Index

absorption
 membrane 102–103
 reactive 106
acetylaceionate, ferric 211
Acid Orange 10/12 302
acids
 2,4-dichlorophenoxyacetic 285
 fatty 204, 277
 lignite humic 280
 MCPA 286
 metal fatty acid salts 309
 oleic 307
 recovery 167
 SCOA 215
acidulation 184
actinobacteria, marine 199
active contactor 126
adapted separation 212
added-value services 86
adsorption
 adsorptive distillation 102
 reactive 140–141
 Remazol Red 3BS 301
advanced oxidation processes 317–320, 322
aerobic metabolism 242
aerosol technologies 314
Ag, see silver
“ageing effect” 269
agricultural applications, BS 220–221
agricultural by-products 164
agro-food industry 98–99
algae
 algae oil platform 11
 biofuel production 163–165
 micro-, see microalgae
 “temple pond alga” 248
alkaline lipase (AL) 217
alkaline metals 320
alkoxysilane 298
alkyl esters 166–167
alumina, silica-alumina NPs 304
Amara’s law 327
amino groups, protonated 302
amphiphilic molecules 199–200, 277
amylosome 158, 186
anaerobic digestion 9
anaerobic metabolism 242
analysis
 integrated 53
 software tools 62
anatase structure 321, 324
ancillary services 56, 63, 86
animal fats, biodiesel production 166
annular reaction zone 36
anthropogenic organic pollutants (AOP) 270, 274
anthropogenic waste 242
anti-adhesive activity 218–220
antiferromagnetic FeP nanorods 310
antifungal compounds 220
antimicrobial activity, BS 217–218
aquatic systems, organic pollutants 243
Archimede technology 26, 28
aromatic hydrocarbons 260
 see also polycyclic aromatic hydrocarbons
arsenic
 contaminated groundwater 257
 mobilization 216
 resistance to 256–257
artificial neural network (ANN) modeling 210
atomic arrangement 315
Au, see gold
backup energy source 26, 31, 43
bacteria
 bioethanol production 162–164
 BS 199–200, 204, 210–222, 225
 endophytic 256
 halophilic 259
 LAB 162
 marine actinobacteria 199
 rhizosphere 221, 274–276
 soil remediation 269–271, 276–280
 water bioremediation 242, 246–253, 256–261
baffled reactor technologies, oscillatory 111
 “baking”, biomass 277
 balancing market 90
 band-gap structure 318
 barley 157
 base capacity 63, 69
 base plants, thermoelectric 57
 batteries, lithium-ion 307
 beads, polystyrene magnetic 316
 bed, packed 37
 benzene 129
 bicontinuous microemulsions 312
 bio-based platforms, biomolecule production 8–13
 bio-emulsifyers (BE) 201
 structures 202–203
 bioaugmentation 241–242, 273
bioavailability 269
biocatalysis 260
biochar 276–277
bioconversion 274
biodegradation 14, 17
 biodegradable polyester (PE) 191
 soil contaminations 270–274, 278–280
 water pollutants 243, 251–255, 260
biodiesel 166
 vegetable oil ester based 169–170
bioethanol 153–166
biofilms
 lipopeptides 212
 microbial 218–219
biofuels 153–173
 second-generation 99, 156
biogas platform 9
biointicators 248
biological control 220
biomass
 algae 11
 “baking” 277
 “high moisture content” 9
 lignocellulosic 160–162
 microbial 249
biomass energy 3
 (non)traditional 153–154
 sustainable 84
biomedical applications, BS 217–220
biomimetic catalysis 282
biomolecules, production 8–13
bioplastics 181–196
biopolymers, production capacity 13
bioprocessing, CBP 162
bioreactors, MBR technology 253–255
biorefinery processes 8–9
bioremediation 269–277
 electro- 259
 membrane separation 252–256
 water 241–261
biostimulation 241, 273
biosurfactants (BS) 199–225
 microbial origin 279
 physicochemical remediation 277
 polymeric 204
recovery 212
structures 202–203
biotechnology 221
biphenyls, polychlorinated 276, 278
blending 166, 185–186
Bornholm distribution grid 91–92
Box-Benken design 322
Bragg angle 315
Brazil, biofuel production 156
brevifactin 223
“Bright Green Island” strategy 93
brown-rot fungi 243
bubble-less aeration MBR 254
Burman, see Plackett–Burman-based
statistical screening
burst nucleation 308

C₂ yield 135
CAES (compressed air energy storage)
54, 57–58
calcination 224
calcium phosphates 221
Candida albicans 218–220
capacity, base-variable 63, 69
Carbofuran 323–325
carbon dioxide, see CO₂
carbon-encapsulated MNP 314
carbon nanotubes 326–327
catalysis
bio- 260
biomimetic 282
heterogeneous 6, 106, 285, 319
nanocatalysts 284
photo- 317–326
semiconductor catalysts 285
catalytic active membranes 125
catalytic foam reactors 100
catalytic suspensions 318
catalytic tubular reactors 29
catechol 272
cavitation reactors, hydrodynamic
106–107
CBP (consolidated bioprocessing) 162
cells, immobilization 211–212, 257
cellulose 8–12, 181, 270–271, 318
bioethanol production 158–164
cellulosomes 161–162
central power generation system 82
“cheaper, smaller, cleaner” 95
chemical industry, PI 95–113, 119–143
chemical producers, bio-based 8
chemical reactions, see reactions
chemical remediation 17–18, 280–286
chemically modified starch 185
chemistry, green 221
chemosensors, silica NP-based 305
Chernobyl, nuclear disaster 274
chitosan 313
4-chloro-2-methylphenoxyacetic acid
(MCPA) 286
chlorobenzene group 315
CHP, combined heat and power
systems, see combined heat and
power systems
chromium, hexavalent 258
clays 298
clusters
micelles, see micelles
nanosilica 298–299
zirconium o xo 286
CMC (critical micelle concentration),
200
0 277
CO₂
emissions 32, 75
yield 40–42
see also greenhouse gases
coagulants, natural 250
cobalt NP 308, 312
co-/counter-current configuration 38
cogeneration, industrial 72–73
cogenerative configurations 46
cold storage 26
colloidal particles 299
colonization step 211
combination of operating units 139
combined heat and power (CHP)
systems 51
industrial 65
Italy 67–74
micro 85, 90–93
system optimization 57–59
combined production plants, hydrogen and electricity 25–46
combustion drying, pulse 111–112
combustion engines, ICE 29
compost 276–277
bioremediation 245
“designed” 247
compressed air energy storage (CAES) 54, 57
concentrating solar power (CSP) 25–46
MS–CSP 27–28
conductivity, thermal 34–35, 38
consolidated bioprocessing (CBP) 162
constructed wetland technology (CWT) 250
contactor, active 126
contaminants 242
removal efficiencies 255–256
contaminated soils 267–297
treatment cost 268
contamination, by nanomaterials 327
continuous process, starchy mass fermentation 159
continuous production cycles 71
coprecipitation 305–307
core-shell structure 304–305, 314–315
corn 157
bioplastics production 183
corn wet mill (CWM) 183
cost
contaminated soils treatment 268
CSP plants 26
coupling
oxidative 134–135
photooxidative 283
cracking, hydro- 128
crisis, economic 3–4
critical micelle concentration (CMC) 200, 277
crosslinking 185–186
crystallization
hydrothermal 304
membrane 104
ultrasound-enhanced 108
cultivation, solid state 205
cyanobacteria 163, 208
β-cyclodextrin, monochloro-triazinyl 300
cyclohexane 128–129
day-ahead market 90
decolorization methods 300
decomposition, thermal 307–310
degradation
degrading microorganisms 269–273
efficiency 319
xenobiotics 282
see also biodegradation
dehydrogenation reactions 129–134
demand
electricity 52
hourly 64
industrial thermal energy 72
power 61
residual 85
supply/demand mismatch 56
denitrification 249, 258–259
Denmark
Bornholm distribution grid 91–92
electricity market 55
wind energy 83–84
DER devices 89–91
“designed” compost 247
destructurized starch 185
devolutilizer 184
dextrose 183
diathermic oil 25
2,4-dichlorophenol 271
2,4-dichlorophenoxyacetic acid 285
diesel, bio-, see biodiesel
diesel-based reverse-micellar microemulsions 216
diffusion, renewable energies 1–4
direct LUC (dLUC) 193
dirhamnolipid 203
distillation
adsorptive 102
distillation-pervaporation 104
distillery wastewater (DW) 213
heat-integrated 102
membrane 103–104
reactive 7, 106, 139–140
distributed generation (DG) 81–93
distribution grid (DG)
 Bornholm 91–92
 see also grid
district heating (DH) systems 51
DONG Energy, bioethanol concept 166
driving forces 121
drying
 microwave 109
 pulse combustion 111–112
dual-emission fluorescent NP 304
dyes 320
 photo-catalysis 322–323
 removal 299–303
 sensitizers 320
dual-emission fluorescent NP 304
dyes 320
 photo-catalysis 322–323
 removal 299–303
 sensitizers 320
eddy currents (ECM) 275
efficiency 5
 degradation 319
 degree of 14–18
 effectiveness factor 34
 PI 121
 policy 57
 removal 255–256
effluent treatment plants (ETP) 247
electric field-enhanced extraction 108
electric vehicles (EV) 54, 64–65, 70–71
electricity
 combined production plants 25–46
 demand 52
 DG 81–93
 excess production 56, 60
 market penetration 55–57
 production increase 51–77
 production model 38–39
 electro-bioremediation 259
 emissions
 agricultural production 189
 CO₂ 32, 75
 exhaust 168–169
 GHG 8, 155–156, 171, 193–195
 LUC 193
 nitrogen oxides 168
 emulsan 203
 emulsification index 210
 end-point approach 187–189
 endophytic bacteria 256
 energy
 backup sources 26, 31, 43
 biomass 3, 84, 153–154
 inexhaustible sources 83
 PES 52
 photovoltaic, see photovoltaic energy
 renewable, see renewable energies
 system integration 57
 system optimization 58
 system scenarios 63, 66
 systems analysis 53
 wind, see wind energy
 energy balance 34
 permeation zone 37
 energy crops 164
 see also biomass
 energy demand, industrial thermal 72
 EnergyPLAN 62, 68
 Enriched Methane (EM) 29, 31–32
 production process layout 34
 ENTSO-E terminology 87
 environmental impact, PLA/PET 191
 environmental photo-catalysis 317–326
 environmental pollutants 267
 enzymatic saccharification and
 fermentation (SSF) 159–161
 equality constraints 60
 equilibrium, methane 29
 Ergun equation 36
 esterification 185
 esters
 alkyl 166–167
 vegetable oil 169–170
 ethanol
 bio-, see bioethanol
 degradation efficiency 319, 322
 etherification 185
ethylene glycol 310
ETP (effluent treatment plants) 247
European Roadmap for Process Intensification 97
European Union
 biodiesel production 166
 renewable energy production 2–3
 renewable energy sources 51
EV (electric vehicles) 54, 64–65, 70–71
 ex situ processes
 bioremediation 242–243
 eco-compatible remediation 268
 nanoparticles 297
 excess electricity production 56
 exportable 60
 exhaust emissions 168–169
 experimental controls, bioremediation 245
 exportable excess electricity production (EEEP) 60
extracellular enzymes 270
extraction
 electric field-enhanced 108
 extractive MBR 254
 metals 251
 reactive 106, 140
 solvent 212
extractor 126
extrusion 185
factorial design 209–210, 322
fats, animal 166
fatty acids 204
 metal fatty acid salts 309
 physicochemical remediation 277
Fe, see iron
fed batch process, starchy mass
 fermentation 159
feed-in tariff (FIT) 1
fengycin 201–202
Fenton reaction 244
fermentation 8–12
 biofuel production 157–164
 bioplastics production 183–184
 BS 209–213
ferric acetylacetonate 211
 ferrites 305–306, 310
 spinel 312
 ferro-/ferri-magnetic materials 306
 fertilizers 27, 189–191, 273
 fine chemicals industry 98
 FIT (feed-in tariff) 1
 flat MR 124
 fluctuating supply 52
 fluids, heat transfer 25
 fluorination 326
 foam fractionation 212, 216
 foam reactors, catalytic 100
 food industry 98–99
 “food versus fuel” 171
 fossil fuels
 consumption 59, 75
 low carbon alternatives 154
 frequency containment/restoration reserves (FCR/FRR) 87
 Froment, see Xu-Froment kinetics model
 FT-IR spectroscopy 315
 fuels, bio-, see biofuels
 Fukushima Daiichi, nuclear disaster 83
 fullerenes 326
 fumed silica NP 299, 304
 functionalization
 sorbents 316
 thiol 304–305
fungi
 bioethanol production 162
 brown-rot 243
 BS 199–200, 204
 mycorrhizal 275–276
 (non-)ligninolytic 269
 soil remediation 269–271, 275–276
 water bioremediation 243, 249, 260
 white-rot 270–271
gas, sweeping 42–43
gas hourly space velocity (GHSV) 39, 42–44
 gas-solid-solid trickle flow reactor 105
gasoline, see biofuels, fossil fuels
GCs (Green Certificates) 1
gelatinization 158
generation
 central power generation system 82
distributed 81–93
small-scale 81, 85
GHG (greenhouse gases) emissions 8
 biofuel production 155–156, 171
 bioplastics 193–195
global oleochemical production 10
global plant simulations 45–46
global warming 81–93
global warming potential 194
glycogen 163
glycol, ethylene 310
glycolipids 199, 201
 physicochemical remediation 277
glycosyl hydrolyses (GHs) 161–162
gold NP 312
grafting process 211
grasses 164
 phytoremediation 274
 vetiver 249, 273
greases, recycled 167
green algae 163
Green Certificates (GCs) 1
green chemistry 221
“green diesel” 167
green solvents 310
greenhouse gases (GHG) emissions 8
 biofuel production 155–156, 171
 bioplastics 193–195
grid
 losses 61
 minimum grid stabilizing production 63, 68
 monitoring and metering systems 86
 recharge from 64, 70–71
 smart, see smart grid
groundwater 250–252
 arsenic-contaminated 257
 heavy metals 303
groups
 chlorobenzene 315
 hydroxyl 186
 protonated amino 302
gypsum 183
halophilic bacteria 259
Haplustox soil 215
heat exchanger reactors 104–105
heat-integrated distillation 102
heat pumps 71–72, 90–91
heat transfer fluids 25
heat transport coefficient 35
heating, induction/ohmic 108–109
heavy metals 219, 303
 bioremediation 256–258
hematite 316
hemicellulose 9–12, 160–161
heterogeneous catalysis 6, 106, 285, 319
heterogeneous transesterification 170
heterotrophs 249
hexagonal mesoporous silica (HMS) 300–301
hexavalent chromium 258
Hg, see mercury
“high moisture content biomass” 9
Hinshelwood, see
 Langmuir–Hinshelwood model
hole–electron pairs 319
hot storage 26
hourly demand 64
HSGZ matrix 287
human health, mixing triangle diagram 188–193
humic acids, lignite 280
humic substances (HS) 278–280, 282
hybrid separation 7, 141
hydro power plants 82
 RH 58, 69
hydrocarbons, biocatalysis 260
hydrocracking 128
hydrodynamic cavitation reactors 106–107
hydrogen
 combined production plants 25–46
 permeability 30
 recovery 136
hydrolases 270–271
hydrolysis 158
 GHs 161–162
hydrophobic agents 299
hydrothermal crystallization 304
Index

hydrothermal procedures 310–311
hydrotreating 128
hydroxides, layered double 214
hydroxyl groups 186
hydroxyl radical 285, 318–319, 322
“Hythane” trademark 32–33

IEB 4
immobilization
 cells 159, 257
 living cells 211–212
 mercury 257
 metals 251
in situ processes
 bioremediation 242–243
 eco-compatible remediation 268
 nanoparticles 297
indirect LUC (iLUC) 193
induction heating 108
industrial cogeneration 72–73
industrial thermal energy demand 72
industrial wastes, re-use 256
industry, chemical 95–113, 119–143
inequality constraints 60
information and communication
 technology (ICT), smart grid 82, 89
inlet methane ratio 42
inorganic membranes 123, 135
integrated analysis 53
intelligent grid management 86
intensification, process, see process intensification
interfacial tension (IFT) 216
intermittent renewables 51–77
Internal Combustion Engines (ICE) 29
interphase contactor 125
inventory, LCA 187
Ireland, electricity market 55–56
iron NP 316
iron oxide NP 306
isobutane 129
isolation, metals 251
Italy
 electricity market 55
 energy system scenarios 66
iturins 201–202
kinetics model, Xu-Froment 34
Knudsen transport 127
Kraft lignin 12
Kyoto Protocol 155
laccase 272
lactic acid bacteria (LAB) 162
land use change (LUC) emissions 193
Langmuir–Hinshelwood model 319
lanthanide metals 320
laser pyrolysis 314
layered double hydroxides (LDHs) 214
leopardite, North-Dakota 280
lifecycle assessment (LCA) 182, 186–187
light shielding effects 321
lignin-degrading enzyme system (LDS) 270
lignin platform 11–12
ligninolytic fungi 269
lignite humic acids 280
lignocellulosic biomass 160–162
lignosulfonates 12
limits, operational 61
lipid synthesis 168
lipidpolysaccharide complexes 199
lipids
 MEL 221
 neutral 204
 trehalose 201
lipopeptides 199, 201
 biofilm production 212
 physicochemical remediation 277
liquid biofuel 154
liquid–solid–solution reaction 310–311
lithium-ion batteries 307
living cells, immobilization 211–212
load
 load-side storage 54, 57
 peak load day 67
 wind energy load factor 53
lokisin 220
losses, grid 61
low carbon energy 154
lower heating value (LHV) 31–32
LUC (land use change) emissions 193
macro-scale 120
magnetic beads, polystyrene 316
magnetic immobilizates 211
magnetic NP (MNP) 305–317
 applications 316–317
 carbon-encapsulated 314
 silica 302–303
magnetic porous silica, titania-coated 326
magnetic separation 305
magnetite 316
magnetite NP 309
magnetization, saturation 313
“making more with less” 95
mannosylerythritol lipids (MEL) 221
marine actinobacteria 199
marine BS 199–200
market
 balancing 90
 day-ahead 90
 Nordic regulating power 89
 real-time 88
market penetration, electricity 55–57
mass balance 34
mass transfer, structured packing 100
Mater-Bi® 181–182, 185
 and PE 191–193
mathematical models, CSP plants 33–39
MCPA (4-chloro-2-methylphenoxyacetic acid) 286
MDEA unit 31
medium optimization 209–211
Mel-A 203
membrane reactors (MR) 6, 29, 104, 120
 modeling 36–38, 41–45
 non-selective 101–102
 Pd-based 136–138
 Pt 124–139
 published papers 124
 solar 31
membranes 122–123
 absorption/stripping 102–103
 catalytic active 125
 crystallization 104
 distillation 103–104
 MBR technology 253–255
membrane-assisted reactive distillation 106
perm-selective 125
selective 37
separation 252–256
vacuum-driven 254
mercury, immobilized 257
meso-scale 120
mesoporous silica, HMS 300–301
metabolism, (an)aerobic 242
metal fatty acid salts 309
metal-porphyrins 282–284
metals
 alkaline 320
 fatty acid salts 309
 heavy 219, 256–258, 303
 hydrogen permeability 30
 lanthanide 320
 metal salts 313
 metallic NP 308
 metallic pollutants 303–305
 noble 320
 transition 320
 waste 251
metering systems, grid 86
methane
 conversion 40–42
 enriched, see enriched methane
 MSR 28, 135–137
 OCM 134–135
methyl ester 170
methylcyclohexane 134
Methylene Blue 323–324
micelles
 CMC 200, 277
 reverse 313
micro-CHP 85
microalgae 11, 247–249
 biofuel production 163–168
 microbial biofilms 218–219
 microbial biomass 249
 microbial surfaces 199
 microbial surfactants 206–208
 microchannel reactors 101
 microemulsions 216
 as nanoreactors 311–313
microemulsions (continued)
- nanoparticles 224
- reverse 312

microorganisms
- bacteria, see bacteria
- bioremediation 269–273
- mycorrhizal fungi 275–276
- source for biosurfactants 279

microreaction technology 96

microspheres 302–303
- titania 326

microwave-assisted solution method 314

microwave reactors 109–110

milling 158
- CWM 183

minimum grid stabilizing production 63, 68

minimum inhibitory concentration (MIC) 218

mixers, static 5, 100

mixing triangle diagram 188–193

MNP (magnetic NP), silica 302–317

mobilization
- arsenic 216
- metals 251

modeling
- ANN 210
- CSP plants 33–39
- wind-water model 67, 74

modular plants, thermoelectric 57

molecular scale 120

molten salts 25, 35
- MS–CSP 27–28

momentum balance 36

monitoring systems, grid 86

monoamine modified silica NP 301–302

monochloro-triazinyl β-cyclodextrin 300

monolithic reactors 96, 100–101

moving bed reactors, simulated 105

MSR (methane steam reforming) 28
- PI 135–137

multi-criteria problems 58

multifunctional reactors 6, 119–121, 141

mycorrhizal fungi 275–276

Na, see sodium

nanocatalysts 284

nanoparticles (NP)
- antiferromagnetic 310
- gold 312
- magnetic, see magnetic NP
- nickel 308
- recovery 298, 304–306
- remediation technology 297–329
- silica 298–305
- silica-alumina 304
- silver 221, 223
- super-paramagnetic 302, 309, 314
- titania 317–326

nanoreactors 311–313

nanostructured semiconductors 317

nanotechnology 221

nanowaste 327

natural coagulants 250

natural gas (NG) pipelines 32

natural surfactants 278–280

NaturalHy project 33

network, neural, see artificial neural network

neutral lipids 204
- physicochemical remediation 277

“next generation biofuels”, see second-generation biofuels

nitrate
- bioremediation 258–259
- groundwater 251

nitrogen oxides emissions 168

noble metals 320

nonligninolytic fungi 269

nonporous membranes 123

nonselective membrane reactors 101–102

nontraditional biomass energy 153–154

Nordic regulating power market 89

normalization, LCA 187

North-Dakota leonardite 280

nuclear disaster
- Chernobyl 274
- Fukushima Daiichi 83

nuclear power plants 82–83

nucleation, burst 308
oats 157
“Ocean Sunrise Project” 164
ohmic heating 108–109
oil-in-water microemulsions 312
oils
 biodiesel production 166–167
 diathermic 25
 recovery 213
 synthetic 27
 vegetable, see vegetable oils
WCO 170
Oilzapper 259
oleic acid 307
oleochemical production, global 10
operational limits 61
optimization
 energy system 58
 medium 209–211
organic compounds, VOC 247
organic-inorganic hybrids 286
organic matter, SOM 269, 278–280
organic pollutants 243, 323
organometallic precursors 307
oscillatory baffled reactor technologies 111
overflow 85
oxidation, advanced processes 317–320, 322
oxidative coupling of methane (OCM) 134–135
oxidoreductases 270
packed bed 37
packing, structured 100
PAH (polyyclic aromatic hydrocarbons) 214–215
 bioremediation 252, 260
 phytoremediation 276
parametric variation 64
partial derivative equation sets 34
pay-back period 194
PCBs (polychlorinated biphenyls) 276, 278
PCL (polycaprolactone) 186
Pd-based MR 136–138
PDDA (poly(diallyldimethylammonium chloride)) 300
PE (polyester), biodegradable 191
peak load day 67
peak/off-peak charge tariff 64, 69–70
pentachlorophenol (PCP) 284
performance indicators, bioremediation 245
perm-selective membrane 125
permeability, hydrogen 30
permeation zone 30, 36
 energy balance 37
persistent organic pollutants 243
PES (primary energy saving) 52
pesticides 189–191
 contaminated soils 278, 286
 groundwater 251
 water bioremediation 242–244, 247
PET (polyethylene terephthalate) 189–191
petrochemical industry, PI 97–98, 119–143
petroleum 164
 bioremediation 259
 petroleum-based plastics 181–196
pharmaceutical industry 98
phase level 97
phase transfer synthetic strategy 311
phenanthrene 276
phenols 272, 323–325
 photo-catalysis 321–322
phosphates, calcium 221
phospholipids 204
 physicochemical remediation 277
photo-activation, semiconductor catalysts 285
photo-catalysis 317–326
 dye sensitized 320
photochemical reactors 110
photooxidative coupling 283
photovoltaic (PV) energy
 EU-27 2
 fluctuating supply 51–52
 Italy 67–74
physical separation, metals 251
physical treatments, remediation 17
physicochemical remediation 277–280
phytoremediation 244, 273–275
PI, see process intensification
pinocytosis 214
pipelines, NG 32
Plackett–Burman-based statistical screening 209–210
plants (industrial)
 power, see power plants
 simulations 39, 45–46
plants (botanical)
 biomass energy 3
 diseases 220
 mycorrhizal fungi 275–276
 phytoremediation 273–275
plastics, bio-, see bioplastics
plug-flow assumption 36
pollutants
 AOP 270, 274
 BS applications 214
 dyes 299–303
 environmental 267
 heavy metals 257
 metallic 303–305
 organic 243, 323
 removal by MNP 316
 poly-(fluorene-co-thiophene) 322
 polycaprolactone (PCL) 186
 polychlorinated biphenyls (PCBs) 276, 278
 polycyclic aromatic hydrocarbons (PAH) 214–215
 bioremediation 252, 260
 phytoremediation 276
 poly(diallyldimethylammonium chloride) (PDDA) 300
 polyester (PE), biodegradable 191
 polyethylene oxide 310
 polyethylene terephthalate (PET) 189–191
 polylactic acid (PLA) 181–182
 and PET 189–191
 polymerization, lactide 183
 polymers
 BS 204
 polymeric membranes 123
 production capacity 13
 polystyrene magnetic beads 316
 polyvinyl-alcohol (PVOH) 186
 porous membranes 123, 135
 porous silica, titania-coated magnetic 326
 porphyrins, metal- 282–284
 power demands 61
 power plants
 nuclear 82
 virtual 54, 66, 87
 pressure drop 41
 primary energy saving (PES) 52
 Priolo (Italy), MS–CSP plant 28
 priority dispatching 71
 Proalcool program 156
 process intensification (PI) 4–8
 chemical industry 95–113, 119–143
 generic principles 121
 petrochemical industry 97–98, 119–143
 published papers 96
 process unit level 97
 product selectivity 127
 propane 134
 prosumer node 91
 protonated amino groups 302
 PROX reactor 31
 modeling 39
 pseudofactins 202
 pulse combustion drying 111–112
 pulsed compression reactor 107
 pumps
 heat 71–72, 90–91
 pumped storage 55–58, 66–69, 74
 PV (photovoltaic) energy
 EU-27 2
 fluctuating supply 51–52
 Italy 67–74
 PVOH (polyvinyl-alcohol) 186
 pyrene 276
 pyrogenic material, recalcitrant 276
 pyrogenic silica NP 299
 pyrolysis 309
 laser/spray 314
quantum dots 316–317
quartz sands 298

reactant distributor 125–126
reaction zone 30
annular 36
reactions
dehydrogenation 129–134
Fenton 244
hydrolysis 158, 161–162
liquid–solid–solution 310–311
polymerization 183
reduction of metal salts 313
secondary 319
transesterification 166–167, 170
WGS 137–139
reactive absorption 106
reactive adsorption 140–141
reactive blending 186
Reactive Brilliant Red 323, 326
reactive distillation 7, 106, 139–140
reactive extraction 106, 140
reactive extrusion 185
reactive separations 96
reactors
catalytic foam 100
catalytic tubular 29
gas-solid-solid trickle flow 105
heat exchanger 104–105
hydrodynamic cavitation 106–107
MBR technology 253–255
membrane, see membrane reactors
microchannel 101
microreaction technology 96
microwave 109–110
monolithic 96, 100–101
multifunctional 6, 119–121, 141
nano 311–313
nonselective membrane 101–102
oscillatory baffled 111
photochemical 110
PROX 31, 39
pulsed compression 107
reverse flow operation 111
simulated moving bed 105
solar-driven chemical 28
sonochemical 107–108
static mixer 5, 100
real-time market 88
rebound effect 52
recalcitrant pyrogenic material 276
recharge from grid 64, 70–71
recovery 127
acids 167
BS 211–216
hydrogen 136
NP 298, 304–306
oil 213
PCP 284
recycle MBR 254–255
recycled greases 167
reduction of metal salts 313
reforming 129, 134
MSR 28, 135–137
Remazol Red 3BS 301
remediation
bio-, see bioremediation
chemical 280–286
eco-compatible 267–297
NP 297–329
physicochemical 277–280
soil and water 13–18
removal
dyes 299–303
efficiency 255–256
renewable energies 1–4
annual growth rate 155
biofuels 99, 153–173
electricity market penetration 55–57
financial organization 4
intermittent sources 51–77
production increase 51–77
volatility 84
renewable portfolio standard (RPS) 66
renewable substrates, BS production 205
reserves, FCR/FRR/RR 87
residence time 42
residual demand 85
resources, mixing triangle diagram
188–193
response surface methodology (RSM)
209–210
retrofit 27, 96, 98
reverse flow reactor operation 111
reverse micelles 313
microemulsions 216
reverse microemulsions 312
rhamnolipid 203
rhizosphere 221, 274–276
ring-opening polymerization 184
river hydro (RH) power 58, 69
RPS (renewable portfolio standard) 66
RSM (response surface methodology) 209–210
rutile structure 321, 324
rye 157

saccharification and fermentation (SSF), enzymatic 159–161
salts
metal 313
metal fatty acid 309
molten, see molten salts
saturation magnetization 313
SCADA 90
scenarios
energy system 62–65
Italy 66–76
Scherrer’s equation 315
SDS (sodium dodecyl sulfate) 214, 281
seaweeds 163–164
second-generation biofuels 99, 156
secondary reactions 319
sectorial decomposition 53
sediments
denitrification 259
organic pollutants 244
selective membranes 37
selective synthesis 311
self-assembly 200
MNP 311, 313
semiconductors
catalysts 285
nanostructured 317
separation
adapted 212
hybrid 7, 141
magnetic 305
membrane 252–256
microwave-enhanced 109–110
physical 251
supercritical 112–113
UES 213
sewage reclamation 247
shell, core-shell structure 304–305, 314–315
shell-and-tube configuration 35
shielding effects 321
“shift effect” 127
shoppers 191–193
short-chain organic acids (SCOA) 215
side-stream MBR 253
Sieverts law 37
silica, titania-coated magnetic porous 326
silica-alumina NPs 304
silica NP 298–305
silicate, sodium 298
silicon tetrachloride 298
silver NP 221, 223
SimaPro7 LCA software 190
simulated moving bed reactors 105
simulations, CSP plants 39
size focusing 308
size reduction 120
small-scale power generation 81, 85
“smaller, cleaner, cheaper” 95
smart grid 81–93
sodium dodecyl sulfate (SDS) 214, 281
sodium silicate 298
software tools 190
analysis 62
soils
contaminated 267–297
decontamination 244
Haplustox 215
organic pollutants 243
remediation 13–18
SOM 269, 278–280
washing 277, 281, 286
sol–gel materials 286
sol–gel process 299, 304
sol–gel spin coating 325
solar-driven chemical reactor 28
solar technology
 CSP 25–46
 see also photovoltaic energy
solid state cultivation 205
solvents
 extraction 212
 green 310
sonication 281
sonochemical reactors 107–108
sophorolipids 203
 production optimization 210
sorbents, functionalized 316
Soxhlet apparatus 281
specific surface area 121
spin coating, sol–gel 325
spinel ferrites 312
spray pyrolysis 314
starch-based bioplastic 181–186
starchy mass 157–160
static mixers 5, 100
statistical screening,
 Plackett–Burman-based 209–210
steam generation unit 27
steam reforming 28, 135–137
steam to carbon ratio 41
storage
 CAES 57
 hot/cold 26
 load-side 54, 57
 pumped 55–57, 66, 74
 supply-side 57
stripping, membrane 102–103
structured packing 100
submerged MBR 253
substrates, renewable 205
sugar platform 10
sugarcane juice 209
super-paramagnetic NP 302, 309, 314
supercritical separation 112–113
supply-side storage 57
supply/demand mismatch 56
supported membranes 123
surface area, specific 121
surface tension 210
surfactants
 bio- 199–225
 for thermal decomposition 307
 microbial 206–208
 natural 278–280
 soil washing 277
 surfactin 201–202
 suspensions, catalytic 318
sustainability
 biofuels 171
 wastewater treatment 248
 water bioremediation 241–261
sustainable bio-energy 84
sustainable development, strategies 1–18
sustainable processes 119
sweeping gas 42–43
Switzerland, electricity market 55–56
synergistic effects 121
 PI 5
syngas 9, 107, 134
synthesis-design-operation optimization
 59
synthetic oils 27
system integration 54, 57
system optimization 58
system security 56
systems analysis 53
“tailored” compost 247
tariff
 feed-in 1
 peak/off-peak charge 64, 69–70
 “temple pond alga” 248
tetra-pyrrole ring 282
thermal conductivity 34–35, 38
thermal decomposition 307–310
thermal energy demand, industrial 72
thermal power plants 82
thermoelectric (TE) plants 57
thermoplastic starch (TPS) 185–186
thiol functionalization 304–305
titania
 NP 317–326
 thin films 323
 titania-coated magnetic porous silica 326
toxicity risk 14–16, 242–244, 251–252,
 258–260, 267
toxicity risk (continued)
 bioplastics 187
 BS 217–218
 nanomaterials 327
 nanoparticles 298–299
traction, electric 64–65, 70–71
traditional biomass 153
transesterification
 biodiesel production 166–167
 heterogeneous 170
transition metals 320
transmembrane pressure 253
transmission system operators (TSO) 86
trehalose lipids 201
triazines 271
trickle flow reactor, gas-solid-solid 105
tubes-and-shell configuration 37
tubular reactors
 catalytic 29
 MR 124
ultrasound-enhanced crystallization 108
ultrasound separation technology (UES) 213
United States, biofuel production 156
unsupported membranes 123
up-scaling, hybrid separation 141
UV exposure 318–319
vacuum-driven membranes 254
variable capacity 63, 69
vegetable oils
 biodiesel production 166–167
 BS production 205
 esters 169–170
 vegetable oil platform 10–11
vehicles, electric, see electric vehicles
vesicular-arbuscular mycorrhiza (VAM) 275
vetiver 249, 273
virtual power plants (VPP) 54, 66
 smart grid 87
volatile organic compounds (VOC) 247
volatility, renewable energies 84
washing, soil 277, 281, 286
waste
 anthropogenic 242
 industrial 256
 nano- 327
 wastewater treatment 247, 250–252, 298–305
 WCO 170
water
 bioremediation 241–261
 DW 213
 groundwater contamination 250–252
 hydro power plants, see hydro power plants
 industrial pollution sources 250
 management 247–250
 usage in biodiesel production 171
 wind-water model 67, 74
Water Gas Shift (WGS) reaction 137–139
Water Gas Shift (WGS) unit 31
 modeling 38–39
water-in-oil microemulsions 312
water remediation 13–18
Web of Science 95
weighting, LCA 187
wetlands, CWT 250
wheat 157
white-rot fungi 270–271
wide area measurement systems (WAMS) 86
wind energy 51–52
 Denmark 83–84
 EU-27 2
 intermittent production 68
 Italy 67–74
 load factor 53
 wind-water model 67, 74
 “wonder grass” 249
X-ray diffraction 315, 323
xenobiotics, degradation 282
Xu-Froment kinetics model 34
yeast 158
 BS production 209
yield
 C₂ 135
 CO₂ 40–42

zeolite-based MR 129
zirconium (IV) propoxide 286
zirconium oxo clusters 286