Contents

Preface xi

List of Abbreviations xv

1 What is QoS? 1
 1.1 QoS Definition 1
 1.2 Applications 5
 1.3 QoS Metrics 7
 1.4 The Concept of Traffic Flow and Traffic Class 8

2 QoS-based Networks 9
 2.1 Heterogeneous QoS-based Networks 9
 2.2 The Concept of Autonomous Systems 13

3 QoS-oriented Technologies 15
 3.1 Layered Architecture and Remote Systems Connection Protocol Stack 15
 3.2 ATM 22
 3.3 MPLS 27
 3.4 QoS-IPv4 29
 3.4.1 Integrated Services 30
 3.4.2 Differentiated Services 31
 3.4.3 Mixed IntServ-DiffServ Approach 33
 3.4.4 DSCP Assignment 35
 3.5 QoS-IPv6 39
 3.6 Class of Service Full IPv6 Network (CSF6N) 41
 3.7 Full IPv6 Switched Network (F6SN) 41

4 Network Control Issues 45
 4.1 QoS Management Functions 45
 4.1.1 Over Provisioning 45
 4.1.2 Flow Identification 46
 4.1.3 Resource Reservation and CAC 46
 4.1.4 Traffic Control (Shaping) 50
 4.1.5 Scheduling 51
 4.1.6 Queue Management 53
 4.1.7 Flow Control 54
 4.1.8 QoS Routing 57
 4.2 The Risk of No Control 58
 4.2.1 Flow Identification 59
 4.2.2 CAC 64
 4.2.3 Shaping 69
 4.2.4 Resource Allocation 71
5 QoS Interworking in Heterogeneous Networks
5.1 Scenarios and Problems
5.2 Vertical QoS Mapping
 5.2.1 Information Transport Technologies
 5.2.2 Formal Relation Among the Layers
5.3 Horizontal QoS Mapping

6 QoS Architectures
6.1 End-to-End Quality of Service: State-of-the-Art
6.2 Architectures for QoS Control
6.3 “Technology”-centric QoS Architecture
6.4 IP-centric QoS Architecture
 6.4.1 Architectures and Data Encapsulation
 6.4.2 IntServ-IP-centric QoS Architecture
 6.4.3 DiffServ-IP-centric QoS Architecture
6.5 MPLS-centric QoS Approach
 6.5.1 MPLS-integrated QoS Approach
 6.5.2 Full-MPLS-centric QoS Approach
6.6 IPv6-centric QoS Approach
6.7 QoS Overall Architecture
6.8 QoS Architectures Comparison
 6.8.1 Comparison of the Features
 6.8.2 SLS Separation versus Aggregation

7 Signalling over QoS Architectures
7.1 Introduction
7.2 RSVP QoS Signalling
 7.2.1 RSVP Architecture
 7.2.2 RSVP Objects
 7.2.3 RSVP Entities and Resource Reservation Applied to QoS Architecture
 7.2.4 RSVP Functional Specification (RSVP Packet Format)
 7.2.5 Summary of RSVP Protocol Mechanism
 7.2.6 RSVP Extension for DiffServ QoS Signalling
7.3 RSVP-TE
 7.3.1 Introduction
 7.3.2 New Objects Definition
 7.3.3 Control Actions
 7.3.4 RSVP-TE and Scalability
 7.3.5 Remarks
7.4 NSIS QoS Signalling
 7.4.1 Requirements and Application Scenarios
 7.4.2 NSIS Structure
7.5 Q–BGP (QoS-enhanced–Border Gateway Protocol)
 7.5.1 Introduction to BGP
 7.5.2 BGP Message Formats
 7.5.3 Additional Information Carried by Q–BGP
7.6 Final Remarks Concerning Signalling

8 Vertical QoS Mapping
8.1 Reference Architecture
8.2 Control Modules
Contents

8.3 Technology Independent Layers’ Implementation 205
8.4 Technology Dependent Layers’ Implementation 209
8.5 TI-SAP Implementation 211
8.6 Vertical QoS Mapping Problems 218
 8.6.1 Change of Information Unit 219
 8.6.2 Heterogeneous Traffic Aggregation 220
 8.6.3 Fading Effect 221
 8.6.4 Joint Problems 221

9 Algorithm for Vertical QoS Mapping 225
 9.1 Introduction 225
 9.2 Network Optimization: State of the Art 226
 9.3 The SI-SAP QoS Mapping Problem 226
 9.3.1 System Constraints and Assumptions 226
 9.3.2 Stochastic Fluid Model and Optimization Problem 226
 9.3.3 Reference Chaser Bandwidth Controller (RCBC) 230
 9.3.4 Alternative Approach: Equivalent Bandwidth Heuristic 234
 9.4 Performance Analysis 235
 9.4.1 Encapsulation 235
 9.4.2 Traffic Aggregation 242
 9.4.3 Fading Counteraction 244

10 QoS Gateways for Satellite and Radio Communication 247
 10.1 Role of QoS Gateway 247
 10.2 Protocol Optimization Through Layers (POTL) 249
 10.3 Protocol Stack Optimization Action 250

11 Bandwidth Allocation for Satellite Environment 253
 11.1 Introduction 253
 11.2 System Scenario and Control Architecture 253
 11.2.1 Network Topology 253
 11.2.2 Simple Channel Model 254
 11.3 General Bandwidth Allocation Architecture 256
 11.3.1 Local Controller 257
 11.3.2 NCC Allocation 258
 11.4 Pareto Optimality of the Bandwidth Allocation 259
 11.5 Resolution Approaches 260
 11.5.1 Utopia Minimum Distance Method Algorithm 260
 11.5.2 Fixed Allocation 262
 11.5.3 Heuristic Allocation 262
 11.5.4 Value Function 263
 11.5.5 Nash Bargain Solution 263
 11.5.6 QoS-constrained Solutions 264
 11.6 Numerical Examples 267
 11.6.1 Bandwidth and Packet-Loss Probability 268
 11.6.2 Performance Evaluation in Presence of QoS Constraints 268

12 Transport Layer over Satellite 273
 12.1 Introduction 273
 12.2 The TCP Protocol 274
12.3 The TCP Congestion Control
 12.3.1 Slow Start 276
 12.3.2 Congestion Avoidance 276
 12.3.3 Fast Retransmit/Fast Recovery 277
12.4 TCP over Satellite Networks 281
12.5 TCP Parameters 282
 12.5.1 The Real Test-bed 282
 12.5.2 Test Application 283
 12.5.3 Buffer Length and Initial Window (IW) 283
12.6 Complete Knowledge TCP 287
12.7 Further Improvement of the Performance 290

References 295

Index 303