INDEX

Abcc9 gene, 126
Acceptable daily intake (ADI), 20
Acetaminophen (APAP; \(N\)-acetyl-\(p\)-aminophenol), 153. See also APAP entries
case study of, 281–283
toxicology of, 188
transcriptomic biomarkers of, 188–189
Acetaminophen exposure, therapeutic, 188–189
Acetaminophen toxicity, metabolomic biomarkers of, 189
Acronyms, related to human health risk assessment, 34–35
Acute myeloid leukemia (AML), 185
Adaptive effects, 16
Adductomics, 179
Adverse effects, 16
Adverse events, phenotypic anchors for, 151
Affymetrix platform, 66, 71
Agent-specific gene-expression profiles, 88, 90
Aggregated Computational Toxicology Resource (ACToR), 49–50
Aggregate exposure, 31
Agilent oligonucleotide microarrays, 106
Air pollution, impact of, 181
Aisaki, Ken-ichi, xi, 323
Akaike’s information criterion (AIC), 241
Aldehyde dehydrogenases, 168
Alternative test methods, promoting, 51
American Industrial Health Council (AIHC), 30
Amgen, Inc., 99, 147
Aminolevulinate synthase 1 (ALAS1), 168
Amyloid precursor protein (APP), 334
Analysis of variance (ANOVA), 68, 159, 160, 162–163, 239, 240, 261. See also ANOVA analyses; Two-stage ANOVA model
Analytical data, significance of, 57
Andersen, Melvin E., xi, 237
Androgens, 306
Animal alternatives, toxicogenomics and, ix, 267–291
Animal exposure levels, extrapolating from, 24
Animal models, 338
Animal testing strategies, 48
Animal-to-human extrapolations, toxicogenomics in, 251–266
Animal toxicity models, need for alternatives to, 268–269
Ankley, Gerald T., xi, 207
Annotation Tools program, 259
ANOVA analyses, 164. See also Analysis of variance (ANOVA)
Antioxidant genes, 165
APAP exposure, 188. See also Acetaminophen (APAP; \(N\)-acetyl-\(p\)-aminophenol)
APAP-induced toxicity, 189
Apical effects, 16
Apoptosis, 17
Applications, of toxicogenomics, ix
Aqp1 gene, 126
Aqp5 gene, 126
Aqp8 gene, 126
Argininosuccinate synthetase (Ass1), 125
Aromatase, 137
ArrayGene software, 257
ArrayTrack software, 73
Arsenic case study, 302–303
Arsenic exposure
environmental, 189–191
epigenomic biomarkers of, 190–191
proteomic biomarkers of, 190
transcriptomic biomarkers of, 189–190
Arsenic toxicity, 189
Assay measurements, variability of, 59

Atp1a1 gene, 126
Atp2b1 gene, 126
Atp2b2 gene, 126
Aubrecht, Jiri, xi, 81
Automated pathway analysis tools, 213
Automated sequencers, 5

Bacterial biosensor-based assays, 85
Basic helix-loop-helix (bHLH) transcription factor, 137
Basic Local Alignment Search Tool (BLAST), 254
Baskerville-Abraham, Irene, xi, 13
Bayesian variable selection, 68
Bayes methods, empirical, 159
BDPE exposure, 91
Benchmark dose (BMD), 241B242. See also BMD values
Benchmark dose analysis, application to time-course formaldehyde exposure, 242–243
Benchmark dose lower (BMDL) confidence limit, 241–242
Benchmark dose method, 239–242
Benchmark dose modeling, 26
Benchmark dose values, 244
Benchmark response (BMR), 26
Benson, William H., xi, 294
Benzene exposure biomarkers of occupational, 185–187
epigenomic biomarkers of, 187
proteomic biomarkers of, 186–187
transcriptomic biomarkers of, 185–186
Benzene-induced genes, 185–186
Benzene toxicity, 185
Benzo(a)pyrene diol epoxide (BDPE), 91
Best practices, for microarray gene-expression data classification, 316–317
β-oxidation enzymes, decreased expression of, 152
Bile salt export pump (BSEP), 154–155
Biliary excretion, 153–154
Bioassays, for drug candidates, 82
"Bio-banks,” 310
Biocarta database, 277
Biochemical pathway, 277–278
Bioconductor/R software, 73
Biofluids, testing, 183
"Bioindicators,” 245, 247
Bioinformatics, 8
considerations related to, 257–262
Bioinformatics tools, Web-based, 258
Biologically-based dose–response (BBDR) models, 26, 27

Biological pathway analysis software package, 164
Biological process analysis, 277–278
Biologics License Applications (BLAs), 314
Biomarker discovery/development, 43
Biomarker identification, comprehensive approach to, 106
Biomarker qualification, at the FDA, 314–315
Biomarker Qualification Data Submission (BQDS), 315
Biomarker Qualification Pilot Process, 312
Biomarker Qualification Review Team (BQRT), 315
Biomarkers, 25, 215–219. See also Epigenomic biomarkers; Genomic biomarkers; Metabolomic biomarker; Predictive biomarkers; Proteomic biomarkers; Toxicogenomic biomarkers of complex environmental exposures, 181
for estrogen exposure, 121–122
of genotoxicity, 103
identifying, 103
interpretation of, 108
molecular, 355
multidimensional, 219
of occupational exposure to benzene, 185–187
utility of, 61, 108
validating, 109
Biomarkers of effect, 57
Biomarkers of exposure, 57
Biomonitoring, 29
Biosensor arrays, for evaluating toxic mechanisms, 86
1,2-Bis(2-chloroethyl)-1-nitroso urea (BCNU), 87–88
Bisphenol A (BPA), 120–121. See also BPA exposure
Bisulfite-PCR pyrosequencing, 187
Bladder cancer, 190
Blood transcriptional profiles, 181
BMD values, 245–246. See also Benchmark dose (BMD)
Boekelheide, Kim, xi, 349
Boverhof, Darrell R., ix, xi, 1, 41
BPA exposure, effect on gene expression in male rat, 133. See also Bisphenol A (BPA)
Breast cancer cell line, hormone-responsive, 135
Bristol-Myers Squibb Co., 331
Bromobenzene, 109
Bromodeoxyuridine (BrdU) labeling, 243
Brown University, 349
INDEX

BSEP inhibition, 155. See also Bile salt export pump (BSEP)
t-Butyl hydroperoxide (t-BuOOH), 87–88
C3b gene, 127–128
C3 gene, 134
C4b gene, 127–128
Cuba, Ebru, xi, 81
Cacna1g gene, 126
Calcium binding protein G, 121
Campion, Sarah N., xi, 349
Cancer
DNA damage owing to, 82
predicting the behavior of, 355
Cancer Assessment Review Committee (CARC),
use of genomic data at, 302
Cancer development, multifaceted nature of, 82
Cancer dose–response assessment, 23–34
Cancer risk assessment(s), 17
dose–response component of, 245
dose–response modeling for, 342
toxicogenomics in, 92–93
Cancer risk assessment guidelines (EPA), 50
Carcinogenesis
differentiating genotoxic from nongenotoxic, 103–105
mutagenic mode of action in, 81–98
Carcinogenesis mechanisms, genotoxic and
nongenotoxic, 82–83
Carcinogenesis toxicogenomics project (Japan), 327
Carcinogenicity, predicting, 102
Carcinogenicity assessment, toxicogenomics in,
341–342
Carcinogenic mode of action (MOA), 50
Carcinogenic processes, studying, 110
carcinoGENOMICS project, 52, 301
Carcinogens
exposure to, 100–101
mutagens as, 83
nongenotoxic, 101–103
Carson, Rachel, 3
Case studies
acctaminophen, 281–283
arsenic, 302–303
conazoles, 306–309
coumarin, 279–280
dibutyl phthalate, 303–306
phenobarbital, 157–170
toxicogenomics, 71–73
using genomic data at the EPA Cancer
Assessment Review Committee, 302
Categorical regression, 26
Cat-tox assays, 86
Ccl2 gene, 127
Ccl6 gene, 127
Ccl11 gene, 127
CDK4, 129
CDK6, 129
CDKN1A, 169
CDkN1a expression, 129
CDKN2A, 191
cDNA array, 216
cDNA microarray methodologies, developments
in, 324
cDNA microarrays, 106, 107, 218
Cell death, inhibition of, 17
Cell models, 255
Cell proliferation measurements, 243
Cellular damage, stress-associated, 152
Cellular models, toxicogenomics-based
approaches to improve, 275–276
Cellular proliferation, lipogenesis and, 169
Cellular stress response, toxicogenomic analyses
of, 92–93
Center for Biologics Evaluation and Research
(CBER), 315
Center for Devices and Radiological Health
(CDRH), 315
Cfh gene, 128
cGMP, 125
Chemical-Activated Luciferase Expression
(CALUX7)
in vitro assays, 311–312
Chemical Assessment and Management Program
(ChAMP), 311
Chemical compounds, assessing carcinogenic
potential of, 52. See also Compound entries
Chemical Effects in Biological Systems (CEBS),
181, 195
Chemical exposure
adverse effects of, 140
early, 185–191
organism response to, 123
Chemical hazard identification tests, demands for
better, 268
Chemical-induced hepatic tumors, 103
Chemical risk assessment
genomic technologies in, 240
mode-of-action framework and, 243–246
validating animal-to-human extrapolations in,
251–266
Chemicals. See also Compound entries
effect on the endocrine system, 119
environmental exposure to, 181
potential effects associated with, 16
potential to induce tumors, 82
screening for modes of action, 118
transcriptional responses to, 216
Chemicals (Continued)
transcriptomics approach to evaluating, 138, 140
tumor-inducing, 100
Chemical screening/prioritization, 300
Chemical-specific adjustment factors (CSAFs), 25
Chemical toxicity, during drug development, 45–46
Chemistry, advancements in, 5
Chemokine receptor 1 (CCR1), 333–334
Childhood, arsenic exposure during, 189
Chromosome damage, cancer and, 82
Chronic disease, gene and environment contribution to, 179
Chtf18 gene, 128
Cisplatin, 90
gene expression profile of, 91
Classification models, 105, 107–110
Classifiers for microarray gene-expression data, 316–317 for predictive toxicology, 53
Clewell, Harvey J., xi, 237
Cluster diagrams, two-dimensional, 339, 340. See also Hierarchical clustering
Cmkor1 gene, 127
CodeLink oligonucleotide microarray, 107, 108
CodeLink platform, 66
Collaboration, effective and productive, 9–10. See also International collaboration
Commercial microarrays, 256–257
Commercial pathway analysis tools, 277
Communication, effective and productive, 9–10
Comparative and Safety Science, 147
Comparative Toxicogenomics Database, 181
Compensatory effects, 16
Complement C3 gene, 127–128
Complement factor I (Cfi) gene, 127–128
Compound administration, gene expression changes in response to, 103
Compounds, mechanisms of action of, 155. See also Chemical compounds; Chemicals
Compound selection, toxicogenomics applied to, 334–336
Compound toxicity investigations, hepatocyte systems for, 270–271
Computational methods, 157
Computational sciences, advancement of, 1
Conazole fungicides, 308–309
Conazoles case study, 306–309
Connective tissue activating peptide (CTAP-III), 187
Constitutive androgen/androstane receptor (CAR), 165, 307, 308, 309
Contaminants, emerging, 212
Copeland Bill, 3
Core “omics” technologies, 5
Cosmetics, testing on animals, 51
Coumarin 7-hydroxylation (7-HC), 279
Coumarin case study, 279–280
Coumarin-induced in vivo toxicity, predictability of, 280
Crick, Frances, 4, 5
crit.fun function, 162
Critical effects, 16 identifying, 19
Critical Path Initiative, 49
Critical Path (C-Path) Institute, 315
Cross-species comparison, 61
Cross-species extrapolations, in toxicogenomics, ix, 9
Cross-species studies, toxicogenomics in, 252
Cumulative exposure, 31
Cumulative risk assessments, 31–32
Cx3cl1 gene, 127
Cxcr4 gene, 127
Cyclin-dependent kinase inhibitors, 129
CYP1B1 expression, 262
CYP2B6, 165
CYP2E1, 153
CYP3A4, 165
CYP51, 306, 307
CYP450 enzyme activity, 272. See also Cytochrome P450 entries
Cyproconazole, 307
Cysteine-rich protein 61 (Cyr61), 124–125
Cytochrome P450 3A enzymes (CYP3A), 338–339. See also CYP3A4
Cytochrome P450 (CYP450) induction/biosynthesis, 271. See also P450 enzymes
Cytochrome P450s (CYPs), 307, 308, 309. See also CYP450 entries
Cytokines, 130
Daphnia Genomics consortium, 211
Daston, George P., xi, 117
Data consistent, 44
laboratory-generated, 58
misinterpretation or overinterpretation of, 58
validation and benchmarking of, 33
Data analysis, 194–195
tools and approaches for, 257–264
Data analysis methods, need for, 353–354
Databases. See also Comparative Toxicogenomics Database; Human metabolomics database (HMDB)
for expressed sequences, 259–260
gene-expression, 103
gene expression profile, 108
genomic, 242
for identifying orthologous relationships, 258
linked, 261
for pathway analysis, 277–278
ToxRefDB, 49
of transcriptional changes, 340–341
Data-driven analysis methods, 276
Death-associated protein kinase 1 (DAPK1), 191
Death-promoting factor, 131
Decrease in \(\text{HBD1} (\text{DEFB1}) \) mRNA expression, 190
Deep-sequencing technologies, 5
\(\text{DEFB1} \) mRNA expression, decrease in, 190
DEG identification approaches, 70–71. See also
Differentially expressed genes (DEGs)
DEG lists
gene selection methods for identifying, 71–73
intra-laboratory concordance in, 74
poor overlap of, 66
ranking genes on, 67–68
Degrees of freedom, 69
DEG selection approaches, comparison studies
for evaluating, 68
Delft, Joost H. M. van, xi, 267
Descriptive toxicology, 3
Diagnostic fingerprint identification, 215–216
Dibutyl phthalate case study, 303–306
Diethylnitrosamine (DEN), 105
Diethylstilbestrol, 134
Differentially expressed genes (DEGs), 66–77,
276, 305. See also DEG entries
approaches for detecting, 67–68
different ways of identifying, 67–70
reproducibility of, 66–67
DIGE (differential gel electrophoresis), 222
Dimethyl arsenic acid (DMA), 302–303
Discovery Toxicology, Bristol-Myers Squibb Co., 331
Disease, gene–protein interactions and, 178
Disease models, transcriptional profiling of,
338–339
Dix, David J., xi, 293
DNA, discovery of, 4–5
DNA-adduct breakage detection assays, 83
DNA adducts, measuring/comparing, 91
DNA damage
biological pathway triggering and, 93
chemicals/drugs and, 101
owing to cancer, 82
DNA-damage-responsive genes, 111
for detecting genotoxicity, 83–87
DNA-damaging agents/chemicals, 87–88
differentiating, 90
DNA hypomethylation, global, 190–191
DNA methylation, 183, 184
altered, 187
DNA microarray experiments, sample size in,
73–76
DNA microarrays, 210–211, 275, 315–316
DNA-reactive/nonreactive genotoxicants,
90–91
DNA sequence, understanding, 6
Dombkowski, Alan, xi, 251
Domestic standardization activities, 325–328
Domestic Substances List (DSL), 310
Dose-additive approach, 31
Dose-dependent treatme nt effect, 134
Dose-dependent trends, 163
Dose-dependent trend test, 169
Dose-duration–response, 26
Dose level, in study design, 155–156
Dose–response analysis, 151. See also
Noncancer dose–response
schematic for, 136
toxicogenomics and, ix, 9
transcriptomics and, 131–135
Dose–response assessment, 14–15, 16, 19,
54–56. See also Biologically-based
dose–response (BBDR) models; Cancer
dose–response assessment
current issues and trends in, 25–27
Dose–response curves
analysis of, 264
extrapolating, 55–56
Dose–response data, transcriptomic, 237–250
Dose–response effects, quantifying, 351
Dose–response microarray data, flowchart
analysis of, 240
Dose–response modeling, 245
for cancer risk assessment, 342
Dow Chemical Company, 41, 251
Draft Companion Guidance for the
Pharmacogenomics Guidance, 312, 314
Drinking water, contaminated, 189
Drug candidate liabilities, evaluating with
toxicogenomics, 336–337
Drug candidates
bioassays for, 82
safety assessment of, 46
toxicology of, 149
Drug development
toxicogenomics in, 149–157
toxicogenomic strategies in, 339–343
Drug discovery, 45
toxicogenomic strategies in, 333–339
Drug-induced disruption, of BSEP transport function, 154–155
Drug-induced toxicity, 153
Drug-induced toxicity mechanisms, toxicogenomics for, 339–341
Drug safety evaluation, transcriptional profiling in, 331–347
Drug safety evaluation endpoints, integrating toxicogenic data with, 342–344
E2, VEGF expression and, 124
Early chemical exposure, toxicogenomic biomarkers of, 185–191
E–arrays method, 159, 161–162, 164
E–arrays patterns, 161–162
EC50 values, 264. See also Median effective dose (ED50)
ECHA Guidance on Information Requirements and Chemical Safety Assessment, 51
Ecological risk assessments, toxicogenomics in, 207–235
Ecometabolomics studies, 223–224
Ecotoxicogenomics, 208–210
integrated, 224–225
overview of, 209
practice of, 210–219, 219–224
promise of, 227
Ecotoxicogenomics research/studies, 214–215
assessment of the practice of, 226 mechanistic, 212–213
published, 225
Ecotoxicology proteomics-based, 219 research in, 208
EE exposure. See also Ethynyl estradiol (EE2); 17α-Ethynyl estradiol (EE)
effect on gene expression in male rat, 132–134
gene expression modification by, 128–130
prenatal, 138
uterine temporal response to, 131, 132
EE gene upregulation, 127
EE gene-upregulation effect, 126–127
EE-induced gene expression changes, 123
Efficacy models, transcriptional profiling of, 338–339
Eisen diagram, of gene expression, 139
Emerging contaminants, 212
Empirical Bayes method for microarrays, 159. See also E–arrays method
Endocrine active chemicals, dose–response curve for, 131–132
Endocrine activity, evaluating, 118
Endocrine disrupting chemicals (EDCs), 140, 216–217
Endocrine disruption, during development, 138
Endocrine glands, 118
Endocrine system, 118
Endocrine toxicity, genomics in characterizing, 117–146
Endothelial nitric oxide synthase 3 (Nos3; eNOS), 125
Endpoints, in study design, 155–156
Engineering, advancements in, 5
“Enriched” gene ontology (GO) analysis of, 213
Ensembl database, 258
Entrez Gene IDs, 260
Entrez Genomes database, 258
Environmental arsenic exposure, 189–191
Environmental exposures, 179–180
Environmental monitoring, 218–219
Environmental Protection Agency (EPA). See EPA entries; United States Environmental Protection Agency (U.S. EPA)
Environmental stress response (ESR) genes, 87
Environmental tobacco smoke, 192
Eotaxin, 127
EPA activities, to develop a regulatory framework, 295–312
EPA Cancer Assessment Review Committee (CARC), use of genomic data at, 302
EPA cancer risk assessment guidelines, 50
EPA Chemical Assessment and Management Program (ChAMP), 311
EPA policy framework, developing, 295–298
EPA Risk Assessment Forum (RAF), 297
EPA risk assessments, genomics applications in, 298–300
EPA Science to Achieve Results (STAR)
Bioinformatics Center, 303
EPA technical activities, 300–302, 317
ePathArt, 277
EPA ToxCast™ program, 32–33, 49–50, 53, 298, 301, 311
EPA toxicity testing strategy, review of, 297
Ependymin, 213
Epigenetic modifications, 184
Epigenomic biomarkers of arsenic exposure, 190–191
of benzene exposure, 187
Epigenomics, 183–164
ER agonists, 132–134
Estrogen(s) important physiological roles of, 137
synthetic, 120–122
uterine response to, 128
Estrogen exposure biological response to, 135
Food and Drug Administration (FDA) (Continued)
draft guidance for industry, 92
genomics applications at, 313–315, 317
initiatives of, 49
Food Quality Protection Act (FQPA), 23
Formaldehyde studies, 151
Foster, William R., xii, 331
Frank effects, 19
F statistics, 163
F tests, 163
Functional relationships, understanding, 33
Future research needs, for toxicogenomics in
drug safety, 344–345
Future toxicity testing, 48–49
Fxyd1–7 genes, 126
Gadagbui, Bernard, xii, 13
GADD45, 84, 91
Gadd45alpha gene, 128
GADD45B, 168
Gadd45beta gene, 106
Gadd45gamma gene, 128, 129
Gallhager, Kathryn, xii, 293
γ-secretase inhibitors, 334
Gastrointestinal toxicity, 334
GenBank database, 259
Gender specificity, of estrogenic responses,
135–138
GeneChips, 103
Gene–environment interactions, 178
Gene expression
tests of, 108, 148
dose–response curve for, 134
Eisen diagram of, 139
environmental impact on, 180–181
Gene expression analysis
global, 118, 119–120
methods for, 157
Gene expression changes
chemical-induced, 120–121
in earthworms, 214
from exposure to EE, 134
identifying, 123
Gene expression data, 276
from fetal studies versus juvenile rat, 122
Gene-expression databases, 103
Gene-expression information, standardization of,
323–329
Gene expression microarray technology,
238–239
Gene-expression/pathology profile database,
281–282
Gene expression patterns, examining, 351
Gene expression profiles, 217, 306
compound-induced, 279
databases of, 108
hierarchical clusters of, 161
success of, 355
Gene expression profiling, 87, 274
studying organ-specific toxicity using,
147–176
systematic evaluation of, 90
utility of, 134–135
Gene expression responses, 42, 56
measuring, 59
Gene expression signatures, 44, 90
Gene expression studies
design of, 155–157
endpoint and dose-level considerations for,
155–156
tissue selection for, 156–157
Gene identification methods, assessing the
performance of, 70–71
Gene lists, irreproducible, 77
GeneLogic, 45, 282
Gene mutations, cancer and, 82
Gene ontology (GO) analysis, 186
Gene ontology categorization, 151–152
Gene ontology consortium, 277
database of, 242
Gene ontology terms, 123
Gene–protein interactions, 178
Genes
as biomarkers of chemical exposure, 121
estrogen sensitivity of, 138
genotoxic stress-responsive, 89
homologous and orthologous, 254
partitioning at the level of biochemical
pathways/biological processes, 277–278
ranking on DEG list, 67–68
transcriptional changes of, 152
Gene selection approaches, effect of, 73
Genes, Environment, and Health Initiative, 195
Gene Set Enrichment Analysis (GSEA), 194,
264, 278
Gene signatures, 152
Genetic toxicology, toxicogenomics in, 92–93
Gene transcripts, as biomarkers for estrogen
exposure, 121–122
GENIPOL, 211
Genistein, 120–121
Genistein exposure, effect on gene expression in
male rat, 133
GenMAPP database, 277
Genome sequencing, 87
Genome sequencing projects, success of, 148
Genomewide association studies (GWAS), 178, 195
Genomewide expression technologies, 149
Genomewide gene-expression experiments, 148
Genomewide profiling, 152
Genomic-based approaches, for investigating genotoxic stress response, 87–88
Genomic biomarkers, 58
developing, 113
identifying for nongenotoxic carcinogens, 105–107
Genomic data
availability of, 252
at the EPA Cancer Assessment Review Committee, 302
identifying, 113
integrating in mode-of-action risk assessment, 246–247
molecular findings from, 152
using to understand mode of action, 110–111
Genomic databases, 242
Genomic data set, 304–305
Genomic dose–response evaluations, 247
Genomic hypomethylation, 191
Genomic information, from subchronic toxicology studies, 110
Genomic profiling, evaluating, 110
Genomic research, 93
Genomic Research on All Salmon project (GRASP), 211, 216
“Genomic revolution,” 208
Genomics, 6
in characterizing endocrine toxicity, 117–146
development of, 102–103
major risk assessment applications of, 296
in predicting and understanding nongenotoxic carcinogen mode of action, 99–116
this book and, ix
value of, 47
Genomics applications, at the FDA, 313–315
Genomics era, 4–9
Genomic signals, 208
Genomic signatures, 227, 300–301
well-validated, 113
Genomics Task Force, 296
Genomics technologies, 6–7, 42, 149–150
potential of, 117–118
Genomics White Paper, 296, 297
Genomics Workgroup, 296
Genomic tools
in ecological risk assessments, 217–218
goal in applying, 208–210
mechanistic investigations using, 225–226
Genotoxic carcinogenesis, 82–85
differentiating from nongenotoxic carcinogenesis, 103–105
Genotoxicity
assessment of, 83
bacterial biosensor-based assays for detecting, 85
DNA-damage-responsive genes for detecting, 83–87
Genotoxicity testing battery, 83, 92
Genotoxic mechanisms
gaining insight into, 84–87
toxicogenomic approaches for differentiating, 90–92
understanding, 92
Genotoxic stress, mammalian response to, 88
Genotoxic stress response
genomic-based approaches for investigating, 87–88
p53 pathways and, 91–92
Genotoxic stress-responsive genes, 89
Genotype analysis, 7
Geter, David R., xii, 41
Global expression profiling approach, 106
Global gene expression, of arsenic-exposed groups, 190
Global gene-expression analysis, 118, 119–120
benefits of, 140
Global promoter studies, 183
Global scaling methods, 77
Glutathione conjugation activity, 165
Glutathione redox system, 165–168
GNB2 gene, 169
Gollapudi, B. Bhaskar, ix, xii, 1, 41
Goodsaid, Federico M., xii, 293
GreenScreen, 85
Growth factors, 130
Gucy1a3, 125
Guidance for Industry: E15 Definitions for Genomic Biomarkers, Pharmacogenomics, Pharmacogenetics, Genomic Data and Sample Coding Categories, 328
Guidance for Industry: Pharmacogenomic Data Submissions, 150, 312. See also Food and Drug Administration (FDA)
Guidance on Information Requirements and Chemical Safety Assessment, 51
Guidelines for Carcinogen Risk Assessment, 298
Gulonic acid, 343, 344
Guo, Lei, 65
Haber, Lynne T., xii, 13
Hamadeh, Hisham K., xii, 147
Hamner Institutes for Health Sciences, 237, 311
Hazard assessment, 210
Hazard identification, 14
Hazard identification/characterization, 15–18, 53–54
Hazard index (HI), 31
Hazard quotient (HQ), 30
Hazard/risk assessment, transcriptomic experiments in, 138
HBD1 mRNA expression, decrease in, 190
HBD-1 peptides, 190
Health and Environmental Sciences Institute (HESI) Genomic Committee, 90. See also International Life Sciences Institute–Health and Environmental Sciences Institute (ILSI-HESI)
Health Canada, 20, 23, 24
Heavy metals, transcriptional responses to, 212
Hematopoietic stem cells (HSCs), 185
Heme, 168
Hepatic bile salt uptake, 154. See also Liver entries
Hepatic gene-expression data, 111
Hepatic gene expression profiles, 103, 332
Hepatic transcriptional changes, 343
Hepatocarcinogens, 105
nongenotoxic, 103, 111
Hepatocellular carcinoma, 191
Hepatocyte-based in vitro models, 270–271, 274
Hepatocyte culture systems, 325. See also Hepatocyte sandwich cultures
Hepatocytes
cell cultures of, 271
primary, 271
in toxicological studies, 255
Hepatocyte sandwich cultures, 271–273
Hepatotoxicity, 154–155. See also Liver toxicity
acetaminophen-related, 188
of coumarin, 279
during drug development, 47
of phenobarbital, 157
Hepatotoxicity assessment, conventional assays for, 274–275
Hepatotoxins, treating rats with, 44–45
HepG2 cells, 105
Hexachlorobenzene, 109
Hierarchical Bayes models, 159
Hierarchical clustering, 158–159
High content screening assay, 155
High-dose data generation, 60
High-dose extrapolation, 48
High-dose toxicology responses, 58
High Production Volume (HPV) challenge program, 27
High-throughput approaches, 8
High-throughput gene expression profiling assays, 122
High-throughput screening (HTS), 48
assays, 49
programs, 311
Hill criteria, 16
Hollnagel, Heli, xii, 41
Homologene database, 259–260
Homologous sequences, 255
Homologs, 254
Hong, Huixiao, xii, 65
Hormonal activities, life-stage, 135
Hormone-responsive breast cancer cell line, 135
Hormones, 118–119
Hubbard, Alan E., xii, 177
Human–animal comparisons, models for, 254–255
Human embryonic stem cells, 284
Human exposed populations, proteomic studies of, 183
Human fibroblasts, genomic analysis of, 90
Human genome project, 148
Human genome sequencing, 5
Human health risk assessment, 13–40
acronyms related to, 34–35
defined, 14
paradigm for, 14
Human hepatocytes, 273
Humanized mouse models, 256
Human metabolomics database (HMDB), 185
Human populations, toxicogenomic studies in, 177–206
Human protein-coding genes, 192
Human Relevance Framework, 252–253
Human risk assessment, understanding mode of action for, 110–111
Humans, early chemical exposure in, 185–191
Human transcriptomic studies, 182
Hyperemia, estrogen-induced, 126
Hypermethylation, of TP 53 gene promoter, 191
Hypomethylation genomic, 191
global DNA, 190–191
Iconix, 45
IGFBP3, 130–131
Il4r gene, 127
Immune cells, uterine-infiltrated, 127
Immune suppression, 17
IND applications, 314
Infinium Methylation Assay, 192
Ingenuity Pathway Analysis Tool, 277
Ingenuity pathway/gene function databases, 242
Inhalation Toxicogenomics (ITG) study, 326
InnoMed PredTox effort, 10
“Innovation or Stagnation: Challenge and Opportunity on the Critical Path to New Medical Products,” 49
In silico models, 102
Insulin-like growth factor-1 (Igf1), 130–131
Integrated circuit, development of, 5
Integrated ecotoxicogenomics, 224–225
Integrated Risk Information System (IRIS) Toxicalogical Review, 304
Interdisciplinary Pharmacogenomic Review Group (IPRG), 313
Interim Guidance for Microarray-Based Assays: Data Submission, Quality, Analysis, and Management Considerations, 297
Interindividual variability, in human hepatocytes, 273
Interleukin genes (Il1b, Il6st, Il15, Il18), 127
Internal dose measures, 29
International Agency for Research on Cancer (IARC), 18
International collaboration, on regulatory frameworks, 309–312
International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH), 328
International Life Sciences Institute (ILSI), 18, 43. See also Health and Environmental Sciences Institute (HESI) Genomic Committee project under, 353
International Programme on Chemical Safety (IPCS), 19, 20, 252
International Program on Chemical Safety (IPCS)/OECD Workshop on Toxicogenomics and the Risk Assessment for the Protection of Human Health, 309–310
International standardization activities, 328
International Study of Macro/Micronutrients and Blood Pressure (INTERMAP), 184
Interspecies comparison example, 262
Intralaboratory concordance, experimental design for, 72
In vitro assays integration with whole-animal genomics data, 154–155
use in verifying predictions, 155
In vitro doses, connecting with internal doses, 33
In vitro—in vivo duality, 154–155
In vitro—in vivo parallelogram approach, 257
In vitro liver models, metabolic competence and physiological relevance of, 273–274
In vitro models hepatocyte-based, 270–271
“omics”-based approaches to developing, 270–274
In vitro studies, anchoring, 27
In vitro—in vivo comparisons, 54
In vitro—in vivo translation, using toxicogenomics, 281–282
In vitro toxicogenomic profiling data, 334–335
In vivo “omics,” 311
In vivo toxicogenomic profiling data, 335–336
Ionic transport, changes in, 126
Ionizing radiation, cell exposure to, 88
IPA software package, 164
Ischemia-reperfusion injury, PB effect in, 168
Ito medium term bioassay, 102
Japan, standardization activities in, 323–329
Japanese pharmaceutical companies alliance, 325
Japanese regulatory agencies, 324
Japanese Society of Clinical Pharmacology and Therapeutics, 328
Japan Microarray Consortium (JMAC), 327
Jonkhee’s test, 163
Juvenile female rats, exposure to EE, 134
Juvenile tissues, induced gene expression changes in, 135–136
Kanno, Jun, xii, 323
KARMA database, 259
Kcnj8 gene, 126
Kidney cancer, 190
Kienhuis, Anne S., xii, 267
Kleinjans, Jos C. S., xii, 267
Korean National Institute of Toxicological Research, 311
Kramer, Melissa, xii, 293
Kyoto Encyclopedia of Genes and Genomes (KEGG) database, 242, 277
L5178Y mouse lymphoma cells, 91
Layer ranking algorithm, 68
LDH assays, 278
Lehman-McKeeman, Lois D., xii, 331
Leukemias, lymphocytic, 185
Life stage, of estrogenic responses, 135–138
Linear programming algorithm, 108
Lipid metabolism modification, PB and, 168
Lipocalin 2, 134
Lipogenesis, 169
Liver injury, See also Hepat- entries APAP, 188
Liver injury (Continued)
 compound-related, 154–155
Liver models, in vitro, 273–274
Liver toxicity, 153. See also Hepatotoxicity
 Love Canal, 3
Low-dose extrapolation methods, 56
Lowest observable effect level (LOEL), 55
Lowest observed adverse effect level (LOAEL), 20, 239
Lung cancer, DNA methylation in, 183
Lung carcinogen study, 111
Lymphocytic leukemias, 185

maanova package, 162, 163
Maastricht University, 267
Male rat, agonist effect on gene expression in, 132–134
Male reproductive system, role of estrogen in, 137
Mammalian cells, microarray-based approaches for, 88
Manhattan distance, 159
MAFFinder pathway analysis tool, 277
MAQC1, 315–316. See also Microarray Quality Control (MAQC) project
MAQC2, 316–317
Margin of exposure (MoE; MOE), 30–31
Margin-of-exposure approach, 245
Margin of safety (MOS), 30–31
Martinović, Dalma, xii, 207
Masp1 gene, 128
Massively parallel gene-expression profiling, 315–316
Mass spectrometry. See Matrix-assisted laser desorption ionization/time of flight (MALDI-TOF) mass spectrometry;
 Surface-enhanced laser desorption ionization (SELDI) mass spectrometry; Surface enhanced laser desorption/ionization/time of flight (SELDI-TOF) mass spectrometry
 “Master genes,” 130
Matrix-assisted laser desorption ionization/time of flight (MALDI-TOF) mass spectrometry, 187, 220
Matrix of posterior probabilities, 162
McCarroll, Nancy E., xii, 293
MCF-7, 135
McHale, Cliona M., xii, 177
Mcm3 gene, 128
Mcm7 gene, 128
Mcm4 gene, 128
Mcm6 gene, 128
MDM2 regulator, 168–169
Mechanisms of action. See also Mode of action (MOA)
 of compounds, 155
 transcriptomics and, 123–131
Mechanistic proteomics research, 222–223
Mechanistic research, 215
Mechanistic toxicology, 3
Mechanistic transcriptomic research, 212–215
Median effective dose (ED50), 156. See also EC50 values
Medicine, inorganic substances in, 2
Membrane integrity, determining, 274
Membrane vesicles, 156
Metabolic assays, 274–275
Metabolic fingerprints, 224
Metabolic phenotype, 184
Metabolic profiling, 184–185
Metabolite identification, 224
Metabolite profiles, 224
Metabolites, chemically reactive, 153
Metabolizing capacity, of hepatocyte sandwich cultures, 271–273
Metabolome, 6
Metabolome profiling, 8
Metabolomic biomarkers, of acetaminophen toxicity, 189
Metabolomics, 184–185, 223–224
 studies in, 223
 technologies in, 8
Metabonomic analyses, 342
Metabonomics, 110
MetaCoreJ, 277
Method validation, aspects of, 283–284
Methylation, 7. See also DNA methylation
 Methyl methanesulfonate (MMS), 87–88, 91
 N-Methyl-N′-nitro-N-nitrosoguanidine (MNNG), 87–88
Mianserin, 213
Microarray analyses, 44–45, 213
Microarray approach, for elucidating mode of action, 217
Microarray-based interspecies comparisons, experimental design/analysis for, 263–264
Microarray data, reproducibility of, 66–67
Microarray data analysis, p-value ranking in, 73–76
Microarray dose–response data, statistical methods for analyzing, 239
Microarray experiments, 214
Microarray gene expression data, 110
Microarray platforms, 186
National Institute of Health Sciences (NIHS), 323, 325
National Research Council Committee on Toxicity Testing and Assessment of Environmental Agents, 227
National Research Council of the National Academy of Sciences (NRC/NAS), 14, 297, 350. See also NRC risk assessment paradigm as a driver of toxicogenomics, 48–49
National Toxicogenomics Project (Japan), 108–109
National Toxicology Program (NTP) Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM), 283, 301
Natriuretic peptide receptor 2 (Npr2), 125
NCBI databases, linked, 261
NCBI Homologene database, 259–260
NCBI Taxonomy Identifiers, 260
Nearfield exposure, 28
New Drug Applications (NDAs), 314
New drug candidates, failure of, 268–269
New Energy Development Organization (NEDO), 327
NIEHS, DHHS-Environmental Health Perspectives, 294. See also National Institute for Environmental Health Sciences (NIEHS)
NIHS Toxicogenomics Project, 325
Nitric oxide (NO), 125
4-Nitroquinoline 1-oxide (4NQO), 88
NO-cGMP cascade, 125
Noncancer assessment, 17
Noncancer dose–response, 19–23
Noncancer toxicity, hazard characterization for, 16, 17
Nonclinical Pharmacogenomics Subcommittee (NPSC), 150–151
Nongenotoxic carcinogenesis, 82–83
differentiating from genotoxic carcinogenesis, 103–105
Nongenotoxic carcinogens identifying genomic biomarkers for, 105–107
mode of action of, 99–116
predicting, 101–103
predicting from genomic data, 113
Nongenotoxic carcinogenicity, predicting, 107
Nongenotoxic events, carcinogenicity initiated by, 101
Nongenotoxic hepatocarcinogenicity, gene-expression data to predict, 108–109
Non-Hodgkin lymphoma (NHL), 185
Nonlinear risk assessments, 247
Nonparametric statistical approaches, 77
Nonsteroidal anti-inflammatory drugs (NSAIDs), 188
Nonstringent p-value cutoff, fold-change (FC) ranking with, 76–77
No observable adverse effect level (NOAEL), 20, 55, 120, 131, 239
dose–response curve below, 134
No observable effect level (NOEL), 55, 254, 351
No observable transcriptional effect level (NOTEL), 55, 59, 135
Notch signaling, 334
Novel mechanistic insights, gaining, 213
NRC risk assessment paradigm, 52. See also National Research Council of the National Academy of Sciences (NRC/NAS)
Nrf2, 168
Nrf2-mediated oxidative stress response, 165
Nucleic Acids Research, 259
Observational toxicology, 3
Occupational exposure, to benzene, 185–187
OECD/IPCS advisory group meetings, 310–311
OECD Screening Information Data Sets (SIDS) HPV programs, 310
Office of Pesticide Programs (OPP), 302
Oligonucleotide microarrays, 211
"omic" profiles, 299
"omics" in vivo, 311
in molecular epidemiology, 180
"omics"-based approaches, to developing in vitro models, 270–274
"omics"-based evaluation, of metabolic competence and physiological relevance of in vitro liver models, 273
"omics"-based in vitro–in vivo/interspecies extrapolations, 274–283
"omics" data, integration of, 342–343
"omic signatures," 9
"omics" technologies, 4–9, 224–225, 268
application of, 8, 9
"omics" tools, 226
Oncogene gene promoters, hypomethylation of, 191
Ontology-based analyses, 222
Orc6l gene, 128
Organization for Economic Cooperation and Development (OECD), 216
workshops of, 309–312
Organ-specific toxicity, 153
studying, 147–176
Orthologous relationships resources for identifying, 258
Orthologs, 254
β-Oxidation enzymes, decreased expression of, 152
Oxidative stress, 84–87
Oxidative stressors, 108–109
Oxidative stress response, 165–168
Oxidizing agents, 87–88
P450 enzymes, 165. See also Cytochrome P450 entries
p53 pathway, 84
importance of, 91–92
p53 protein, involvement in benzene toxicity/carcinogenesis, 185
PAM method, 109
Paracelsus, 2–3
Parallelogram model approach, 54, 55, 188, 274
Parametric statistical approaches, 77
Pathway analysis, 150, 278
databases/tools, 277–278
PathwayAssist™, 277
Pathway-based analyses, 222
Pathway Knowledgebase software, 305
Pathway software, 305
Pattern-recognition analyses, multivariate, 224
PB cell transcriptome, 180. See also Peripheral blood (PB)
PB exposure, oxidative damage following, 165. See also Phenobarbital entries
PB-induced xenobiotic metabolism, 165
PB-like inducers, 157
PB transcriptional profiles, 180
PCA technique, 157–158. See also Principal components analysis (PCA)
Pcna gene, 128
PCR-based profiling, 301. See also Polymerase chain reaction (PCR)
PCR subtractive hybridization, 105
Pearson’s correlation coefficient, 73
Percellome method, 325
Percellome Project, 325–327, 328
Percentage of overlapping genes (POG), 66, 70–71, 73. See also POG curves
Perfluorooctanoic acid, 213
Peripheral blood (PB), 180. See also PB entries
Perkins, Roger, xii, 65
Peroxisome proliferator-activated (PPAR)-gamma, 308
Peroxisome proliferators, 107
Personalized medicine, 49
Pfizer Global Research and Development, 81
Pgr, 134
Pharmaceutical industry, 45–46
Pharmaceuticals, progression of, 333
Pharmaceuticals and Medical Devices Agency (PMDA), 328
Pharmacogenomics, 49
PFA position on, 150
Pharmacogenomics Guidance, 312, 313, 314, 332
Phenobarbital (PB), 109. See also PB entries
effects of, 168
genes expressed in response to, 166–167
hepatic transcriptional changes and, 343
rats pretreated with, 168
Phenobarbital case study, 157–170
Phenobarbital data, interpretation of, 164–170
Phenobarbital treatment group, differentially expressed genes in, 164
Phenotypic anchoring, 105, 123, 214, 221, 278
Phenotypic anchors, for adverse events, 151
Phospholipidosis, gene signature for detecting, 335
Physiologically-based pharmacokinetic (PBPK) modeling, 26–27
PI3-K pathway, 130
Pias3 protein, 130
Pigr gene, 127
PIK3CA gene, 169
Plasma proteomes, 221
Platform choice, 193–194
Platforms, concordance among, 75
plotMarginal function, 162
“Plug-in” test, 163
POG curves, 77. See also Percentage of overlapping genes (POG)
Point of departure (POD), 16, 30, 31, 23–24, 56
Poisons, understanding and use of, 2. See also Toxi- entries
Pola2 gene, 128
Polar metabolites, 224
Pold1 gene, 128
Pole gene, 128
Polycyclic aromatic hydrocarbon (PAH) pollution, 218
Polymerase chain reaction (PCR), 4, 217. See also PCR entries
real-time, 106
“Polyomics,” 299
Population monitoring, by toxicogenomics, 192–195
Positive genotoxicity findings, assessing risk and relevance of, 83
Potential Implications of Genomics for Regulatory and Risk Assessment Applications at EPA, 296
Preclinical risk assessment, 151
Predictions, specificity and sensitivity of, 61
Predictive biomarkers, evaluating the candidate list of, 106
Predictive Safety Testing Consortium (PSTC), 10, 93, 109, 315
Predictive toxicogenomics, 150
Predictive toxicology, 45, 53
Predictive transcriptional patterns, 217
Pregnane x receptor (PXR), 165, 307, 309. See also PXR activation
Premanufacturing notices (PMNs), 27
Pre-pubertal tissues, exposure to EE, 137
Preston, Julian R., xiii, 294
Prim1 gene, 128
Primary hepatocytes, 271
Primary human cells, 284
Principal components analysis (PCA), 160, 276. See also PCA technique
Probe hybridization efficiency, 263
Procter and Gamble Company, 117
Programmed cell death, 17
Promoter-reporter constructs, 84–87
Propiconazole, 307
Propiconazole treatment, 307–308
Prostacyclin (PGI2), 125
Protective response pathways, 352–353
Protein adducts, measuring, 179
Protein biosynthesis perturbations, 84
ProteinChip technology, 219–220
Protein expression signatures (PES), 219–222
Proteome, 6
Proteomic approaches, 222–223
Proteomic biomarkers
of arsenic exposure, 190
of benzene exposure, 186–187
Proteomics, 181–183, 219–223
Proteomics research, mechanistic, 222–223
Proteomic studies, of human exposed populations, 183
Proteomic technologies, 7–8
Pro-tox assay, 86
p-value ranking, 163. See also Nonstringent p-value cutoff; t-test p-value ranking in microarray data analysis, 73–76
PXR activation, 168. See also Pregnane x receptor (PXR)
Quantitative structure activity relationships (QSARs), 208
modeling, 27
Rac1 gene, 130
RAD54 promoter activity, 84
Radiation, cellular response to, 88
Random forest, 68
Rank product (RP), 68
Rapid multiplexed assay platform, 122
RASSF1, 191
Rat chemical exposure studies, 71–72
Rat hepatocyte morphology, 272
Rat livers, gene expression results of PB-exposed, 169
Rat nasal epithelium, time-course formaldehyde exposure in, 242–243
Rats
phenobarbital pretreatment of, 168
treating with hepatotoxins, 44–45
REACH guidance documents, 51
REACH Regulation, 51, 268. See also Registration, Evaluation, Authorization, and Restriction of CHemical (REACH)
Reactome database, 277
Readouts, 54
Rec-lac test, 85
Reference dose (RfD), 20
RefSeq database, 259
Registration, Evaluation, Authorization, and Restriction of CHemical (REACH), 27, 50–51, 269, 311. See also REACH entries
Regulatory agencies, bioassays for drug candidates, 82
Regulatory frameworks
EPA activities to develop, 295–312
FDA activities to develop, 312–317
international collaboration on, 309–312
toxicogenomics and, 293–321
Regulatory toxicology, 3
Relative source contribution (RSC), 28
Reproducibility
of differentially expressed genes, 66–67
of microarray data, 66–67
of microarray gene-expression data, 315–316
Research
integrated, 225
in toxicogenomics, ix
Resourcerer database, 259
Retinoid x receptor (RXR), 308
Reverse engineering, 219
“Reverse-PBPK modeling,” 29
Risk assessment(s), ix, 4, 14
consideration for applying toxicogenomics to, 52–60
depth of analysis of, 15
drivers for application of toxicogenomics to, 47–52
ecotoxicogenomic approaches to, 225–227
goal of, 30
historical focus of, 31
preclinical, 151
proteome fingerprinting for, 221–222
toxicogenomic data in, 151–155
toxicogenomics and, 32–34, 150
transcriptomic dose–response data for, 237–250
Risk assessment paradigm
reframing, 349–356
requirements for, 355
Risk assessment process
methods and initiatives related to, 25–27
understanding, 52, 60
Risk assessors, challenges facing, 33
Risk characterization, 15, 29–32
Risk communication, 15
Risk contexts, 210
Risk managers, understanding the needs of, 30
RNA standardization, technical information for, 324
Rodent cancer bioassays, 100
Rodent genomic biomarker discovery studies, 104
Rodent nongenotoxic carcinogenicity, 101
Rodents, mode of action in, 110–111. See also
Federal Insecticide and Rodenticide Act;
Female rat; Juvenile female rats; L5178Y
mouse lymphoma cells; Male rat; Rat
entries; Transgenic mouse model; Two-year
rodent cancer bioassay
Rodent uterotrophic assay, 123
Rosetta error model (REM), 305
Rowlands, J. Craig, xiii, 251
Rpa2 gene, 128
S100 calcium binding protein G, 121
Saccharomyces cerevisiae, 87
S-adenosyl methionine (SAM), 190, 191
"Safe dose," 24
Safety assessment process, toxicogenomics in, 150
Safety evaluation, standardization of
gene-expression information for, 323–329
Safety evaluation studies, in toxicogenomics, ix
Safety factors, 48–49
Sample processing, 193
Sandwich cultures, hepatocyte, 271–273
Sayre, Philip G., xiii, 294
School of Public Health, UC Berkeley, 177
“Science and Decisions: Advancing Risk
Assessment,” 15
Science Policy Council (SPC), 295, 296
Scn6a gene, 126
Scya2 gene, 127
γ-Secretase inhibitors, 334
Self-organizing maps (SOMs), 276
Semiparametric modeling techniques, 194
Sen, Banalata, xiii, 294
Sequences Quality Control (SEQC), 328
Serial analysis of gene expression (SAGE), 7
Shi, Leming, xiii, 65
Shirai, T., 327
Short-term studies, 102
siggenes package, 163
Sigmoidal Dose Response Search (SDRS), 264
Signal-to-noise ratio (SNR), 305
Signal transduction and activator of transcription
(STAT) protein family, 130
Signature expression profiles, 112
Significance analysis of microarrays (SAM), 67,
70, 163
Silent Spring (Carson), 3
Similarity identification, 157–159
Similarity metrics, 159
Single-dose response, understanding, 159–163
Single nucleotide polymorphisms (SNPs), 7, 299
Six-month cancer bioassay, 102
Sk6a1 gene, 126
Sk21a5 gene, 126
Sk22a17 gene, 126
Sko2a1 gene, 126
Sko2b1 gene, 126
Smith, Martyn T., xiii, 177
Smoking, gene expression changes and, 183
SNP microarrays, 299. See also Single
nucleotide polymorphisms (SNPs)
Society of Toxicology, 4
Socs1–3 genes, 127
Sodium chloride, gene expression profile of, 91
Software tools, for pathway analysis, 277–278
SOS chromotest, 85
SOS-lux test, 85
SOS response, 84
Species extrapolation, 219
Species-specific microarrays, 263
Standard battery genotoxicity tests, 101
Standardization, of gene-expression information,
323–329
STAT3 gene, 130
Statistical approaches, parametric and
nonparametric, 77
Statistical methods
for analyzing microarray dose–response data,
239
complementary, 164
Steroidal hormones, 118–119
Steroidogenesis, 306
Strategic Plan for the Future of Toxicity Testing
at EPA, 298
Stress-associated cellular damage, 152
Stressors, diversity of, 212
Stress response, understanding, 152
Stress-responsive enzyme expression, PB and, 168
Stress-responsive genes, monitoring the expression of, 83–84
Structure activity relationships (SARs), 17, 27
Student’s t-distribution, 69, 70
Su, Zhenqiang, xiii, 65
Supervised classification methods, to predict nongenotoxic carcinogens, 107–110
Support vector machine-recursive feature elimination (SVM-RFE), 68
Support vector machines (SVMs), 276
Surface enhanced laser desorption/ionization/time of flight (SELDI-TOF) mass spectrometry, 187, 220, 221
Surface-enhanced laser desorption ionization (SELDI) mass spectrometry, 219–220
Systems biology approach, 349–356
Target-mediated toxicity, identification of, 334
Target organ toxicity, understanding, 153–154
Target validation/liability, toxicogenomics applied to, 333–334
TCDD, 212, 213, 214
TCDD dose–response curves, probe efficiency influence on, 263
TCDD exposure, 261
TCDD-induced developmental toxicity, 222
Test compound profiles, 111
Testicular transcriptional profiling, 339–340
Test systems, toxicogenomic-based, 353
Therapeutic acetaminophen exposure, 188–189
Therapeutic window, 169–170
Thomas, Russell S., xiii, 237
Three-class predictor, 107–108
Threshold, 20
defined, 56
Time-course formaldehyde exposure, 242–243
Tissue models, 255–256
Tissue selection, in study design, 156–157
TK6 cells, 91–92
Tolerable daily intake (TDI), 20
Tolerable intake (TI), 20
Tong, Weida, xiii, 65
Total Exposure Assessment Methodology (TEAM) studies, 29
tox analysis, 164
ToxCast™, 298, 311
ToxCast™ program, 32–33, 49–50, 53
ToxCast™ research program, 301
Toxicants classifying, 44
predicting human responses to, 55
research into the mode of, 53
Toxicity assessment of, 47
gastrointestinal, 334
mechanism of, 151–152
organ-specific, 147–176
predicting, 334–336
signaling networks involved in, 54
understanding target-organ, 153–154
Toxicity mechanisms, efforts to classify, 341
Toxicity pathway perturbations, measuring, 352
Toxicity pathways, 299, 350
evaluating, 48
Toxicity predictions, 300
Toxicity testing future of, 349–350
reorientation of, 351
in toxicogenomics, ix, 9
Toxicity Testing for Assessment of Environmental Agents, 297
Toxicity testing paradigm, 354–355
Toxicity testing report, 247
Toxic mechanisms, biosensor arrays for evaluating, 86
Toxic mechanisms of action, understanding, 57
Toxic mode of action (MOA), 15
Toxicogenomic analyses performed in blood, 193
potential value of, 93
Toxicogenomic approaches for differentiating genotoxic mechanisms, 90–92
general applications of, 332–333
Toxicogenomic-based test systems, 353. See also Toxicogenomics-based test methods
Toxicogenomic biomarkers applying, 58
of early chemical exposure, 185–191
Toxicogenomic data direct use of, 33
integration with drug safety evaluation endpoints, 342–344
in risk assessment, 151–155
use of, 57
Toxicogenomic information, use of, 17
Toxicogenomic profiling, 45, 54, 334–335
Toxicogenomic responses, erratic, 60
Toxicogenomics, 9–10, 148, 238
animal alternatives and, 267–291
applied to compound selection, 334–336
applied to target validation/liability, 333–334
benefits of, 351–352
Toxicogenomics analysis method. See also Toxicogenomics-based test systems
focus areas for validating, 283
incorporating, 354
Toxicogenomics case studies, 71–73
Toxicogenomics data
analysis of, 157–170, 276–278
comparing across species, 258
Toxicogenomics Project (TGP 1), 325
Toxicogenomics research/studies, 53
in human populations, 177–206
use of, 17
Toxicogenomics Research Consortium, 10
Toxicogenomic strategies
in drug development, 339–343
in drug discovery, 333–339
Toxicogenomic technology
toxicity detection by, 59
utilizing, 350–351
Toxicogenomic technology companies, 45
Toxicological data, use for risk assessment, 254–255
Toxicology
benzene, 185
changing landscape of, 1–2
defined, 2
evolution of, 4
history of, 2–3
impacts on, 350
modern-day, 3–4
National Research Council on, 48–49
rapid development of, 3
subdisciplines of, 4
traditional approaches to, 43
transcriptomic dose–response data for, 237–250
Toxicology and Environmental Research and Consulting, 41
Toxicology Excellence for Risk Assessment (TERA), 13
Toxic Substances Control Act, 3
ToxRefDB database, 49
ToxShield™, 282
T-profiler, 277, 281
Transcriptomic profiling, 7
Transcriptional changes, 151, 152
bioindicators and, 247
database of, 340–341
extent of, 338
identifying, 169
literature summarizing, 332
PB-induced, 169
Transcriptional data library,
Transcriptional fingerprints, 215–219
Transcriptional profiles, 215
Transcriptional profiling, 303, 307
 in drug safety evaluation, 331–337
 of efficacy or disease models, 338–339
 predictive signatures derived from, 341–342
testicular, 339–340
utility of, 332, 337
Transcriptional program, 123–124
Transcriptome, 6
Transcriptome-level comparisons, 256–257
Transcriptome profiling, 56
Transcriptomic approaches, in addressing research questions, 219
Transcriptomic biomarkers
 of acetaminophen, 188–189
 of arsenic exposure, 189–190
 of benzene exposure, 185–186
Transcriptomic data
 benchmark dose method for analyzing, 239–242
techniques to generate, 149
Transcriptomic dose–response data, analysis of, 237–250
Transcriptomic profiles, 218
Transcriptomics, 118, 119–120, 179–181, 210–219
 for determining life stage and gender specificity of estrogenic responses, 135–138
dose–response analysis and, 131–135
 of estrogenic responses, 135–138
emergence of, 211
in identifying molecular fingerprints, 120–122
mechanism of action and, 123–131
successful application of, 214
in understanding endocrine toxicity mechanisms, 140
Transcriptomics experiments, 138
Transcriptomics studies, 214
etoxicity-oriented, 211
Transcriptomic technologies, 7
Transcript profiles, 138
Transcript profiling, 119
 benefits of, 131
 experiments, 123
Transgenic models, 256
Transgenic mouse model, 102
Trend test, 164
Triadiomethon, 307, 308
Tsc-22 tumor suppressor gene, 106
t-test p-value ranking, 67, 69–70, 72–73. See also p-value ranking
TTG1/2 studies, 325–327
Tukey’s honest significant difference test, 163
Tumorigenic dose, 23
Tumor protein p53 (TP53) gene promoter, hypermethylation of, 191
Twist homolog 2 (Twist2), 137
Two-dimensional cluster diagrams, 339, 340
Two-stage ANOVA model, 162–163. See also Analysis of variance (ANOVA)
Two-year rodent cancer bioassay, 102
Ubiquitin-proteosome pathway, 127
UFs, 21. See also Uncertainty factors (UFs)
UFp, 21, 22–23
UFt, 21–22
UFL, 21, 22
Ultra performance liquid chromatography/mass spectrometry (UPLC/MS), 189
Umu-test, 85
Uncertainty factors (UFs), 20–23. See also UF entries
UniGene database, 259
University of California, Berkeley, 177
University of St. Thomas, 207
Unsupervised methods, to identify genomic biomarkers, 105–107
UROtsa, 303
US High Production Volume (HPV) Challenge Program, 310
US Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM), 283
Uterine genomic responses, 124
Uterine protein synthesis, increase in, 126–127
Uterine temporal transcript profile, 131
Uterine tissue, infiltration by immune cells, 127
Uterotrophic assay, 122
Uterotrophic response, 123–124
Validation, 195
Validation data, developing, 32–33
Vascular endothelial growth factor (VEGF), 124–125. See also VEGF entries
Vdac1 gene, 126
VEGF expression, induction of, 124. See also Vascular endothelial growth factor (VEGF)
Vertex Pharmaceuticals, 81
Villeneuve, Daniel L., xiii, 207
VIP gene selection, 68
VITOTOX, 85
Volatile organic compounds (VOCs), 29
Volcano plot, 73, 76

Voluntary eXploratory Data Submissions (VXDS), 312, 313, 314

Watson, James, 4, 5
Wayne State University School of Medicine, 251

Weighted average difference (WAD), 68

Weight-of-evidence (WOE), 16, 18, 83, 113

Whole-animal genomics data, integration with in vitro assays, 154–155

Whole-genome transcriptional studies, 148

Wilcoxon rank sum test, 68

Wiley Bill, 3
Willis, Allison, xiii, 13

Wolf, Douglas C., xiii, 294

World Health Organization (WHO), 20, 252

Xenobiotic inducers, 157

Xenobiotic metabolism, 165

Xenobiotic receptors, 111

Xenoestrogen exposure, in fish, 217

Xenoestrogens, expression profiles of, 215

Xenograft models, 338

Yang, Longlong, xiii, 237

YWHAB gene, 169

Zhang, Luoping, xiii, 177

Z-Tech, 65