Contents

Preface ix

Part I Anatomy of a cyclone 1

1 Anatomy of a cyclone 3
 1.1 A ‘typical’ extra-tropical cyclone 3
 1.2 Describing the atmosphere 4
 1.3 Air masses and fronts 9
 1.4 The structure of a typical extra-tropical cyclone 14
 Review questions 20

2 Mathematical methods in fluid dynamics 23
 2.1 Scalars and vectors 23
 2.2 The algebra of vectors 23
 2.3 Scalar and vector fields 27
 2.4 Coordinate systems on the Earth 27
 2.5 Gradients of vectors 28
 2.6 Line and surface integrals 31
 2.7 Eulerian and Lagrangian frames of reference 34
 2.8 Advection 35
 Review questions 38

3 Properties of fluids 41
 3.1 Solids, liquids, and gases 41
 3.2 Thermodynamic properties of air 42
 3.3 Composition of the atmosphere 43
 3.4 Static stability 46
 3.5 The continuum hypothesis 50
 3.6 Practical assumptions 50
 3.7 Continuity equation 51
 Review questions 53

4 Fundamental forces 57
 4.1 Newton’s second law: \(F = ma \) 57
 4.2 Body, surface, and line forces 57
4.3 Forces in an inertial reference frame 58
4.4 Forces in a rotating reference frame 66
4.5 The Navier–Stokes equations 72
Review questions 74

5 Scale analysis 79
5.1 Dimensional homogeneity 79
5.2 Scales 80
5.3 Non-dimensional parameters 80
5.4 Scale analysis 84
5.5 The geostrophic approximation 87
Review questions 91

6 Simple steady motion 93
6.1 Natural coordinate system 93
6.2 Balanced flow 95
6.3 The Boussinesq approximation 104
6.4 The thermal wind 105
6.5 Departures from balance 108
Review questions 114

7 Circulation and vorticity 119
7.1 Circulation 119
7.2 Vorticity 124
7.3 Conservation of potential vorticity 126
7.4 An introduction to the vorticity equation 130
Review questions 132

8 Simple wave motions 135
8.1 Properties of waves 135
8.2 Perturbation analysis 138
8.3 Planetary waves 140
Review questions 147

9 Extra-tropical weather systems 149
9.1 Fronts 149
9.2 Frontal cyclones 152
9.3 Baroclinic instability 161
Review questions 162

Part II Atmospheric phenomena 165

10 Boundary layers 167
10.1 Turbulence 168
10.2 Reynolds decomposition 169
10.3 Generation of turbulence 172
10.4 Closure assumptions 173
Review questions 181