Contents

Preface to the 2nd edition xi
Preface to the 1st edition xiii
Some Hints for Troubleshooting xv

1 Estimating Credit Scores with Logit

- Linking scores, default probabilities and observed default behavior 1
- Estimating logit coefficients in Excel 4
- Computing statistics after model estimation 8
- Interpreting regression statistics 10
- Prediction and scenario analysis 12
- Treating outliers in input variables 16
- Choosing the functional relationship between the score and explanatory variables 20
- Concluding remarks 25
- Appendix 25
 - Logit and probit 25
 - Marginal effects 25
- Notes and literature 26

2 The Structural Approach to Default Prediction and Valuation

- Default and valuation in a structural model 27
- Implementing the Merton model with a one-year horizon 30
 - The iterative approach 30
 - A solution using equity values and equity volatilities 35
- Implementing the Merton model with a T-year horizon 39
- Credit spreads 43
- CreditGrades 44
- Appendix 50
- Notes and literature 52
 - Assumptions 52
 - Literature 53
Contents

3 Transition Matrices 55
 Cohort approach 56
 Multi-period transitions 61
 Hazard rate approach 63
 Obtaining a generator matrix from a given transition matrix 69
 Confidence intervals with the binomial distribution 71
 Bootstrapped confidence intervals for the hazard approach 74
 Notes and literature 78
 Appendix 78
 Matrix functions 78

4 Prediction of Default and Transition Rates 83
 Candidate variables for prediction 83
 Predicting investment-grade default rates with linear regression 85
 Predicting investment-grade default rates with Poisson regression 88
 Backtesting the prediction models 94
 Predicting transition matrices 99
 Adjusting transition matrices 100
 Representing transition matrices with a single parameter 101
 Shifting the transition matrix 103
 Backtesting the transition forecasts 108
 Scope of application 108
 Notes and literature 110
 Appendix 110

5 Prediction of Loss Given Default 115
 Candidate variables for prediction 115
 Instrument-related variables 116
 Firm-specific variables 117
 Macroeconomic variables 118
 Industry variables 118
 Creating a data set 119
 Regression analysis of LGD 120
 Backtesting predictions 123
 Notes and literature 126
 Appendix 126

6 Modeling and Estimating Default Correlations with the Asset Value Approach 131
 Default correlation, joint default probabilities and the asset value approach 131
 Calibrating the asset value approach to default experience: the method of moments 133
 Estimating asset correlation with maximum likelihood 136
 Exploring the reliability of estimators with a Monte Carlo study 144
 Concluding remarks 147
 Notes and literature 147
Contents ix

7 Measuring Credit Portfolio Risk with the Asset Value Approach 149
A default-mode model implemented in the spreadsheet 149
VBA implementation of a default-mode model 152
Importance sampling 156
Quasi Monte Carlo 160
Assessing Simulation Error 162
Exploiting portfolio structure in the VBA program 165
Dealing with parameter uncertainty 168
Extensions 170
First extension: Multi-factor model 170
Second extension: \(t \)-distributed asset values 171
Third extension: Random LGDs 173
Fourth extension: Other risk measures 175
Fifth extension: Multi-state modeling 177
Notes and literature 179

8 Validation of Rating Systems 181
Cumulative accuracy profile and accuracy ratios 182
Receiver operating characteristic (ROC) 185
Bootstraping confidence intervals for the accuracy ratio 187
Interpreting caps and ROCs 190
Brier score 191
Testing the calibration of rating-specific default probabilities 192
Validation strategies 195
Testing for missing information 198
Notes and literature 201

9 Validation of Credit Portfolio Models 203
Testing distributions with the Berkowitz test 203
Example implementation of the Berkowitz test 206
Representing the loss distribution 207
Simulating the critical chi-square value 209
Testing modeling details: Berkowitz on subportfolios 211
Assessing power 214
Scope and limits of the test 216
Notes and literature 217

10 Credit Default Swaps and Risk-Neutral Default Probabilities 219
Describing the term structure of default: PDs cumulative, marginal and seen from today 220
From bond prices to risk-neutral default probabilities 221
Concepts and formulae 221
Implementation 225
Pricing a CDS 232
Refining the PD estimation 234
Contents

Market values for a CDS 237
 Example 239
Estimating upfront CDS and the ‘Big Bang’ protocol 240
Pricing of a pro-rata basket 241
Forward CDS spreads 242
 Example 243
Pricing of swaptions 243
Notes and literature 247
Appendix 247
 Deriving the hazard rate for a CDS 247

11 Risk Analysis and Pricing of Structured Credit: CDOs and First-to-Default Swaps 249
 Estimating CDO risk with Monte Carlo simulation 249
 The large homogeneous portfolio (LHP) approximation 253
 Systemic risk of CDO tranches 256
 Default times for first-to-default swaps 259
 CDO pricing in the LHP framework 263
 Simulation-based CDO pricing 272
 Notes and literature 281
 Appendix 282
 Closed-form solution for the LHP model 282
 Cholesky decomposition 283
 Estimating PD structure from a CDS 284

12 Basel II and Internal Ratings 285
 Calculating capital requirements in the Internal Ratings-Based (IRB) approach 285
 Assessing a given grading structure 288
 Towards an optimal grading structure 294
 Notes and literature 297

Appendix A1 Visual Basics for Applications (VBA) 299
Appendix A2 Solver 307
Appendix A3 Maximum Likelihood Estimation and Newton’s Method 313
Appendix A4 Testing and Goodness of Fit 319
Appendix A5 User-defined Functions 325
Index 333