FEL for, 223
schedule pressure in, 2–3
scope elements of, 187
sensitivity to small mistakes, 199–201
shaping a stable platform for, 53–89
shaping processes for, 335–336
social, religious, and cultural considerations related to, 71–72
successful, 340
success versus failure of, vii–x
understanding, 53
as unique endeavors, 161
volume, breadth, and depth of data for, 157
with weak business cases, 206
Megaproject shaping, 21
Megaproject survival, in labor-short environments, 313–322
Megaproject task, magnitude of, 59
Megaproject team leadership, role of, 179–180
Megaproject teams, 159–184. See also Effective megaproject teams;
Project teams
effective, 159–160
geographic dispersion of, 182–183
organizing, 185–197
size counts for, 167
size of, 165–168
special challenges for, 182–184
“Memorandum of understanding” (MOU), 5, 98
Methodological notes, 33–35
Middle East
megaprojects in, 278, 279
permitting problems in, 67, 234
Middle Eastern projects, 110, 111–112
Milestones, 97, 98
Military acquisition programs, 14
Mineral mining/processing projects, team size for, 167
Minerals and metals projects, 27
Minerals companies, 55
Minerals developments, 75
Basic Data requirements for, 143–144
Minerals megaprojects failure of, 49
informal agreements in, 181–182
scope elements of, 187
Minerals processing, Basic Data errors in, 154
Miscommunication, across functions, 156–157
Mistakes, small-scale, 148
Misunderstanding, between business and technical professionals, 333–335
Mixed contracting, success of, 295–298
Mixed contracts, 257–258
project outcomes and, 262
success of, 260
“Mixed motive” projects, 14
Models. See Alternative organizational models; Hub and satellite model; Organic model; Organizational models; Project models; Risk modeling entries; Shared models; Statistical models; Traditional project model

Modern firms, core problems of, 13

Modernization projects, Basic Data requirements for, 144–145

Money, spent on opportunity shaping, 54. See also Financing

Money-making projects, 13–14

Monitoring/control priorities, 308–312

Monte Carlo analysis, distributions used in, 327

Monte Carlo cost risk simulations, 324–327

reasons for failure of, 326–327

Mullaly, Alan, 195–196

Multiparty agreements, 294

Multiprime contract arrangements, 255

Multiprime EPC lump-sum projects, 274

Natural gas prices, 17

Negative net present value (NPV), 155

Net present value (NPV), 19

New core technology, 149

New geography, entering, 77, 78

New geography ventures, 213

“New institutional arrangements,” 20

New technology

Basic Data incorrectness and, 148–149

discretionary use of, 153

effect on megaproject results, 149–153

use of, 30–31, 310

New technology projects, case studies of, 22

New technology risk, 31

New technology scale, 149

“No change orders accepted” approach, 278

Noncommunication, among functions, 156–157

Non-governmental organization interest groups, 85–86

Non-governmental organizations (NGOs), 120, 121, 122, 342

Non-megaprojects, degree of innovation in, 31

Nonrecourse financing, 89. See also Financing

Nonremote locations, 228

Nonremote projects, 62, 63

North America, permitting problems in, 67

Objectives. See also Business objectives achievable, 164

adjusting, 106–107

clear, 79–80, 82–83

importance of, 162–164

priorities among, 164

success-related, 163

team, 162–164

unclear, 80–81

worthiness of, 163

Offshore projects, 27, 61

labor availability and, 313

Offshore project teams, 209

Off-the-shelf technology, 30, 149

Oil and gas megaprojects, 54. See also Petroleum entries

failure of, 49

team size for, 166–167

Oil and gas projects, 27

Oil industry, lack of functional integration in, 191
Oil production projects, 42
Oil project schedule slippage, 113
Old facilities, modernizing, 144
Onshore projects, 61, 209
 labor availability and, 313
Operability failure, 218–219
 rate of, 62
 for remote projects, 230–231
Operating assets, creating, 302
Operational failures, 151
Operations, feedback from, 129
Operations representatives, 169
Opportunity shaping. See also Shaping entries
 art of, 56
 challenges of, 117, 120–121
 defined, 54–55
 essential nature of, 55–56
 importance of, 57
 linking with project development, 99–103
 project results related to, 119, 122
 strategy for, 118–119, 121
 successful, 117–120
 unsuccessful, 120–122
 versus project work process, 55
Opportunity-shaping process, viii, 53–89. See also Shaping process
Opportunity-shaping steps
 understanding project context
 (Step 1), 57–73
 assessing potential value (Step 2), 74–77
 assessing comparative advantage
 (Step 3), 77–83
 identifying and understanding
 stakeholders (Step 4), 84–86
 considering partners (Step 5), 86–89
Optimism, abundance of, 59
 Organic model, 194–196
 strengths and weaknesses of, 196
 Organizational behavior, turf-protecting, 191
 Organizational cooperation, 161
 Organizational design, approach to, 189–190
 Organizational models, alternative, 191–197
 Organizational problems, characteristics of, 189
 Organization charts, role of, 188–189
 Organization for Economic Cooperation and Development (OECD), 115–116, 342
 Organizations. See E&P capital project organizations; Engineering organizations; Inside organizations; Manufacturing/operating organizations; Megaproject organizations; Non-governmental organizations (NGOs); Outside organizations; Owner controls organizations; Owner engineering organizations; Owner organization incoherence; Sponsor organizations; Structured megaproject organizations; Technical organizations; Third-party controls organizations; Weak matrix organizations
 Organizing, of megaproject teams, 185–197
 Orthogonality assumption, 327
Outcomes
 assessing, 14
 bimodal distribution of, 50
 permitting problems and, 67
 trade-offs among, 81
 trading, 43–44
Outside hiring, 176
Outside organizations, cooperation of, 161
Outsourcing
effect on EPC marketplace, 131–133
de of technical expertise, 115–116, 124–128
Outsourcing craze, 125
Overcapitalizing, 113–114
Overheated markets, 73
Oversights, Basic Data errors related to, 157
Overspending, 38–39
Overstaffing, 168
Owner-contractor relationships
restoring professionalism to, 339–340
self-enforcing nature of, 131–133
systematic disadvantaging of, 132
Owner controls organizations, 312
Owner engineering organizations, downsizing of, 223
Owner expertise, loss of, 128–133
Owner involvement, in team integration, 172–173
Owner organization incoherence, 129
Owner personnel, versus contractor personnel, 303
Owner project cadre, weakness in, 129
Owner project management cadre, 126–127
demographics of, 128
Owner project teams, 129
Owners
contractor understanding of, 300–303
inexperienced, 154–155
Owner staffing, robust, 128–129
Owner team development, ensuring cooperation in, 169–170
Owner team role, 160–162
Owner team size, megaproject results and, 168
“Pain-sharing” approach, 286
Partner capabilities, 87
Partner issues, as a warning sign of trouble, 330
Partner reputation, 88
Partners
considering, 86–89
goals of, 87
Path-breaking projects, key questions concerning, 78
Patience, in shaping strategy, 118
Penalties, for safety outcomes, 47
“Percent design complete” measure, 211
Permit rating, 235–236
Permit requirement definition, in petroleum development megaprojects, 244–246
Permits
late receipt of, 310
withholding, 104–105
Permitting problems, 66–68, 232–236
self-inflicted, 236
Permitting requirements, defining, 234–235
Permit withdrawal, 41
Personnel, as team players, 159. See also Employment; Labor entries; Staff; Staffing; Team entries; Turnover entries
Petroleum development, risk taking in, 248–250. See also Oil entries
Petroleum development megaprojects.
See also Petroleum industry megaprojects; Petroleum production megaprojects
drivers of failure in, 242–250
failure of, 238–246
front-end loading in, 243–246
problems associated with, 239
successful versus unsuccessful, 241–242
Petroleum development projects, 93
failure rate in, 334
Petroleum industry megaprojects, 16.
See also Petroleum development megaprojects; Petroleum production megaprojects
hands-off stance toward, 173
Petroleum production megaprojects,
production shortfalls in, 42
Petroleum production projects, 29
Basic Data for, 140–145
Petroleum projects
leadership turnover in, 246–248
organization of, 190–191
permitting problems in, 234
Petroleum refining projects, 27
Petroleum reservoir information,
inaccessibility of, 142
“Phase 0,” 23
Phase and gated project work process,
100–102
Physical environment, nature and
perceived value of, 64
Pilot plant, fully integrated, 154
Pipeline projects, 27, 28
Piper Alpha disaster, 58
Planning, success and, 201. See also
Project execution planning
Political environment, 65–66
Political instability, 65–66
risk premiums for, 282
Political intervention, 41
Political opposition groups, 85
Political risks, 65–66
Political support, 118–119
Political unrest, 68
Porter, James B., Jr., background and
achievements of, xi–xii
Potential value, assessing, 74–77
Power generation projects, 27, 28
Practices, importance of, 21
“Preliminary” permit rating, 244
“Prestige projects,” 14
Priced risk transfer, areas of, 283–284
Priorities, for monitoring and control,
308–312
Prior licenses, checking for, 153
Prior projects, history of, 63–64
Private sector investors, 114
Proactive involvement, importance
of, 173
Probabilistic schedule assessment (PSA),
327–328
Problem identification, 298
Process flow diagrams (PFDs), FEL-2
closure and, 207–208
Process industries, 29–30, 123–124
projects executed by, 11
Processing facilities, Basic Data,
138–140
Process rules, understanding, 86
Process-type facilities, climate
considerations for, 61
Procurement, as a warning sign of
trouble, 329
Production, leveraging aspect of, 109.
See also Petroleum production
entries
Production goals, schedule
aggressiveness and, 249–250
Production outcomes, 41–43
Production performance, FEL and,
218–219
Production problems, effects of, 42–43
Production-sharing agreement, abuse of
the terms of, 163
Production shortfalls, 42
Production threshold, 42
Productivity
 checking against estimates, 331
 collapse in, 318
 measurement of, 298
Professionalism, in the owner–contractor relationship, 339–340
Professionals, collaboration among, vii
Profitability, for stakeholder-investors, 56
Program format, 196–197
Project analyst training programs, 26
Project best concepts/strategies/practices, ix
Project closure, 199–251
Project coordination
 HAZOP evaluation of, 199–201
 parameters governing, 137
Project development, alignment with
 shaping development, 94
Project difficulty, remote sites and, 228
Project directors
 relationship with business directors, 165
 successful, 179
Project documents, 33
Project drivers, business objectives as, 80–82
Project effectiveness, five dimensions of, 37, 38
Project engineering, contractual link to construction, 295
Project environment, 56. See also Project context
 potential value and, 75
 price of, 105–106
 stability of, viii
 turbulence in, 2
Project execution, 305
 owners’ key roles in, 307
 passive stance toward, 173
 preparation for, 209–215
Project execution planning, 219–220
 completion of, 212
Project failure. See also Failed projects
 cause of, 59
 schedule slippage and, 311
 thresholds for, 38
Project leadership, turnover in, 246–250
Project locations, 28, 60–63
Project management, 12, 55
 rebuilding, 175
Project management information technology (IT), 306
Project managers, beating up, 7–8
Project managing contractors (PMCs), 175
 hiring, 275
 using, 299–300
Project models
hub and satellite, 192–194
organic, 194–196
traditional, 191–192
Project nature, as a central issue in
contracting strategy, 265
Project objectives, developing, 163–164
Project outcomes, 37–50
contracts and, 259–263
remoteness of location and, 61–62
Project planning, 55–56
Project platform, importance of, viii
Project portfolios
matching to available skills, 336–337
trimming the weakest elements of, 337–338
Project professionals, 21
as team players, 159
Project remoteness, effects of, 61–62
Project results
key measures of, 162
permitting problems and, 233–234
Project risks, new technology and, 148
Projects. See also Failed projects;
Industrial projects; Large entries;
Megaprojects; Nonremote projects; Offshore project entries;
Onshore projects; Remote projects;
Semiremote projects; Small projects; Subprojects; Successful projects
assigning individuals to, 185
changes in, 39
competing, 73
degree of technological innovation embodied in, 30–31
destroying via Basic Data errors, 145
economically marginal, 151–152
economic value of, 107
environmental aspects of, 118
estimated cost of, 324
expensive, 43
fast-tracking of, 148
financing, 89
important characteristics of, 78
miscommunication/
noncommunication in, 156–157
misconfigured, 110
money-making, 13–14
as operability failures, 218–219
scope selection and development phase of, 25
size and complexity of, 11–12
successful versus failed, 47–50
Project scope, 161
changing, 6
developing, 54
effect on Basic Data collection, 143
Project size, 57–58
FEL time and, 237
Project slowdown, 41
Project success, FEL process and, 201
Project team/business interface, 82
Project team functionality, clear business priorities and, 81
Project teams, 342. See also Megaproject teams; Offshore project teams;
Owner project teams
dynamic nature of, 176
expansion of, 178
interviews for, 26
placing people on, 161
Project understanding, lack of, 127
Project value, asserting a claim on, 84
Project value assessment, 74–77
benefits of, 76–77
Project work process, teams and,
164–165
Protocol development work, 157
Proven approaches, business value of, ix
Public infrastructure projects, 20
Publicly owned industrial corporations, failure of, 13
Public sector investors, 114
Public works projects, 14
Putin, Vladimir, 96

Quality
sacrificing for cost, 111–112
sacrificing for schedule, 114
Quality control (QC), 308
Quality standards, 157
Quality trade-offs, 107–109

Real options analysis (ROA), 97–98, 106
Recordable incident rate, 44
Records, for existing facilities, 144
Recruiting talents, 176
Recruitment, for remote megaprojects, 229
Regulatory climate, 66–68
Reimbursable contractor, 275
Reimbursable contracts, 256–257
controlling contractor hours/fees on, 288–290
for higher-risk projects, 285–290
incentive schemes and, 286–288
project outcomes and, 261
rights-in-data for, 306–307
Reimbursable contractual arrangements, sponsor involvement and,
172–173
Reimbursable EPC contracts, 285–286
Reimbursable projects, success rates for, 259
Relationships, between business directors and project managers, 2
Religious considerations, 72
Remote locations
costs associated with, 229
dealing with, 227–231
Remote megaprojects, recruiting and retention for, 229
Remote projects, 61–62, 227
Reporting, of construction safety numbers, 45–47
Repositioning, 55
Reputation, importance of, 96–97
Research and development (R&D), 161
Research and development community, 21
Reservoir information, inaccessibility of, 142
Reservoir problems, 42
Resource developer, 3
Resource development, 118
Resource holder bargaining ploy, 5
Resource holders, 3–4, 86, 342
common ploy used by, 94–95
Resource-loaded schedules, 72–73, 319–320
Resource loading, 232
Resources, global competition for, 18
Responsible Care program, 77
Results, lack of accountability for, 116
Return on capital employed (ROCE), 43
Return on investment (ROI), 108–109
Risk, 1. See also Execution risk;
Shared risk contractor, 6–7
in cost risk simulation, 324–327
disparate perceptions of, 301–302
environmental, 120
large-project, 13
in megaproject cost, 216
with megaproject schedules, 2–3
Monte Carlo simulation and,
325–326
partners and, 88
in petroleum development, 248–250
political, 65–66
pricing in lump-sum contracts, 276–279, 279–285
sponsor control over, 333
technology-related, 31, 148, 151, 162
transferring, 110
Risk areas, pricing, 280–283, 283–284
Risk management, 322–323
Risk modeling, 323–328
Risk modeling techniques, efficacy of, 324–325
Risk money, 5
Risk of failure, cutting-edge technology and, 151
Risk pricing, first principle of, 302
Risk surveillance, 328–330
Risk transfer, 6–7. See also Priced risk transfer from sponsors to contractors, 276–277
Root cause analysis, 33
Rotational assignment approach, 229
Rule of law, effect of, 64
Russia, permitting problems in, 67
Safety. See also Construction safety
 execution planning and, 219–220
 priority of, 308
 sacrificing for speed, 116–117
Safety culture, 76–77
Safety goals, meeting, 47
Safety performance, FEL and, 219–221
Safety programs, modern, 47
Safety protocols, 116–117
“Safety pyramid,” 45
Safety statistics, 44–45
Safety system, modern, 297
Sakhalin–2 Project, 96
Sales agreement, 94
Sample bias, 35–36
Scalability, of the hub and satellite model, 194
Schedule(s). See also Compete scheduling
 accelerated, 3, 321
 effect on rate of return, 109
 noncompressible, 320–321
 priority of, 309–311
 realistic, 328
 sacrificing cost for, 112–114
 sacrificing quality for, 114
 salvaging, 317–318
Schedule aggressiveness, of E&P projects, 248–250
Schedule effectiveness, 43
Schedule incentives, 269
Schedule outcomes, 40–41
Schedule performance, FEL and, 217–218
Schedule pressure, 2–3
Schedule slippage, 40, 41, 113, 146, 217, 220
 liquidated damages and, 270
 operational failure and, 44
Schedule trade-offs, 107–109
Schedule uncertainty, 178
Scheduling, high-quality, 213
Science, importance to megaprojects, 140
Scope development, 25, 177, 178. See also FEL-2 entries
Scope development phase, 101
Scope development team, Basic Data and, 146
Seawater cooling back data, 141
Seawater cooling system
 Basic Data requirements for, 139–140
 inexperience with, 154–155
Secrecy, of cost estimates, 273
Self-enforcing business contracts, 131–133
Semiremote locations, 227–228
Semiremote projects, 61
Senior management behavior, 21
Shaping. See also Megaproject shaping; Opportunity shaping entries;
Shaping process entries
closure of, 102–103
decisions in, viii
errors/omissions in, 103–110
framework for, 102
goals of, 92
real options for, 97–98
Shaping issues, as a warning sign of trouble, 330
Shaping negotiating strategy, use of FEL in, 225–226
Shaping phase, closure of, 146
Shaping process. See also Opportunity-shaping process
clarity of, 91–92
end of, 98–99
formalizing and institutionalizing, 335–336
as a game against nature, 92–93
institutional environment and, 65
length of, 64
project value and, 74
Shaping process problems, FEL and, 225
Shaping strategy
conceptualizing, 92–95
devising, 91–122
Shaping team, 204
“Shared destiny” approach, 257
Shared models, 82
Shared risk, 294
Shareholder wealth, destruction of, 12
Shell Sakhalin-2 Project, 12
Skill sets, transferable, 337
Small mistakes, megaproject sensitivity to, 199–201
Small projects, risk transfer on, 277
Social considerations, 71–72
Societies, megaproject failure and, 19
Sole-source EPC lump-sum contracts, 267–268
South American projects, 28
Specialty resources, contractor-held, 127–128
Speed
as a cause of Basic Data errors, 155–156
as a project destroyer, 115–116
sacrificing safety for, 116–117
Sponsor capabilities, influence on contract approach, 264–265
Sponsoring companies, uniqueness of, 161
Sponsor-investor capital, repaying, 113–114
Sponsor-investors, 94–95
considering, 86–89
Sponsor organizations, incentive problems within, 130–131
Sponsors, 14, 19, 342. See also
Lead sponsor entries; Stakeholder entries
control over risk by, 333
EPC contracting and, 296–297
political risks and, 65
prudent, 153
rights to data and audit, 306
as stakeholders, 85
Sponsor team role, 160–162
Sponsor teams, low level of involvement of, 172
Stability, regulatory climate and, 66–68
Stable contexts, 58
Staff, contractually tying up, 174
Staffing. See also Employment; Labor entries; Personnel
from agencies, 174–175
collection management, 298
difficulty in, 171–172
inadequate, 223–224
of industrial megaprojects, 173–176
“Stage-gated” project work process, 24
Stakeholder alignment, failure to achieve, 104–105
Stakeholder claims, evaluating, 85
Stakeholder-investors, profitability for, 56
Stakeholders, 342. See also Sponsor entries
agreement about progress, 93–94
dealing with, 186–187
disgruntled, 104
identifying and understanding, 84–86
institutional environment and, 65
potential value and, 75
Standard technology, 30
Startup time, cutting-edge technology and, 150
Statistical analyses, 31–33
Statistical models, 32
Statistical process control, 31
Statistical techniques, 32
Statistical test results, 32–33
“Strategic” projects, 14, 78–79
Strengths, weaknesses, threats, and opportunities (SWOT), 322
“Stretch” targets, 294
“Strong matrix” format, 248
“Strong project manager” mode, 190
Structured megaproject organizations, 190–191
Subprojects, 166
core team size requirements and, 167
Subproject teams, in traditional project models, 192
Success. See also Team success
FEL process and, 201, 221
focus on, 333–340
Successful megaproject practices, 21
Successful opportunity shaping, 117–120
Successful projects
Basic Data errors and, 146
returns of, 50
versus failed projects, 47–50
Successful ventures, important requirement for, viii
Success-related objectives, 163
Sunk costs, 202
Sustainable Operations Solutions, LLC, xi
System breakdowns, 154–155
Systems, proper sequence for, 331
Target hours, negotiating, 288
Targets, overly conservative, 110
TDI index, 83
Team composition, changing, 177
Team development, clear objectives and, 82–83
Team expansion, problems associated with, 176–177
Team factions, 178
Team formation, timing of, 165
Team functionality, clear business priorities and, 81
“Team functionality index,” 164
Team integration, lack of, 310
Team leaders, qualities of, 179
Team leadership
continuity of, 180–182
role of, 179–180
Team members, geographic scattering of, 188
Team objectives, 162–164
Team precursors, 160–165
Teams, 342. See also Contractor tams; Country advance teams; Integrated teams; Key team topics; Megaproject teams; Project team entries; Sponsor teams; Subproject teams
dysfunctional, 183–184
dysfunctional, 183–184
geographic dispersion of, 182–183
geographic dispersion of, 182–183
integrated, 168–172
integrated, 168–172
project work process and, 164–165
project work process and, 164–165
sensitivity to risk, 325–326
sensitivity to risk, 325–326
Team size
importance of, 165–168
importance of, 165–168
for remote locations, 228–229
for remote locations, 228–229
Team staffing strategy, developing,
336–338
336–338
Team success, absorptive capacity and,
176–178
176–178
Team topics, key, 165–182
Team topics, key, 165–182
Technical-business divide, 333–335
Technical-business divide, 333–335
Technical expertise, outsourcing of,
124–128, 128–129
Technical expertise, outsourcing of,
124–128, 128–129
Technical functions, relationship with
industrial firms, 124
Technical functions, relationship with
industrial firms, 124
Technical input, 165
Technical input, 165
Technical leaders, preparedness of, ix
Technical leaders, preparedness of, ix
Technical organizations, dismantling of,
115–116
Technical organizations, dismantling of,
115–116
Technical specialist community, 21
Technical specialist community, 21
Technical teams, 99
Technical teams, 99
Technological innovation, 30–31. See also New technology entries
Technological innovation, 30–31. See also New technology entries
Technology changes, incremental, 152
Technology changes, incremental, 152
Technology licensors, 153
Technology licensors, 153
Technology risk, business leadership
unawareness of, 162
Technology risk, business leadership
unawareness of, 162
Terms and conditions (T&Cs), 329
Terms and conditions (T&Cs), 329
Thin labor markets, 72–73
Third-party controls organizations, 290
Third-party projects, 85
Third-party projects, 85
sponsors of, 104
sponsors of, 104
Time constraints, 86
Time constraints, 86
artificial, 102
artificial, 102
Trade-offs
judging correctly, 153
judging correctly, 153
misguided, 110–117
misguided, 110–117
understanding, 81, 224
understanding, 81, 224
Traditional megaproject structure, 190
Traditional megaproject structure, 190
Traditional project model, 191–192
Traditional project model, 191–192
Training programs, for megaproject management, 337
Training programs, for megaproject management, 337
Transparency International, 67
Transparency International, 67
Trouble
identifying leading indicators of, 323
identifying leading indicators of, 323
key warning signs of, 328–330
key warning signs of, 328–330
Trust, value of, 181–182
Trust, value of, 181–182
Turbulent contexts, 58
Turbulent contexts, 58
Turbulent project context, 68
Turbulent project context, 68
Turnkey contracts, 255
Turnkey contracts, 255
Turnover, in project leadership,
180–182
Turnover, in project leadership,
180–182
Turnover sequences, 331
Turnover sequences, 331
Unclear business objectives, 80–81
Unclear business objectives, 80–81
Underreporting, of construction safety numbers, 45–47
Underreporting, of construction safety numbers, 45–47
Unprofitable projects, 49
Unprofitable projects, 49
Unstable regulatory regimes, risk premiums for, 282
Unstable regulatory regimes, risk premiums for, 282
Unsuccessful opportunity shaping,
120–122
Unsuccessful opportunity shaping,
120–122
Unworthy objectives, 163
Unworthy objectives, 163
U.S. Air Force B-1 Bomber program, 14
U.S. Air Force B-1 Bomber program, 14
Up-front spending, 4–5
Up-front spending, 4–5
Utilities, operational and reliable, 332
Utilities, operational and reliable, 332
<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>V-22 Osprey aircraft program, 14</td>
<td>Weather considerations, 60–61</td>
</tr>
<tr>
<td>Validated past experience, paying attention to, ix</td>
<td>“What if” planning, 323</td>
</tr>
<tr>
<td>Valuation techniques, 97</td>
<td>Wholesale risk transfer, 276–279</td>
</tr>
<tr>
<td>Value assessing, 74–77</td>
<td>Work blocks, FEL, 209</td>
</tr>
<tr>
<td>loss of, 105–106</td>
<td>Work process(es), 164–165</td>
</tr>
<tr>
<td>maintaining, 330–332</td>
<td>blending, 184</td>
</tr>
<tr>
<td>Value calculation tools, 75</td>
<td>origin of, 201</td>
</tr>
<tr>
<td>Walkaways, 148, 152</td>
<td>phases of, 23, 202</td>
</tr>
<tr>
<td>Weak matrix organizations, 248</td>
<td>Work-related injuries, 44–47</td>
</tr>
<tr>
<td></td>
<td>Worthy objectives, 163</td>
</tr>
<tr>
<td></td>
<td>Zero-sum game, 93</td>
</tr>
</tbody>
</table>