Index

Note: The bold numbers are the primary definitions/references.

A
absolute temperature 5, 42
absolute zero 5
adiabatic 46, 47, 48, 127
 adiabatic, dry 49, 186, 188
 adiabatic, moist 49, 189
adiabatic cooling 47
adiabatic warming 47
adjustment 108, 113, 263
advection 35, 37, 85
 advection, cold 36, 107
 advection, thermal 106
 advection, warm 36, 107, 197
ageostrophic wind 109, 110–112, 155
albedo 251
air mass 9–10
amplitude 135
anomaly 143
anticyclonic 89, 99, 107
atmospheric oscillations 203–205
available potential energy 262

B
balanced flow 95, 95–103
baroclinic 14, 247
 baroclinic instability 161–162, 247–248
 baroclinicity 120, 121, 127, 130
barotropic 14, 120, 127, 140, 146
beta plane approximation 139
bow echoes 197
boundary layer 168
Boussinesq approximation 104, 149
Brunt-Väisälä frequency 49
buoyancy force 48, 74, 105

C
centrifugal force 67, 68
centripetal force 67, 69, 95
chinook 80, 227
circulation 119
 circulation, absolute 123
 circulation, Bjerknes’ theorem 120–121
 circulation, indirect 255
 circulation, Kelvin’s theorem 119–120
 circulation, relative 123
 circulation, thermally direct 113
closure 172, 174
 closure assumptions 172
cold core cyclone 16
cold occlusion 161
conditionally unstable 189, 191, 205
confluence 112, 155
continuity 51
 continuity equation 52, 104
continuum hypothesis 50
convection 46, 172, 189, 205, 248
convective available potential energy 190
convective inhibition 190
INDEX

convergence 15, 51, 53
covariance term 170
Coriolis force 69–71
Coriolis parameter 84
critical wind speed 220
cyclonic 89, 99, 107
cyclogenesis 153
cyclolysis 153
cyclostrophic 97

d
Dalton’s Law 43
dew point depression 11–12
diffuence 112, 155
dimensional homogeneity 79
dispersion relation 136
divergence 15, 51, 52–53
doldrums 256
downslope windstorm 226
drag 167, 175
dryline 196
dry static energy 262
dynamics 4
dynamic similarity 83
d’Alembert’s paradox 167

e
eddy momentum flux 261
eddy viscosity coefficient 176
effective gravity 68
Ekman boundary layer equations 177
Ekman spiral 178, 179
Ekman transport 179
enhanced greenhouse effect 253
entrainment 174, 191
evanescent wave 221
exact differential 32
extra-tropical cyclone 3
eye 205, 208

f
fall line 234
First Law of Thermodynamics 46
flux 52
 flux divergence 171
 flux, momentum 261
 flux, vorticity 124 (see also vortex strength)

INDEX

flux Richardson number 173
foehn 83, 227
force 57
Fram 176
free atmosphere 167
frequency 135
front 9, 10–12, 149–152 (see also Margules’ Model)
 front, cold 11
 front, occluded 11, 16
 front, polar 15, 149
 front, stationary 11, 151
 front, warm 11
 frontal cyclone 14, 152
 frontal system 3

g
geopotential 59
g eopotential height 59
geostrophic 87, 88, 112–113
g eostrophic approximation 87, 98
g eostrophic wind 87
glaci Spinner 188
gradient wind 99, 100
g ravity 58–59
greenhouse effect 252–253
Greenwich Mean Time (GMT) 9
group velocity 136
gust front 193

h
hodograph 96
horse latitudes 256
hydraulic jump 230
hydrostatic approximation 86
hydrostatic balance 63, 86
hydrostatic pressure 73
hypsometric equation 64

i
ideal gas 42
Ideal Gas Law 42
incompressible 72
inertial frame of reference 58
inertial oscillation 96
inertial term 81
instant occlusion 161
Intertropical Convergence Zone 205
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Richardson number</td>
<td>173</td>
</tr>
<tr>
<td>ridge</td>
<td>13</td>
</tr>
<tr>
<td>Rossby number</td>
<td>81</td>
</tr>
<tr>
<td>Rossby’s formula</td>
<td>140</td>
</tr>
<tr>
<td>Rossby wave</td>
<td>141</td>
</tr>
<tr>
<td>saturation vapor pressure</td>
<td>184</td>
</tr>
<tr>
<td>scale height</td>
<td>64</td>
</tr>
<tr>
<td>Scorer parameter</td>
<td>223</td>
</tr>
<tr>
<td>short wave</td>
<td>13, 15, 149, 154, 248</td>
</tr>
<tr>
<td>similarity theory</td>
<td>181</td>
</tr>
<tr>
<td>specific humidity</td>
<td>44</td>
</tr>
<tr>
<td>specific volume</td>
<td>46</td>
</tr>
<tr>
<td>standing wave</td>
<td>135</td>
</tr>
<tr>
<td>state</td>
<td>42</td>
</tr>
<tr>
<td>station model</td>
<td>7–8</td>
</tr>
<tr>
<td>stratification</td>
<td>214</td>
</tr>
<tr>
<td>subcritical</td>
<td>229</td>
</tr>
<tr>
<td>supercritical</td>
<td>229</td>
</tr>
<tr>
<td>supersaturated</td>
<td>189</td>
</tr>
<tr>
<td>surface weather map</td>
<td>11</td>
</tr>
<tr>
<td>synoptic</td>
<td>82, 86</td>
</tr>
<tr>
<td>temperature, advection</td>
<td>37</td>
</tr>
<tr>
<td>temperature, atmospheric</td>
<td>4–5</td>
</tr>
<tr>
<td>temperature, dew point</td>
<td>7</td>
</tr>
<tr>
<td>temperature, potential</td>
<td>46, 49, 127</td>
</tr>
<tr>
<td>temperature, virtual</td>
<td>45</td>
</tr>
<tr>
<td>temperature, wet bulb</td>
<td>192</td>
</tr>
<tr>
<td>Teten’s formula</td>
<td>184</td>
</tr>
<tr>
<td>thermal steering principle</td>
<td>159–160</td>
</tr>
<tr>
<td>thermal wind relationship</td>
<td>106, 113, 259</td>
</tr>
<tr>
<td>thickness</td>
<td>65</td>
</tr>
<tr>
<td>trade wind</td>
<td>123, 205, 253</td>
</tr>
<tr>
<td>tropopause</td>
<td>66, 105, 145</td>
</tr>
<tr>
<td>trough</td>
<td>13</td>
</tr>
<tr>
<td>turbulence</td>
<td>168</td>
</tr>
<tr>
<td>turbulent eddy</td>
<td>168</td>
</tr>
<tr>
<td>turbulent flux divergence</td>
<td>171</td>
</tr>
<tr>
<td>unit vector</td>
<td>23</td>
</tr>
<tr>
<td>Universal Time (UTC)</td>
<td>9</td>
</tr>
<tr>
<td>vapor pressure</td>
<td>44</td>
</tr>
<tr>
<td>variable, intensive</td>
<td>42</td>
</tr>
<tr>
<td>variable, state</td>
<td>42</td>
</tr>
<tr>
<td>viscous</td>
<td>41</td>
</tr>
<tr>
<td>viscous force</td>
<td>61–63</td>
</tr>
<tr>
<td>viscous sub-layer</td>
<td>168</td>
</tr>
<tr>
<td>vortex strength</td>
<td>124</td>
</tr>
<tr>
<td>vorticity</td>
<td>124</td>
</tr>
<tr>
<td>vorticity equation</td>
<td>131</td>
</tr>
<tr>
<td>wall cloud</td>
<td>195</td>
</tr>
<tr>
<td>warm sector</td>
<td>16, 18, 161</td>
</tr>
<tr>
<td>wavenumber</td>
<td>136, 141, 142</td>
</tr>
<tr>
<td>well-mixed layer</td>
<td>174</td>
</tr>
<tr>
<td>wind shear</td>
<td>104, 106, 113</td>
</tr>
</tbody>
</table>