Index

A
ABM, 134, 136, 205–206, 232–233, 235
AC magnetic fields, 532–533
acceptance, 268–269, 357, 452, 474, 482, 486,
493, 546, 548, 550, 553, 556–557, 559,
562–563, 572, 586, 591, 627, 631, 633,
636, 639–640, 647–648, 662
ACS,
accuracy specification, 290
block diagram, 293–294
computation, 321–326
design objective, 290
mission-related system considerations,
290–292
overview, 290–294
active damping, 298, 300
active debris removal, 35
active pixel detector arrays, 462
active thermal control, 375, 380, 383, 389
Brayton cycle, 386–387
heat pumps, 385–386
heaters, 380–381
Joule-Thompson cooler, 386
liquid loops, 383–384
louvres, shutters, 384–385
Rankine cycle, 385
Stirling cycle, 386–387
variable conductance heat pipes, 381–383
advanced orbiting systems (AOS), 446, 456
aero-assisted orbit transfer, 168
aerobraking, 168
aerocapture, 169
aerodynamic torques, 305–306
aeromanoeuvring, 168
air-breathing propulsion systems, 197–199
altitude, 11–118, 120, 122–123, 125
analogue commutation, 444
analogue data conditioning, 444
analogue modulation, 401, 412
angular displacement between successive orbits,
125
angular momentum, 54, 56, 58–60, 70, 287
equations, 61
rate of change, 59–61
rigid bodies, 61–63
with spinning wheels, 62
Ansari X-Prize, 10
apoapsis (or apofocus), 84–85
apoapsis equation, 149
apoapsis equation, 149
apoagee boost (or kick) motor (ABM/AKM),
134
Apollo missions, 1, 9, 244–246, 338–339, 341,
344, 517
application-specific integrated circuits
(ASICs), 462
apses, 85
apsidal precession, 98
area-to-mass ratio, 94, 104, 106
Ares 1 launch vehicle, 241
Ares 5 launch vehicle, 239
Ariane, 3, 205, 594
launch vehicle, 459
transfer orbit, 136
Ariane 5 ECA launch vehicle, 236–237
Ariane 5 ES launch vehicle, 236–237
Ariane 5 ground-track, 112
Ariel spacecraft, 598
ARISTOTELES, 96
Artemis satellite, 349
ASAP5, 252–253

Edited by Peter W. Fortescue, Graham G. Swinerd and John P. W. Stark.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
Integration and Test (AIT), 545
Integration and Verification (AIV), 545–574
Integration and Verification - AIV Plan, 552–553
asteroids, 154–156
ASTRID spacecraft, 598
Astromast, 338
Athena launch vehicle, 243, 248, 594
Atlas launch vehicle, 248–249
Atmosphere and Climate Explorer (ACE) spacecraft, 668
atmospheric drag, 100–102
atmospheric entry, 169–170
constraints during, 170–173
atomic oxygen,
effects on exposed interconnects, 337
attitude, 75–76
data, 443
datum axes, 309, 312
determination, 318–319
determination using global navigation satellite systems (GNSS), 318–319
dynamics, 58–63
meaning of, 309–310
measurement, 309–320
motion, 63–71
response, 294–298
summary, 300–301
specifying, 309
attitude and orbit control system (AOCS), 204, 338, 352, 441, 459, 495, 497, 509, 531, 637, 652
methods employed, 289
using PID algorithm, 321–326
see also ACS, audits, 633
Automated Transfer Vehicle (ATV), 236, 378
auxiliary circle, 86
avionics, 441–442
axially symmetric spinning bodies, 66
B
back-surface reflectors (BSRs), 335
ballistic entry characteristics, 171
batteries, 328–330, 344–347
control, 350
performance comparison, 346
voltage-current characteristics, 341
battery charge regulator (BCR), 350
battery discharge regulator (BDR), 350
battery management unit (BMU), 350
battery technologies, 346–347
Ag-Zn, 347
Li-ion, 347
Li-SO2, 347
Ni-Cd, 346–347, 582, 589
Ni-H2, 347
bending modes, 72
BepiColombo spacecraft, 161, 279, 281
bi-phase-shift keying (BPSK) carrier modulation, 455
bi-propellant, 204–205
bit error rate (BER), 410, 448, 472
bolometers, 314
Bose–Chaudhuri–Hocquenchem (BCH) algorithm, 455
Brayton cycle, 345
bridging functions, 169
build standard, 564–567
burn wire mechanisms, 520
bus, 7
C
cables, 546
Cassini-Huygens mission, 328
Cassini-Saturn explorer, 151
Cassini Saturn orbiter, 343, 346
CCD star sensors, 317
celestial mechanics, 79–109
celestial sphere, 92
central processor, 458–459, 570
centralized design, 655–656
centre-of-mass (C), 50–51, 54, 56–62, 74, 76–77, 291, 296, 301, 305–307
CFESat spacecraft, 501, 507
CHAMP spacecraft, 96, 671
characteristic equation, 66
charge-coupled devices (CCDs), 43
Charon, 1
circle of coverage, 128
circular orbit, 84–88
collision, 55, 62
avoidance, 478–480
colloid propulsion, 214
coma, 156
Combined Earth-Sun sensor (CESS), 676
Comet 67P/Churyumov-Gerasimenko, 158, 645, 652
cometary bodies, 154
comets, engineering models, 158
command link transfer unit (CLTU), 454
command uplink, 455
commercial off-the-shelf (COTS) technologies, 576, 620
common mode current, 534–535
common mode noise, 53
common mode signals, 534
common mode voltage, 535
communication techniques and protocols, 455–458
communications infrastructure, 9, 469
communications orbits, 147
communications processors, 460
communications spacecraft, 144–147
composite structures, 285
concurrent engineering, 653–666
benefits, 666
concurrent design, 654–656
Concurrent Design Facility (CDF), 656–666
Integrated Design Environment (IDE), 657, 659
Integrated Design Model (IDM), 659, 663
Spiral Model, 661
conducted emissions, 534–535
conducted susceptibility, 535
conic sections, 84
conservation of momentum laws, 63
conservative forces, 58
constant torque components, 296–297
constellation design, 129–130, 132
constellation geometries, 130–132
constellation orbit plane geometry, 130
Constellation Programme, 2, 10, 239, 242, 345
Consultative Committee for Space Data Systems (CCSDS), 446, 481
file delivery protocol (CFDP), 457
contingency analysis, 618
continuum flow, 169
de-spin mechanism, 509
dynamic equations, 61–62, 69–70
dynamics of spacecraft, 49–77
coverage, 128–129
diameter, 129
figure of merit, 129
cross-coupling, 64–66, 71
cubesat, 577–578, 590, 592, 594
D
damped harmonic motion, 300
data compression, 463
data downlinks, 463–464
data-handling functions, 441–442
data storage, 463
DC magnetic fields, 533
DC motors and EMC, 533
dead band of inclined geosynchronous vehicle, 140
decommissioning, 113
Deep Space 1 spacecraft, 161, 206, 210, 333
Delta launch vehicle, 248–249
dependability, 613–618
deployment of mechanisms, 443
depth of discharge (DOD), 346–348
derating, 616, 618
descent time, 160
design drivers, 8, 113, 652
design requirements, 111, 113, 116
diagnostic, 509
differential evolutionary rates, 98–99
differential mode current, 534
digital audio and video transmissions, 432
digital signal processor (DSP), 460
Disaster Monitoring Constellation (DMC), 600
disturbance torque, 292, 322–324
disturbing accelerations acting on space vehicle, 94
for main sources of perturbation, 105
disturbing body and satellite positions, 102
docking manœuvre, 62
downlink frequencies, 449
drag,
 atmospheric, 100–102
dominant influences of, 101
drag coefficient, 81, 94, 101
drag force, 305
dust tails, 156
dynamic equations, 61–62, 69–70
E
Earth Moon system, 108
Earth sensors, 313–316
Earth-Sun acceleration ratios, 148
Earth-Sun vector, 119, 364
Earth synchronism, 125
Earth synchronization versus altitude, 126
Earth-synchronous orbit, 123
Earth triaxiality perturbation, 137
Earth’s gravitational field, 93, 95–96
Earth’s shadow, orbit intersection with, 120
East West station-keeping, 142
eccentric anomaly definition, 86
eccentricity, 84
Echo 1 spacecraft, 395, 397
eclipse, 329, 337–339, 343
duration, 118–120
ejection of particles, 52
electric field emissions, 532
electric fields, 532–533
electrical power systems, 327–55
electromagnetic compatibility (EMC), 527–543
 basic problem and its solution, 530–531
categories, 531–535
fundamentals, 530–531
problems, 530
 safety margins, 531
 specifications, 528–529
 systems approach, 531
terms and definitions, 532–533
 use of term, 529
 analysis methods, 542–543
 major causes of problems, 541–542
 electromagnetic interference (EMI), 560
 electromagnetic pulse (EMP), 530
 electromagnetic radiation, 104
 electromagnets, 303
electronics technology, 464
 electrostatic discharge (ESD), 535–536
 ellipse, 84–85
 elliptic capture option, 151
 elliptical motion, 86
 elliptical orbit, 101
 embedded terminals, 460
end of life (EOL) performance, 333
energy conservation, 83
energy dissipation method, 298
energy equation, 57, 59, 83, 159
entry corridor, 173–174
environmental compatibility of components, 8
environmental protection, 254
EnviSat spacecraft, 336
equations of motion, 156–157
equipment random vibration test and acoustic response, 270
equivalent isotropic radiated power (EIRP), 419, 464, 471
equivalent particle (e.p.), 51–52
error-control coding, 448–449
error signals, 321
ESA/NASA spacecraft, 114
ESARAD, 368
escape criterion, 107
Euler angles, 75, 309–310
European Cooperation for Space Standardization (ECSS), 467
European solar observatory SOHO, 109
European Space Agency (ESA), 32, 155, 158, 161, 327
 European Space Agency Headquarters (ESA HQ), 665
 European Space Operations Centre (ESOC), 665, 677
European Space Research and Technology Centre (ESTEC), 654, 657, 665–666
European Space Tribology Laboratory (ESTL), 509, 522
external couple, 59, 303
external disturbance torques, 60
external forces, 52
F
Failure Detection, Isolation and Recovery (FDIR), 608, 647
field of view (FOV), 311–312
field programmable gate arrays (FPGAs), 465
first acquisition, 471–472, 475, 477
first point of Aries, 92
flexure modes, 72–73
flight operations procedures, 482–483, 488, 491
forward error correction (FEC), 448
frame of reference, 92
free molecular flow, 169
frequency bands, 449
frozen apogee condition, 98
fuel budgeting, 113
fuel cells, 338–341
 performance summary, 339
fuel consumption, 32
GaAs cells, 333, 337
Galileo spacecraft (Jupiter orbiter), 1, 12, 39, 147, 151, 155, 169, 170, 173, 344, 347, 506, 507
configuration, 343
GALILEO Constellation
European satnav system, 396, 436
Gamma function distribution, 617
acceleration, 141–142
acquisition, 146
burns direction, 143
force direction arising from J_{22}, 139
station-keeping requirements, 140
geocentric phase, 149–50
geocentric semi-angle, 117–118
gestational Earth orbit see GEO
gestational transfer orbit (GTO), 16, 134, 224, 226, 584
Gibbs free energy, 339
global ground tracks, 146
Global Navigation Satellite Systems (GNSS),
attitude determination using, 318–319
Global Positioning System (GPS), 3, 6, 127, 311, 396, 589
GLOBALSTAR, 6, 127, 396
GOCE spacecraft, 96
Goddard Space Flight Center (GSFC), 346
GRACE spacecraft, 96, 671
graceful degradation, 133, 422, 425
gravitational fields, 102–103
gravitational force, 157, 305
gravitational potential of the Earth, 95–100
gravity gradient, 72
gravity-gradient torque, 305
GRAVSAT spacecraft, 96
ground control system, 4, 561
ground coverage, 128–130
ground segment, 467–493
acquisition aid antenna, 472
antenna control unit, 471–474
archiving, 486–488
auto tracking mode, antenna, 471–472, 474
azimuth-elevation antenna mounting, 471
data processing, 472–474
flight dynamics system, 475–480
ground data system, 480–483
ground station, 468–475
horizon mask, 469
-ranging and doppler measurements, 471
step tracking mode, antenna, 471
Weilheim ground station, 470
ground stations,
link, 439
visibility, 117–18
ground support equipment (GSE), 567–571
ground testing, 444
grounding schemes, 536–540
function, 537
gyroscopes, 319–320
precession of, 60
gyroscopic rigidity, 60
gyrostat, 71
H
Halley’s comet, 155, 177, 385, 652
harnesses, 542
Hayabusa spacecraft, 1, 210
heliocentric orbit, 154
heliocentric phase, 149
Hemispherical Resonator Gyroscope (HRG), 319
Herschel Space Telescope, 109
highly elliptical orbits (HEO), 111, 234, 355, 651
Hipparcos spacecraft, 348, 651
HM7B, 237
Hohmann ellipse, 151
Hohmann trajectory, 122
Hohmann transfer, 115–116, 121–122, 149, 167
Hohmann transfer ellipse, 149
hold-down device, mechanism, 497
housekeeping data, 442, 536, 570
Hubble Space Telescope (HST), 114, 294, 336, 347, 386, 518–519, 608, 615, 651
Huygens probe, 346, 448
hybrid spacecraft, 70, 296, 298
hybrid SPG/MPG scheme, 539–540
Hydra star sensor, 317
hydrogen cloud, 156
hydrogen/oxygen fuel cell, 339
current-voltage curve, 339
schematic, 340
HYLAS spacecraft, 400
hybolic eccentric anomaly, 90–91
hyperbolic excess velocity, 91
hyperbolic trajectories, 91
hyperfugal propellant, 190–191, 204

I
impact speed, 159–160
impulses, 55–56
incremental mass, 74
inertia, 59, 61, 63, 65, 67, 157, 200, 273, 278
inertia invariant, 76
inertia matrix, 73–77
 contribution of piece of equipment, 77
inertial frame of reference (IFR), 79, 82
inertial sensors, 310–311, 319–321
inflatable antenna experiment, 507
inflatable structures, mechanisms, 507
in-orbit phases, 444
inspection, 607, 609, 613, 618, 628, 630,
 632–633, 636–637, 639
instruments, 461–462
integration, 545–574
intelligent control units (ICU), 460
Intelsat, 439–440, 451, 455
Intelsat V, 451
Intelsat VI, 338
Intelsat VII, 347, 352
Intelsat X, 455
Intelsat series, 290, 509
intermediate frequency (IF), 422, 472
internal forces, 52
internal torques, 59
International Maritime Satellite Organisation (INMARSAT), 396
International Space Station (ISS), 1, 36, 43,
 121, 236, 276, 280–283, 344, 358, 439,
 507, 592
International Telecommunications Union (ITU), 399, 464
interplanetary internet (IPN), 458
interplanetary missions, 147–174
 overview, 147–148
interplanetary transfer, 148–149
Inter-Range Intrumentation Group (IRIG), 445
Iridium, 6, 35, 127–128, 203, 211, 276, 332,
 396, 479
Iridium 33/Cosmos 2251 collision, 35
IRIDIUM satellite personal communications network (S-PCN), 131
ISO spacecraft, 144
isothermal nodes, 366–367, 373
Itokawa asteroid, 1, 210

J
Jacobi Integral, 107
James Webb Space Telescope, 109, 651
Java Picture Experts Group (JPEG), 463
joint gravity model (JGM), 96
Jupiter, 1, 12, 27–29, 39, 80, 82–83, 90, 91,
 94, 103, 109, 114, 116, 148–154, 174,
 341, 343, 360, 507
K
KaSat spacecraft, 400
Kepler spacecraft, 651
Keplerian orbit, 79, 94, 114–16, 119, 148, 156
Kepler’s equation, 87, 90–91, 137
Kepler’s first law, 80
Kepler’s second law, 80, 83
Kepler’s third law, 80, 85
KITSAT spacecraft, 600
Kuiper Belt, 645

L
Lagrange’s equations, 95
Lagrangian points, 108
Laplace operator, 66, 300
Large European Acoustic Facility (LEAF), 559
Large Space Simulator (LSS), 560
latch-up, 505–506, 585–586
latitude station-keeping, 142–143
launch azimuth, 121, 232, 234–235
launch monitoring ground stations, 112
launch phase, 12–17
launch preparation, 572–573
Launch Support Network, 440
launch windows, 120–122
LEO, 3–4, 6, 23–24, 27, 35–36, 40, 41, 72,
 105–106, 111, 113, 118, 121–123, 125,
 127–128, 161, 226, 230, 236, 238, 240,
 242–243, 245, 248, 256, 258, 276, 301,
 311, 314, 316, 329, 345–346, 353,
 364–365, 386, 388, 396–397, 399, 436,
 439, 443, 452, 463–464, 478, 508, 521,
 583–584, 594–595, 597, 599, 603, 651
LEOP (Launch and Early Orbit Phase), 470–471, 489, 647
libration mode, 72, 302, 305
libration points, 107–108, 651
limit cycle, 141, 160, 302, 324–326
line of apsides, 84–85, 96, 98, 116, 144
linearized unperturbed spacecraft motion, 138
link availability, 456, 464
link layer data processing, 464
liquid apogee motor (LAM), 136, 233
Index

liquid propellant rockets, closed cycle, 193–195
open cycle, 193–195
LISA Pathfinder spacecraft, 279
local time coverage, 125
Long March launch vehicle, 248
long-term stability, 67, 70, 299, 432
longitude evolution following east burn, 141
longitude station-keeping, 141–142
longitudinal drift, 100
loss of signal, 315, 416, 425, 474, 476
low Earth orbit see LEO
low-thrust missions, 161–168, 210
low-thrust trajectories, 161–168
luni-solar perturbations, 102–103, 136–137
M
magnetic bearings, 309, 510
magnetic torque, 303–304
magneto-plasma dynamic (MPD), 211
magnetometer, 318
maintainability, 515, 614–615, 650
Mars Pathfinder Mission, 172
mass movement, 307
material review board (MRB), 628–629, 632
maximum power-point trackers, 349
mean anomaly, 87, 93
mean longitude free drift, 142
mean motion, 87, 91
mechanical ground support equipment, 568–569
Medium Earth Orbit (MEO), 397, 595
memory load command frame structure, 453
memory shape alloys, 497
method of the variation of orbital elements, 94
MetOp, 439, 461, 511, 667, 675
structure configuration, 278, 280, 283
minimum drift orbit, 126
mission analysis, 111–174
categories, 114, 168
operational and design issues, 132–133
system aspects, 111, 117
mission duration, 327–328, 333, 350–351, 355, 615
mission elapsed time, 490
mission objectives, 5–6
mission objectives and requirements, 6
mission phases, 149, 151, 443, 449, 551
mission planning system, 489–491
mission rehearsals, 492
mission requirements, 6
mission specification, 114–116
missions, 3–4
mode control unit (MCU), 349
model philosophy, 561–564
antenna test model, 566–567
configuration model, 566–567
development model, 562–564, 567, 570
electrical model, 562, 566, 570
flight model, 551, 557, 562–563, 566–567, 570, 572
protolflight model, 563, 566, 572
qualification model, 562, 566, 571
structure model, 564–565
thermal model, 565
modulation, 468, 472
Molniya orbit, 98, 118, 145–146, 584
moment of inertia, 62, 67–68, 72, 74, 222
moment-of-momentum, 53–54
conservation, 63
rate of change, 55
momentum,
bias, 60, 63–64, 66, 70–72, 293
dumping, 303
effect of external forces on, 52
management system, 289
storage, 289, 292
storage torquers, 307–309
vector, 54, 66, 71, 82, 97
wheels (MWs), 308
Monitoring and Control System (MCS), 472, 474, 476, 483–486
multiple coverage, 129–130
multiple rigid bodies of a more general nature, 62
multi-staged launch vehicles, 228–231
Murphy’s law, 609, 627
N
n-plane polar constellations, 131
n-type contact, 333
Nadezhda spacecraft, 592
Navstar Global Positioning System (GPS), 127, 311
Near Earth Asteroid Rendezvous (NEAR) Shoemaker spacecraft, 1, 147
Neptune, 37–39, 83, 116, 151, 173, 360
New Horizons spacecraft, 1
Newtonian dynamics, 49–50
Newtonian equations, 73
Newtonian mechanics, 52
Newton’s law of gravity, 81
Newton’s second law of motion, 82
NiCd batteries, 346
nodal regression, 97, 123
Non-Conformance Report (NCR), 483, 628, 632
non-conservative forces, 58
non-geocentric orbits (lunar and interplanetary), 111
non-precessional response, 300
non-spinning (inertial) frame of reference, 70
nuclear fission systems, 344
number of satellites as function of orbit height and minimum elevation, 132
nutation, 63, 69, 71–72, 295–298, 300–301, 445, 511
nutation damping, 298
nutation frequency, 69
nutation mode, 69, 71–72, 295–298, 300
O
observatory mode, 144
OERSTED spacecraft, 598
Olympus spacecraft, 513
on-board computers (OBCs), 44, 321, 589
on-board data handling (OBDH) system, 442, 581
on-station operations, 113
operational environment, 251
operational status, 442, 553, 637
ORBCOMM, 127, 132, 396
orbit constants, 82–83
orbit design, 122–127
orbit equation, 82, 92
orbit intersection with Earth’s shadow, 118–119
orbit lifetime, 122
orbit manoeuvre planning, 476, 478
orbit perturbations, 93–106
orbit plane motion, 123
orbit selection, 351
orbit specification, 351
orbit transfer, 114–116
orbital elements, 92–94, 98, 103, 145, 164
orbital energy equation, 58
orbital ephemeris, 474
Orion Crew Exploration Vehicle, 242, 245
oscillatory modes, 71–73, 298–300
oscillatory nutation mode, 69, 71–72
osculating elements, 94
outgassing, 40
out-of-plane forces on geostationary orbit, 137
overcharge factor, 350
overhead pass duration, 118
P
p-type material, 330, 333
packet header, 446, 454
packet telecommand, 452–455
packet telemetry, 446–447
data flow, 447
parabolic trajectories, 88–89
parallel axis theorem, 76
particle dynamics, 81–91
particle ejection, 52
patched conic examples, 148–154
patched conic method, 152, 161
parts, 618–622
failures, 620
preferred parts list, 622
procurement and controls, 620–622
passive thermal control, 375–381
heat pipes, 376–379
heaters, 380–381
insulation systems, 379–380
two-phase systems, 376–379
payload, 3–5, 7–8, 113, 440, 443, 460, 462
payload data, 113, 440, 443, 460
payload experiments and instruments, 462
payload processors, 460
peak heating rate, 172
peak-heating load, 172
Pegasus launch vehicle, 12–14, 34, 230, 232, 243, 248
performance plateaux, 133
periapsis (or perifocus), 84–85, 93
perpendicular axis theorem, 76
personal global communication systems, 127
perturbing forces, 81, 93–94
phase-shift keying (PSK), 402–403, 406, 455, 463
photovoltaic devices, 328
PID control algorithm, 321–326
implementation for roll error, 322–323
PID controller, on/off system, 325–326
Piezoelectric Vibratory Gyroscopes (PVGs), 320
Index 687

ping-pong method of EastWest station-keeping, 142
Pioneer spacecraft, 40
pitch, 309
Planck, 386, 388
planetary alignment, 121–122
planetary atmospheric entry and aeronomaneuvering, 168–174
planetary entry vehicles, 173
planetary swing-by maneuvers, 151–152
plasma tails, 156
platform operation, 462
Pluto, 1, 36–39, 83, 91, 116, 154, 360, 645
position versus time relationship, 86, 89–90
potential energy (PE), 58
power budget, 350–355, 425–427
 evaluation, 351–352
 mission specific design issues, 350–351
 typical structure, 352
power control and distribution network, 329
power control and distribution unit (PCDU), 350
power conversion unit (PCU), 350
power profile for payload and subsystem operation, 354
power system, 4, 327–355
 efficiencies definition, 353–354
 elements, 328–330
 failure, 337
 sizing, 338
precession of gyroscope, 60
precession of line of apside, 96
precession of orbit’s plane, 54
precession of spinner due to torque, 69
precessional angular rate components, 296–297
precessional response, 300
pre-launch environment, 11–12
pre-launch phase, 112
pre-phase A, 645, 656–657, 666
preliminary requirements review, 646
primary cosmic radiation, 31
primary energy source, 328–329
primary power system, 330–345
prime contractor, 552, 646–647
principal axes, 61–62, 64–65, 75
printed circuit board (PCB), 381, 465
Proba-1 spacecraft, 346
product assurance (PA), 607–642
 in AIV, 626–629
 in manufacturing, 626–629
 in operations, 637
software, 638–640
 in technology development, 640–642
products of inertia, 61, 65, 74–75
Project Design Center (PDC), NASA/JPL, 657
proportional, integral and differential algorithm
 see PID control algorithm
Proton launch vehicle, 248
proton radiation, 28–29
proximity links, 456–457
pulse code modulation (PCM), 443
 telecommand standards, 451–452
 waveforms, 450
Q
quadrature phase-shift keying (QPSK), 403, 463
R
radiated emissions, 532–34
radiated susceptibility, 534
radiation damage, 40, 42–43, 333, 343, 355, 618
radiation environment, 27, 42, 45, 144, 321, 333, 343, 351, 363, 464, 583, 598–600, 651
radio frequency beacons, 318
radio frequency interference (RFI), 529
radioactive decay process (RTG), 329
radioisotope thermoelectric generators (RTGs), 341–344
 advantages, 343
 disadvantages, 343
 possible fuels and their performance, 342
 system performance, 344
ranging, 455–456
rate gyroscope, 69, 323
rate-integrating gyro (RIG), 319
reaction control equipment (RCE), 444
reaction wheels (RWs), 308
red/green tag items, 573
redundancy status, 443
Reed Solomon (RS) block code, 448
reference point, 51, 54, 58–60, 76
reference sensors, 310
 potential accuracies, 311
 types, 312–319
regenerative fuel cells, 329, 341
regional coverage geometries, 132
regression of line of nodes, 55
relative velocity diagram, 152–153
reliability, 6–8, 128, 134, 166
reliability theory, 615–617
rendezvous, 121, 147, 158
reorientation manoeuvres, 297
repointing, 292, 299–300, 323–324
of spin axis, 66–68
request for deviation (RFD), 629
request for waiver (RFW), 629
response equations, 294, 296–297, 299
restricted three-body problem, 106–109
restricted two-body problem, 82, 162
reticle slits mask detector, 312
reverse thruster, 325
review of design, 547–548, 550, 572
RF transmitters, 532
rigid bodies, angular momentum of, 61–63
rigid body modes, 71–72
Ring Laser Gyroscope (RLG), 319
risk management, 611–612
rocket equation, 2, 57, 208
roll, 307
roll error, 322–325
implementation of PID control algorithm for, 322–323
limit cycle, 324
response, 325
root location diagram, 294, 296–298
Rosetta spacecraft, 1, 158, 385, 462, 498, 501, 645, 652
rotated axes theorem, 76
rotation, 49
rotation matrix, 75
rotational equations, 62
rotational kinetic energy, 63
S
SAR and Interferometric Radar Altimeter (SIRAL), 670, 672–674, 676
satellite constellations, 127–133
Satellite Control Facility (SCF), 451–452
satellite elevation, 117, 128, 416
Saturn, 1, 37–39, 80, 83, 116, 147, 151, 192, 241–242, 320, 343, 346, 360, 448
scanning Earth-horizon sensor, 314
sea launch, 248
secondary energy source, 328–329
secondary power systems, 345–347
sectoral harmonic coefficients, 95, 97
semi-latus rectum, 85
semiconductor materials, 42–43, 331–332, 342
sensors,
categories of, 310
mixed reference/inertial system, 311
see also reference sensors; Sun sensors,
Sentinel spacecraft, 439
sequential design, 655
sequential switching-shunt regulation (S3R), 349
sidereal motion, 124
sidereal period, 123
single event upsets (SEU), 464
single point failure, 308, 319, 614
signal processing, 425, 432, 441, 462
silicon cells, 331, 334, 337
six-plane polar constellation, 131
slant range, 117–118, 127–129
small body orbiter/lander mission, 158
small object missions, 154–160
mission impact upon orbiter and lander system design, 158–160
motion around small, irregularly shaped bodies, 156–158
near-body environment, 154–156
overview, 154
SMART-1 spacecraft, 206
SMOS spacecraft, 558–561
SNAP-19, 344
SOHO spacecraft, 109, 479
solar arrays, 330–338
design, 354
performance figures, 339
regulator, 330
size, 354
spinning satellites, 338
three-axis-stabilized satellite, 338
solar cells, 327, 330, 338, 341
current-voltage characteristics, 331
effects of thickness and fluence, 335
efficiency as function of temperature, 331
interconnections, 337
power-voltage characteristic, 332
solar dynamic systems, 345
solar heat systems, 344–345
solar motion, 124
solar panels, 582, 587–588
solar power assemblies (SPA), 349
solar power satellite systems (SPS), 327
solar radiation,
perturbation, 137
solar radiation pressure (SRP), 103–105
solid polymer electrolyte (SPE), 339, 341
Soyuz launch vehicle, 232, 236, 248
space debris, 34, 46, 98, 113, 276, 478, 602
space-borne observatories, 143–144
space communication protocol standards (SCPS), 457
Index

Space Communications Protocol Specification, 446
Space Race, 9
Space Shuttle, 114, 120, 134, 152
space situational awareness, 478–480
space tourism, 9–10, 190
space weather, 27, 478–479
spacecraft classification, 63
spacecraft-on-a-chip, 604
spacecraft operations, 467, 474, 488, 609, 637
spacecraft propulsion, 202–206
spacecraft structures,
 orientation required, 290
spacecraft systems, types and shapes, 4
SpaceShipOne, 1, 190, 244
spheres of influence, 148
spin axis,
 choice of, 66
 repointing of, 67
spinning aircraft,
 response in axes fixed in structure, 295
 response in non-spinning axes, 296
spinning body, stability, 66
spinning satellites, solar array, 338
spinning spacecraft, 66–70
Split Phase-Level/Phase Modulation (SP-L/PM), 455
SPOT spacecraft,
 imaging system, 127
SS-18 Dnepr launch vehicle, 590, 594, 596
SS-19 Rockot launch vehicle, 594
SS-25 START launch vehicle, 594
stability, 70
star mappers, 317
star pattern constellation, 131
star scanners, 316–317
star sensors, 316–317
 classification, 316–317
star trackers, 317
static Earth-horizon sensor, 314
station acquisition, 136, 233
STD16 star sensors, 316
steering laws, 163–165
stepper motors, 514–515, 518
stoichiometric mixture, 191
streets of coverage, 129–130
STRV-1 spacecraft, 314
subsystems, 4–8
SULA BOOM, mechanism, 503, 507
Sun sensors, 312–313
 with digital output, 313
Sun-synchronism, 124–125
Sun-synchronous orbit, 118, 121, 125
surface impact speed, 159–160
Surrey Satellite Technology Ltd (SSTL), 396, 576
survivability, 128
susceptibility testing, 534–535
Swarm spacecraft, 279
swing-by manoeuvres, 151–152
swing-by passage behind planet, 152
swing-by passage in front of planet, 153
switch mode power converters, 541
SYLDA5, 237
Syncom II spacecraft, 395
system architecture, 440–442, 463
system context, 441
system design review (SDR), 646
system engineering, 5–8, 643–678
System for Nuclear Auxiliary Power (SNAP-19), 344
system level interactions, 338
system requirements review (SRR), 646
T
Taurus launch vehicle, 243, 248
Team-X, NASA/JPL, 657–658
telecommand, 449–455
decoder, 451–452
user interface, 449–450
telemetry, command, data handling and processing system, 439–466
 relationship with other subsystems, 440–441
telemetry data,
 classification, 442–443
 encoding, 444–445
 formatting, 445–446
telemetry downlink, 440
telemetry list and data format, 445–446
telemetry transmitter, 448, 530–531, 677
temperature control see active thermal control
 and passive thermal control
terminal devices, 459
terminator, 125, 314, 362
TerraSAR-X spacecraft, 439, 490
tesseral harmonic coefficients, 95–96
tesseral harmonics, 97
test review board (TRB), 482, 555, 632
testing, 557–561
 acoustic, 557–558
 electromagnetic compatibility, 560–561
 environmental, 555–556
 modal survey, 557
 physical properties, 559
testing (continued)
 pressure, 558
 random vibration, 557–558
 shock, 558
 sinusoidal vibration, 557
 static load, 557
 thermal balance, 560
 thermal vacuum, 557
Thermal Control System (TCS), 351
thermoelastic effect, 329, 342
three-axes-stabilized craft with momentum bias, 70
three-axis-stabilized satellite, solar array, 338
three-axis-stabilized spacecraft with no momentum bias, 64–65
three-body problem, 106–109
thrust vector, 57, 60, 135, 143, 162–164, 224, 295
thrusters, 301–303
 advantages, 302
 disadvantages, 302
 on/off control, 323–325
 orbit-changing, 301
time-division multiplexing, 444
Titan, 1, 38–39, 168, 173, 448
titanium/silver (Ti/Ag), 333
torque,
 height-dependent, 306
 precession of spinner due to, 69
torque components, 66, 69
torque impulse, 56, 59–60, 71
torque pulses, 298–300, 324–325
torque requirements, 291
torque responses, 299
torquers, 301–309
 advantages and disadvantages of various types, 302
torques, 301–309
 external, 303–307
 internal, 307–309
total dose damage, 465, 585
tracking and data relay satellite system (TDRSS), 4, 439, 506, 651
tracking, telemetry and command (TT&C), 424
trajectory dynamics, 51–58
transfer of reference point, 59, 76
Transfer Orbit, 16, 115, 121, 134, 136, 149, 167, 205, 224, 226, 232–233, 236, 301, 476–477, 482, 551, 554, 560, 584
transfer velocity definitions, 115
transistor power amplifier, 435–436
TRANSIT system, 127
transition flow, 169
translational kinetic energy, 57–8
translational motion,
 effect of external force, 52
 under propulsion, 56–57
 with no propulsion, 52–53
triaxiality, 97, 99–100, 136–138
true anomaly, 84–85, 87–88, 90–91, 120, 127, 130, 132, 290
Tsinghua spacecraft, 592, 600
tundra orbit, 6, 146–147
two-body problem, 81–91
 solution, 84
two-line elements, 477, 479
U
ultraviolet radiation, 376
Ulysses spacecraft, 114, 152–154
Ulysses-type swing-by, 152–154
universal asynchronous receiver and transmitter (UART), 465
uplink frequencies, 455
Uranus, 37–39, 83, 116, 151, 360
V
 V slit sensor, 313–314, 317
 Van Allen radiation belts, 27, 39, 42, 144, 147, 209
Vanguard spacecraft, 1, 327
Vega launch vehicle, 243
velocity relationships, 88
Venus, 37–39, 83, 116, 151, 360
Venus Express spacecraft, 8, 651
verification, 545–574
 by analysis, 549, 557
 by inspection,
 matrix, 548, 550–551, 571–572
 plan, 547–551
 by test, 547, 549, 556, 636
very high-speed integrated circuit hardware description language (VHDL), 466
vibration environment, 12, 267–269, 557–558
Viking lander vehicle, 344
VIKING satellite, 39, 173, 344, 598
Virgin Galactic, 10, 243
virtual channel data units (VCDU), 446, 464
vis-viva equation, 107
vis-viva integral, 83, 88, 115
Viterbi decoding, 449
voltage-controlled oscillator (VCO), 445
Voyager spacecraft, 39, 151
Vulcain 2 engine, 237, 248
Index

W
Walker Delta pattern constellation, 130–131
World Administrative Radio Conference (WARC), 464
worst case analysis, 619

X
XMM/Newton, 390–393
X-ray multi-mirror mission see XMM/Newton

Y
yaw, 64, 76, 203–204, 298, 309, 314, 322–323

Z
zero drift orbit, 126, 397
zonal harmonic coefficients, 95