Contents

List of Contributors
Preface

1. **Sustainable Development Strategies: An Overview**
 Vincenzo Piemonte, Marcello De Falco, and Angelo Basile
 1.1 Renewable Energies: State of the Art and Diffusion
 1.2 Process Intensification
 1.2.1 Process Intensifying Equipment
 1.2.2 Process Intensifying Methods
 1.3 Concept and Potentialities of Bio-based Platforms for Biomolecule Production
 1.3.1 Biogas Platform
 1.3.2 Sugar Platform
 1.3.3 Vegetable Oil Platform
 1.3.4 Algae Oil Platform
 1.3.5 Lignin Platform
 1.3.6 Opportunities and Growth Predictions
 1.4 Soil and Water Remediation
 1.4.1 Soil Remediation
 1.4.2 Water Remediation
 Acknowledgement
 References

2. **Innovative Solar Technology: CSP Plants for Combined Production of Hydrogen and Electricity**
 Marcello De Falco
 2.1 Principles
 2.2 Plant Configurations
 2.2.1 Solar Membrane Reactor Steam Reforming
 2.2.2 Solar Enriched Methane Production
 2.3 Mathematical Models
 2.3.1 Solar Enriched Methane Reactor Modelling
 2.3.2 Membrane Reactor Modelling
 2.3.3 WGS, Separation Units and the Electricity Production Model
 2.4 Plant Simulations
3. Strategies for Increasing Electrical Energy Production from Intermittent Renewables

Alessandro Franco

3.1 Introduction

3.2 Penetration of Renewable Energies into the Electricity Market and Issues Related to Their Development: Some Interesting Cases

3.3 An Approach to Expansion of RES and Efficiency Policy in an Integrated Energy System

3.3.1 Optimization Problems

3.3.2 Operational Limits and Constraints

3.3.3 Software Tools for Analysis

3.4 Analysis of Possible Interesting Scenarios for Increasing Penetration of RES

3.4.1 Renewable Energy Expansion in a Reference Scenario

3.4.2 Increasing Thermoelectric Generation Flexibility

3.4.3 Effects of Introducing the Peak/Off-Peak Charge Tariff

3.4.4 Introducing Electric Traction in the Transport Sector: Connection between Electricity and Transport Systems

3.4.5 Increasing Industrial CHP Electricity Production

3.4.6 Developing the Concept of ‘Virtual Power Plants’

3.5 Analysis of a Meaningful Case Study: The Italian Scenario

3.5.1 Renewable Energy Expansion in a Reference Scenario

3.5.2 Increasing Thermoelectric Generation Flexibility

3.5.3 Effects of Introducing a Peak/Off-Peak Charge Tariff

3.5.4 Introduction of a Connection between Electricity and Transport Systems: The Increase in Electric Cars

3.5.5 Increasing Industrial CHP Electricity Production

3.6 Analysis and Discussion

3.7 Conclusions

Nomenclature and Abbreviations

References

4. The Smart Grid as a Response to Spread the Concept of Distributed Generation

Yi Ding, Jacob Østergaard, Salvador Pineda Morente, and Qiuwei Wu

4.1 Introduction

4.2 Present Electric Power Generation Systems
5. **Process Intensification in the Chemical Industry: A Review**
Stefano Curcio

5.1 Introduction 95
5.2 Different Approaches to Process Intensification 96
5.3 Process Intensification as a Valuable Tool for the Chemical Industry 97
5.4 PI Exploitation in the Chemical Industry 100
5.4.1 Structured Packing for Mass Transfer 100
5.4.2 Static Mixers 100
5.4.3 Catalytic Foam Reactors 100
5.4.4 Monolithic Reactors 100
5.4.5 Microchannel Reactors 101
5.4.6 Non-Selective Membrane Reactors 101
5.4.7 Adsorptive Distillation 102
5.4.8 Heat-Integrated Distillation 102
5.4.9 Membrane Absorption/Stripping 102
5.4.10 Membrane Distillation 103
5.4.11 Membrane Crystallization 104
5.4.12 Distillation-Pervaporation 104
5.4.13 Membrane Reactors 104
5.4.14 Heat Exchanger Reactors 104
5.4.15 Simulated Moving Bed Reactors 105
5.4.16 Gas-Solid-Solid Trickle Flow Reactor 105
5.4.17 Reactive Extraction 106
5.4.18 Reactive Absorption 106
5.4.19 Reactive Distillation 106
5.4.20 Membrane-Assisted Reactive Distillation 106
5.4.21 Hydrodynamic Cavitation Reactors 106
5.4.22 Pulsed Compression Reactor 107
5.4.23 Sonochemical Reactors 107
5.4.24 Ultrasound-Enhanced Crystallization 108
5.4.25 Electric Field-Enhanced Extraction 108
5.4.26 Induction and Ohmic Heating 108
5.4.27 Microwave Drying 109
5.4.28 Microwave-Enhanced Separation and Microwave Reactors 109
5.4.29 Photochemical Reactors 110
5.4.30 Oscillatory Baffled Reactor Technologies 111
5.4.31 Reverse Flow Reactor Operation 111
8. Inside the Bioplastics World: An Alternative to Petroleum-based Plastics 181
Vincenzo Piemonte

8.1 Bioplastic Concept 181
8.2 Bioplastic Production Processes 183
 8.2.1 PLA Production Process 183
 8.2.2 Starch-based Bioplastic Production Process 185
8.3 Bioplastic Environmental Impact: Strengths and Weaknesses 186
 8.3.1 Life Cycle Assessment Methodology 186
 8.3.2 The Ecoindicator 99 Methodology: An End-Point Approach 187
 8.3.3 Case Study 1: PLA versus PET Bottles 189
 8.3.4 Case Study 2: Mater-Bi versus PE Shoppers 191
 8.3.5 Land Use Change (LUC) Emissions and Bioplastics 193
8.4 Conclusions 195
Acknowledgements 196
References 196

9. Biosurfactants 199
Maria Giovanna Martinotti, Gianna Allegrone, Massimo Cavallo, and Letizia Fracchia

9.1 Introduction 199
9.2 State of the Art 200
 9.2.1 Glycolipids 201
 9.2.2 Lipopeptides 201
 9.2.3 Fatty Acids, Neutral Lipids, and Phospholipids 204
 9.2.4 Polymeric Biosurfactants 204
 9.2.5 Particulate Biosurfactants 205
9.3 Production Technologies 205
 9.3.1 Use of Renewable Substrates 205
 9.3.2 Medium Optimization 209
 9.3.3 Immobilization 211
9.4 Recovery of Biosurfactants 212
9.5 Application Fields 213
 9.5.1 Environmental Applications 213
 9.5.2 Biomedical Applications 217
 9.5.3 Agricultural Applications 220
 9.5.4 Biotechnological and Nanotechnological Applications 221
9.6 Future Prospects 225
References 225
10. Bioremediation of Water: A Sustainable Approach
Sudip Chakraborty, Jaya Sikder, Debolina Mukherjee, Mrinal Kanti Mandal, and D. Lawrence Arockiasamy

10.1 Introduction
10.2 State-of-the-Art: Recent Development
10.3 Water Management
10.4 Overview of Bioremediation in Wastewater Treatment and Ground Water Contamination
10.5 Membrane Separation in Bioremediation
10.6 Case Studies
 10.6.1 Bioremediation of Heavy Metals
 10.6.2 Bioremediation of Nitrate Pollution
 10.6.3 Bioremediation in the Petroleum Industry
10.7 Conclusions

List of Acronyms
References

11. Effective Remediation of Contaminated Soils by Eco-Compatible Physical, Biological, and Chemical Practices
Filomena Sannino and Alessandro Piccolo

11.1 Introduction
11.2 Biological Methods (Microorganisms, Plants, Compost, and Biochar)
 11.2.1 Microorganisms
 11.2.2 Plants
 11.2.3 Plant-Microorganism Associations: Mycorrhizal Fungi
 11.2.4 Compost and Biochar
11.3 Physicochemical Methods
 11.3.1 Humic Substances as Natural Surfactants
11.4 Chemical Methods
 11.4.1 Metal-Porphyrins
 11.4.2 Nanocatalysts
11.5 Conclusions
List of Symbols and Acronyms
Acknowledgments
References

12. Nanoparticles as a Smart Technology for Remediation
Giuseppe Chidichimo, Daniela Cupelli, Giovanni De Filpo, Patrizia Formoso, and Fiore Pasquale Nicoletta

12.1 Introduction
12.2 Silica Nanoparticles for Wastewater Treatment
 12.2.1 Silica Nanoparticles: An Overview
 12.2.2 Preparation of Nanosilica
 12.2.3 Removal of Dyes by Silica Nanoparticles
 12.2.4 Removal of Metallic Pollutants by Silica Nanoparticles

List of Acronyms
References
Contents

12.3 Magnetic Nanoparticles: Synthesis, Characterization and Applications 305
12.3.1 Magnetic Nanoparticles: An Overview 305
12.3.2 Synthesis of Magnetic Nanoparticles 306
12.3.3 Characterization of Magnetic Nanoparticles 315
12.3.4 Applications of Magnetic Nanoparticles 316
12.4 Titania Nanoparticles in Environmental Photo-Catalysis 317
12.4.1 Advanced Oxidation Processes 317
12.4.2 TiO₂ Assisted Photo-Catalysis 320
12.4.3 Developments in TiO₂ Assisted Photo-Catalysis 324
12.5 Future Prospects: Is Nano Really Good for the Environment? 326
12.6 Conclusions 328
List of Abbreviations 328
References 329

Index 349