Contents

Preface ix

List of Contributors xiii

Acknowledgements xv

1 **Synchronization, Arbitration and Choice** 1
 1.1 Introduction 1
 1.2 The Problem of Choice 2
 1.3 Choice in Electronics 3
 1.4 Arbitration 5
 1.5 Continuous and Discrete Quantities 6
 1.6 Timing 7
 1.7 Book Structure 9

Part I 11

2 **Modelling Metastability** 13
 2.1 The Synchronizer 14
 2.2 Latch Model 21
 2.3 Failure Rates 23
 2.3.1 Event Histograms and MTBF 28
 2.4 Latches and Flip-flops 32
 2.5 Clock Back Edge 35

3 **Circuits** 39
 3.1 Latches and Metastability Filters 39
 3.2 Effects of Filtering 41
CONTENTS

3.3 The Jamb Latch 42
 3.3.1 Jamb Latch Flip-flop 45
3.4 Low Coupling Latch 47
3.5 The Q-flop 49
3.6 The MUTEX 50
3.7 Robust Synchronizer 52
3.8 The Tri-flop 55

4 Noise and its Effects 59
 4.1 Noise 59
 4.2 Effect of Noise on a Synchronizer 62
 4.3 Malicious Inputs 63
 4.3.1 Synchronous Systems 63
 4.3.2 Asynchronous Systems 66

5 Metastability Measurements 69
 5.1 Circuit Simulation 69
 5.1.1 Time Step Control 70
 5.1.2 Long-term τ 71
 5.1.3 Using Bisection 73
 5.2 Synchronizer Flip-flop Testing 75
 5.3 Rising and Falling Edges 79
 5.4 Delay-based Measurement 81
 5.5 Deep Metastability 83
 5.6 Back Edge Measurement 95
 5.7 Measure and Select 97
 5.7.1 Failure Measurement 97
 5.7.2 Synchronizer Selection 98

6 Conclusions Part I 101

Part II 103

7 Synchronizers in Systems 105
 7.1 Latency and Throughput 105
 7.2 FIFO Synchronizer 108
 7.3 Avoiding Synchronization 110
 7.4 Predictive Synchronizers 113
 7.5 Other Low-latency Synchronizers 115
 7.5.1 Locally Delayed Latching (LDL) 115
 7.5.2 Speculative Synchronization 118
CONTENTS

7.6 Asynchronous Communication Mechanisms (ACM) 125
 7.6.1 Slot Mechanisms 128
 7.6.2 Three-slot Mechanism 128
 7.6.3 Four-slot Mechanism 130
 7.6.4 Hardware Design and Metastability 132
7.7 Some Common Synchronizer Design Issues 133
 7.7.1 Unsynchronized Paths 133
 7.7.2 Moving Metastability Out of Sight 135
 7.7.3 Multiple Synchronizer Flops 138

8 Networks and Interconnects 143
 8.1 Communication on Chip 143
 8.1.1 Comparison of Network Architectures 147
 8.2 Interconnect Links 150
 8.3 Serial Links 155
 8.3.1 Using One Line 155
 8.3.2 Using Two Lines 157
 8.4 Differential Signalling 159
 8.5 Parallel Links 161
 8.5.1 One Hot Codes 162
 8.5.2 Transition Signalling 166
 8.5.3 n of m Codes 167
 8.5.4 Phase Encoding 168
 8.5.5 Time Encoding 175
 8.6 Parallel Serial Links 180

9 Pausible and Stoppable Clocks in GALS 183
 9.1 GALS Clock Generators 184
 9.2 Clock Tree Delays 188
 9.3 A GALS Wrapper 190

10 Conclusions Part II 193

Part III 197

11 Arbitration 199
 11.1 Introduction 199
 11.2 Arbiter Definition 200
 11.3 Arbiter Applications, Resource Allocation Policies and Common Architectures 202
CONTENTS

11.4 Signal Transition Graphs, Our Main Modelling Language 205

12 Simple Two-way Arbiters 209
12.1 Basic Concepts and Conventions 209
 12.1.1 Two-phase or Non-return-to-zero (NRZ) Protocols 210
 12.1.2 Four-phase or Return-to-zero (RTZ) Protocols 211
12.2 Simple Arbitration Between Two Asynchronous Requests 212
12.3 Sampling the Logic Level of an Asynchronous Request 217
12.4 Summary of Two-way Arbiters 222

13 Multi-way Arbiters 225
 13.1 Multi-way MUTEX Using a Mesh 226
 13.2 Cascaded Tree Arbiters 227
 13.3 Ring-based Arbiters 230

14 Priority Arbiters 235
 14.1 Introduction 235
 14.2 Priority Discipline 236
 14.3 Daisy-chain Arbiter 238
 14.4 Ordered Arbiter 239
 14.5 Canonical Structure of Priority Arbiters 240
 14.6 Static Priority Arbiter 241
 14.7 Dynamic Priority Arbiter 246

15 Conclusions Part III 253

References 255

Index 261