CONTENTS

Preface xxi
Acknowledgments xxv
Summary of Notations xxvii
About the Cover xxix
About the Companion Website xxxi

1 Mathematical Background and Analysis Techniques 1

1.1 Introduction, 1
1.1.1 Waveform Modulation Descriptions, 2
1.2 The Fourier Transform and Fourier Series, 5
1.2.1 The Transform Pair \(\text{rect}(t/T) \leftrightarrow \text{sinc}(fT) \), 6
1.2.2 The \(\text{sinc}(x) \) Function, 7
1.2.3 The Fourier Transform Pair \(\sum_{n} \delta(t-nT) \leftrightarrow \sum_{n} \delta(\omega-n\omega_0) \), 8
1.2.4 The Discrete Fourier Transform, 9
1.2.5 The Fast Fourier Transform, 9
1.2.6 The FFT as a Detection Filter, 12
1.2.7 Interpolation Using the FFT, 14
1.2.8 Spectral Estimation Using the FFT, 14
1.2.9 Fourier Transform Properties, 15
1.2.10 Fourier Transform Relationships, 15
1.2.11 Summary of Some Fourier Transform Pairs, 16
1.3 Pulse Distortion with Ideal Filter Models, 16
1.3.1 Ideal Amplitude and Zero Phase Filter, 16
1.3.2 Nonideal Amplitude and Phase Filters: Paired Echo Analysis, 17
1.3.3 Example of Delay Distortion Loss Using Paired Echoes, 19
1.4 Correlation Processing, 19
1.5 Random Variables and Probability, 20
1.5.1 Probability and Cumulative Distribution and Probability Density Functions, 20
1.5.2 Definitions and Fundamental Relationships for Continuous Random Variables, 22
1.5.3 Definitions and Fundamental Relationships for Discrete Random Variables, 25
2 Digital Signal Processing and Modem Design Considerations 81

2.1 Introduction, 81
2.2 Discrete Amplitude Sampling, 81
 2.2.1 Case Study: ADC Quantization of Direct-Sequence Spread-Spectrum Waveform, 83
2.3 Discrete-Time Sampling, 87
 2.3.1 Nonideal Sampling, 88
2.4 Signal Reconstruction Following Discrete-Time Sampling, 91
2.5 Baseband Sampling, 92
2.6 Bandpass Sampling, 92
 2.6.1 Subcarrier Sampling, 93
 2.6.2 Hilbert Transform Sampling, 95
 2.6.3 Case Study: Hilbert Filtering, 97
2.7 Corrections for Nonideal Modulators and Demodulators, 99
 2.7.1 Nonideal Waveform Modulator, 99
 2.7.2 Nonideal Waveform Demodulator, 102
 2.7.3 Demodulator Down-Conversion Imbalance Error Analysis, 104
 2.7.4 Case Study: Bit-Error Performance with Baseband Mixer Imbalance, 105
2.8 Multirate Signal Processing and Interpolation, 106
 2.8.1 Sample Rate Conversion, 107
 2.8.2 Sample Rate Conversion Filter Specifications, 110
 2.8.3 Case Study: Sample Rate Conversion Filter Design, 111
 2.8.4 Cascaded Integrate and Comb Filter, 112
 2.8.5 Polyphase-Matched Filter Interpolation for Symbol Timing Control, 115
 2.8.6 Lagrange Interpolation, 117
 2.8.7 Symbol Time and Frequency Error Estimation, 119
Appendix 2A Amplitude Quantization Function Subprogram, 121
Appendix 2B Hilbert Transform Parameters, 122
Appendix 2C Derivation of Parabolic Interpolation Error, 126
Acronyms, 127
Problems, 128
References, 130

3 Digital Communications 133

3.1 Introduction, 133
3.2 Digital Data Modulation and Optimum Demodulation Criteria, 135
 3.2.1 Example Using Binary Data Messages, 137
3.3 Information and Channel Capacity, 139
 3.3.1 Binary Symmetric Channel with Binary Data Source, 140
 3.3.2 Binary Symmetric Channel with M-ary Data Source, 142
 3.3.3 Converse to the Noisy-Channel Coding Theorem, 143
 3.3.4 Shannon’s Channel Capacity Limit, 144
 3.3.5 Capacity of Coded Modulated Waveforms, 147
3.4 Bit-Error Probability Bound on Memoryless Channel, 148
3.5 Probability Integral and the Error Function, 150
Acronyms, 151
Problems, 151
References, 152
4 Phase Shift Keying (PSK) Modulation, Demodulation, and Performance 153

4.1 Introduction, 153
4.2 Constant Envelope Phase-Modulated Waveforms, 154
 4.2.1 Multiphase PSK (MPSK) Modulation, 154
 4.2.2 Binary PSK (BPSK) Modulation, 156
 4.2.3 Quadrature Phase-Modulated Waveforms, 159
 4.2.4 Differentially Coherent PSK Modulation, 165
 4.2.5 Generalized Modulator Implementations, 168
 4.2.6 Sinusoidal FSK (SFSK) or Sinusoidal MSK (SMSK) Waveform Modulation, 171
 4.2.7 Gaussian MSK (GMSK) Waveform Implementation, 172
 4.2.8 Phase-Shaped PSK Modulation, 175
4.3 Non-Constant Envelope Phase-Modulated Waveforms, 175
 4.3.1 Waveform Modulation with $sinc^2(t/2T)$ Shaping Filter, 176
 4.3.2 Spectral Root-Raised-Cosine (SRRC) Waveform Modulation, 176
4.4 Phase-Modulated Waveform Spectrums and Performance, 178
 4.4.1 Spectral Masks, 178
 4.4.2 Power Spectral Density Characterization, 182
 4.4.3 Constant Envelope PSK Waveforms: Spectrums and Bit-Error Performance, 183
 4.4.4 Non-Constant Envelope PSK Waveforms: Spectrums and Bit-Error Performance, 196
 4.4.5 Case Study: Spectral and Bit-Error Performance of SRRC Applied to BPSK, QPSK, and DCBPSK, 200

Acronyms, 202
Problems, 203
References, 204

5 Frequency Shift Keying (FSK) Modulation, Demodulation, and Performance 207

5.1 Introduction, 207
5.2 Coherent Detection of BFSK—Known Frequency and Phase, 207
5.3 Noncoherent Detection of BFSK—Known Frequency and Unknown Phase, 210
5.4 Case Studies: Coherent and Noncoherent BFSK Performance Simulation, 211
 5.4.1 Orthogonal Tone Spacing ($h = 19$), 211
 5.4.2 Minimum Orthogonal Tone Spacing ($h = 1$), 213
5.5 Noncoherent Detection of BFSK—Unknown Frequency and Phase, 214
 5.5.1 Linear Envelope Detection, 214
 5.5.2 Square-Law Envelope Detection, 216
 5.5.3 Noncoherent BFSK Detection Using Frequency Discriminator, 217
5.6 BFSK Spectral Density with Arbitrary Modulation Index, 219
 5.6.1 MSK Power Spectral Density ($h = 1/2$), 221
 5.6.2 Orthogonal Binary FSK Power Spectral Density ($h = 1$), 221
 5.6.3 Discontinuous FSK Phase Modulation, 222

Acronyms, 224
Problems, 225
References, 225

6 Amplitude Shift Keying Modulation, Demodulation, and Performance 227

6.1 Introduction, 227
6.2 Amplitude Shift Keying (ASK), 227
 6.2.1 On–Off Keying (OOK) Modulation, 228
 6.2.2 Binary Antipodal ASK Modulation, 232
8.11.6 The Dual-k Convolutional Code Transfer Function, 295
8.11.7 Code Puncturing and Concatenation, 296
8.11.8 Convolutional Code Performance Using the Viterbi Algorithm, 296
8.11.9 Performance of the Dual-3 Convolutional Code Using 8-ary FSK Modulation, 298
8.12 Turbo and Turbo-Like Codes, 299
8.12.1 Interleavers, 300
8.12.2 Code Rate Matching, 301
8.12.3 PCCC and SCCC Configurations, 302
8.12.4 SISO Module, 303
8.12.5 Iterative Decoding of Parallel Concatenated Codes, 306
8.12.6 Iterative Decoding of Serially Concatenated Convolutional Codes, 308
8.12.7 PCCC and SCCC Performance, 309
8.13 LDPC Code and TPC, 313
8.14 Bose-Chaudhuri-Hocquenghem Codes, 315
8.14.1 Binary BCH Codes, 317
8.14.2 RS Codes, 319
Appendix 8A, 328
Appendix 8B, 329
Acronyms, 331
Problems, 331
References, 333

9 Forward Error Correction Coding Without Bandwidth Expansion 339
9.1 Introduction, 339
9.2 Multi-h M-ary CPM, 340
9.2.1 Selection of Modulation Indices for Multi-h, M-ary CPM, 341
9.2.2 Multi-h, M-ary CPM Waveform Spectrum, 345
9.2.3 Multi-h, M-ary CPM Demodulation, 345
9.3 Case Study: 2-h 4-ary 1REC CPM, 350
9.3.1 2-h 4-ary 1REC CPM Waveform Modulation, 352
9.3.2 2-h 4-ary 1REC CPM Spectral Characteristics, 353
9.3.3 2-h 4-ary 1REC CPM Demodulator, 354
9.3.4 2-h 4-ary 1REC CPM Performance Simulation, 358
9.4 Multiphase Shift Keying Trellis-Coded Modulation, 362
9.4.1 Example Design using Constraint Length v = 3, Rate 2/3 8PSK-TCM, 366
9.5 Case Study: Four-State 8PSK-TCM Performance Over Satellite Repeater, 367
9.5.1 Four-State 8PSK-TCM Demodulator Simulated Performance, 370
Acronyms, 372
Problems, 372
References, 372

10 Carrier Acquisition and Tracking 375
10.1 Introduction, 375
10.2 Bandpass Limiter, 377
10.3 Baseband Phaselock Loop Implementation, 378
10.4 Phase-Error Generation, 378
10.5 First-Order Phaselock Loop, 380
10.6 Second-Order Phaselock Loop, 380
10.6.1 Second-Order PLL Loop Filter Implementations, 381
10.6.2 Loop Filter Configuration No. 1, 382
10.6.3 Loop Filter Configuration No. 2, 383

Appendix 8A, 328
Appendix 8B, 329
Acronyms, 331
Problems, 331
References, 333
12 Adaptive Systems

12.1 Introduction, 463

12.1.1 The Orthogonality Principle, 464

12.2 Optimum Filtering—Wiener’s Solution, 464

12.3 Finite Impulse Response-Adaptive Filter Estimation, 465

12.3.1 Least Mean-Square Algorithm, 468

12.4 Intersymbol Interference and Multipath Equalization, 469

12.4.1 Zero-Forcing Equalizer, 469

12.4.2 Linear Feedforward Equalizer, 470

12.4.3 Nonlinear Decision Feedback Equalizer, 471

12.4.4 Fractionally-Spaced Equalizers, 471

12.4.5 Blind or Self-Recovering Equalizers, 472

12.5 Interference and Noise Cancellation, 472

12.6 Recursive Least Square (RLS) Equalizer, 473

12.7 Case Study: LMS Linear Feedforward Equalization, 474

12.8 Case Study: Narrowband Interference Cancellation, 474

12.8.1 Theoretical Canceler Convergence Evaluation, 479

12.9 Case Study: Recursive Least Squares Processing, 480

12.9.1 Performance with Fixed Weights Following Training, 481

Acronyms, 482

Problems, 483

References, 483

13 Spread-Spectrum Communications

13.1 Introduction, 485

13.2 Spread-Spectrum Waveforms and Spectrums, 487

13.2.1 Direct-Sequence Spread-Spectrum, 487

13.2.2 Frequency-Hopping Spread-Spectrum, 493

13.2.3 Time-Hopping Spread-Spectrum, 496

13.2.4 Spectral Characteristics of DS, FH, and TH Spread-Spectrum

Waveforms, 496

13.3 Jammer and Interceptor Encounters, 499

13.3.1 Anti-Jam Spread-Spectrum Communications, 499

13.3.2 Low Probability of Intercept Spread-Spectrum Communications, 500

13.4 Communication Interceptors, 502

13.4.1 Total-Energy Radiometer, 503

13.4.2 Dicke Radiometer, 504

13.5 Bit-Error Performance of DS Waveforms with Jamming, 504

13.5.1 DSSS with BPSK and QPSK Modulation and CW Jamming, 505

13.5.2 DSSS with BPSK Modulation and Pulsed Noise Jamming, 506

13.5.3 Optimum Pulsed Noise Jammer Strategy against DSSS Uncoded

BPSK Modulation without Side Information, 507

13.5.4 DSSS with BPSK Modulation and Repetition Coding, 510

13.6 Performance of MFSK with Partial-Band Noise Jamming, 512

13.7 Performance of DCMPSK with Partial-Band Noise Jamming, 514

13.8 FHSS Waveforms with Multitone Jamming, 515

13.8.1 Single Jammer Tone in Each Jammed M-ary Hop, 517

13.8.2 Multiple Jammer Tones in Each Jammed MFSK Hop, 518

Acronyms, 482

Problems, 483

References, 483
13.9 Approximate Performance with Jammer Threats, 521
 13.9.1 DS-BPSK with Pulsed Noise Jamming, 521
 13.9.2 FHSS MFSK with Partial-Noise Jamming, 522
13.10 Case Study: Terrestrial Jammer Encounter and Link-Standoff Ratio, 522
Acronyms, 524
Appendix 13A, 525
Problems, 526
References, 527

14 Modem Testing, Modeling, and Simulation 531
14.1 Introduction, 531
14.2 Statistical Sampling, 532
 14.2.1 Fixed-Sample Testing Using the Gaussian Distribution, 532
 14.2.2 Fixed-Sample Testing Using the Poisson Distribution, 536
 14.2.3 Sequential Sample Testing Using the Binomial Distribution, 538
14.3 Computer Generation of Random Variables, 539
 14.3.1 Uniform Random Number Generation, 540
 14.3.2 Gaussian Random Number Generation, 541
 14.3.3 Ricean and Rayleigh Random Number Generation, 543
 14.3.4 Poisson Random Numbers, 544
 14.3.5 Exponential and Poisson Random Number Generation, 544
 14.3.6 Lognormal Distribution, 545
14.4 Baseband Waveform Description, 545
14.5 Sampled Waveform Characterization, 547
 14.5.1 BPSK Waveform Simulation with AWGN, 547
14.6 Case Study: BPSK Monte Carlo Simulation, 548
14.7 System Performance Evaluation Using Quadrature Integration, 550
14.8 Case Study: BPSK Bit-Error Evaluation with PLL Tracking, 551
 14.8.1 BPSK Bit-Error Evaluation Using Tikhonov Phase Distribution, 552
 14.8.2 BPSK Bit-Error Evaluation Using Gaussian Phase Approximation, 552
14.9 Case Study: QPSK Bit-Error Evaluation with PLL Tracking, 553
 14.9.1 QPSK Bit-Error Evaluation Using Tikhonov Phase Distribution, 553
 14.9.2 QPSK Bit-Error Evaluation Using Gaussian Phase Approximation, 553
Acronyms, 554
Problems, 554
References, 555

15 Communication Range Equation and Link Analysis 557
15.1 Introduction, 557
 15.1.1 EIRP and Power Aperture, 559
 15.1.2 Signal-to-Noise Ratio, 559
 15.1.3 Maximum Range, 559
15.2 Receiver and System Noise Figures and Temperatures, 560
 15.2.1 Receiver Noise Figure, 560
 15.2.2 Antenna Temperature, 562
 15.2.3 System Noise Figure, 565
 15.2.4 Remarks on the System Noise Figure, 568
15.3 Antenna Gain and Patterns, 568
 15.3.1 Rectangular Aperture Antenna Pattern, 569
 15.3.2 Circular Aperture Antenna Pattern, 570
15.4 Rain Loss, 571
15.5 Electric Field Wave Polarization, 573
 15.5.1 Antenna Polarization Loss and Isolation, 575
 15.5.2 Case Study: Polarization Characteristics for a LHCP Antenna, 576
15.6 Phase-Noise Loss, 578
 15.6.1 Phase-Noise Characterization, 578
 15.6.2 Phase-Noise Evaluation Using System Specifications, 580
 15.6.3 Case Study: BPSK and QPSK Performance with Phase Noise, 582
15.7 Scintillation Loss, 583
15.8 Multipath Loss, 583
15.9 Interface Mismatch Loss, 584
15.10 Miscellaneous System Losses, 585
 15.10.1 Antenna Shaping Loss, 585
 15.10.2 Antenna Scallop Loss, 585
 15.10.3 Frequency Scallop Loss, 585
 15.10.4 Signal Processing Loss, 585
15.11 Nonlinear Power Amplifier Analysis and Simulation, 585
 15.11.1 Characterizing the TWTA Transfer Function, 586
 15.11.2 Evaluation of C/I and OBO, 586
15.12 Computer Modeling of TWTA and SSPA Nonlinearities, 588
 15.12.1 SSPA with Soft Saturation Response, 588
 15.12.2 TWTA with Gain Compensated Response, 589
15.13 Establishing Signal Levels for Simulation Modeling, 590
 15.13.1 Single-Carrier Simulations, 590
 15.13.2 Multiple Carrier Simulations, 591
15.14 Case Study: Performance Simulation of SRRC-QPSK with SSPA Nonlinearity, 592
 15.14.1 Simulation of Third- and Fifth-Order Intermodulation Distortions Terms, 593
 15.14.2 Spectrum Degradation with SSPA OBO, 593
 15.14.3 Bit-Error Performance with OBO and Adjacent Channels, 594
15.15 Link Budget Analysis, 596
Acronyms, 598
Problems, 598
References, 599

16 Satellite Orbits 603
16.1 Introduction, 603
16.2 Satellite Orbits, 606
16.3 Earth Stations, 607
16.4 Path Loss, Doppler, and Doppler-rate, 609
16.5 Satellite Viewing, 609
16.6 Satellite Orbit Selection, 610
 16.6.1 Geosynchronous and Geostationary Orbits, 610
 16.6.2 Medium Earth Orbits, 611
 16.6.3 Low Earth Orbits, 611
 16.6.4 Highly Elliptical Orbits, 611
16.7 Satellite Orbit Position Estimation From Parameter Measurements, 611
16.8 Case Study: Example Satellite Encounters, 612
Acronyms, 614
Problems, 614
References, 615
17 Communications Through Bandlimited Time-Invariant Linear Channels 617

17.1 Introduction, 617
17.2 Inphase and Quadrature Channel Response, 618
17.3 Inphase and Quadrature Channel Response to Arbitrary Signal, 619
17.3.1 Frequency Domain Characterization of Lowpass Filter Output, 621
17.4 Pulse Modulated Carrier Signal Characteristics, 621
17.5 Channel Response to a Pulsed Modulated Waveform, 622
17.5.1 Normalized Channel Impulse Response, 622
17.5.2 Normalized Symbol Pulse Response, 623
17.6 Example Performance Simulations, 623
17.7 Example of Channel Amplitude and Phase Responses, 624
17.7.1 Ideal Bandpass Channel, 624
17.7.2 Single-Pole Channel Filter, 625
17.8 Example Channel Amplitude, Phase, and Delay Functions, 627
17.8.1 Dial-Up Telephone Channel, 627
17.8.2 Quadratic Delay (Cubic Phase) Function, 627
17.8.3 Practical Interpretation of the Phase Function, 629

Acronyms, 631
Problems, 631
References, 631

18 Communications in Fading Environments 633

18.1 Introduction, 633
18.2 Ricean Fading Channels, 634
18.2.1 Rayleigh Fading Channels, 634
18.2.2 Gaussian Limit, 635
18.3 Ricean Cumulative Distribution, 635
18.4 Application of Ricean Channel Model, 635
18.4.1 Slow Fading, 635
18.4.2 Fast Fading, 636
18.5 Performance of Several Binary Modulation Waveforms with Ricean Fading, 636
18.5.1 CBPSK with Slow Nonselective Ricean Fading, 636
18.5.2 Coherent BPSK with Fast Nonselective Ricean Fading, 637
18.5.3 Differentially Coherent BPSK with Slow Nonselective Ricean Fading, 637
18.5.4 Differentially Coherent BPSK with Fast Nonselective Ricean Fading, 638
18.5.5 Noncoherent BFSK with Slow Nonselective Ricean Fading, 638
18.5.6 Noncoherent BFSK with Fast Nonselective Ricean Fading, 639
18.6 Generation of Ricean Random Variables, 639
18.6.1 Multipath Rayleigh Fading Simulator, 640
18.7 Relationships Between Fading Channel Parameters, 641
18.7.1 Channel Coherence Time and Doppler Spread, 642
18.7.2 Channel Coherence Bandwidth and Time Dispersion, 643
18.8 Diversity Techniques for Fading Channels, 643
18.8.1 Frequency Nonselective (Flat) Fading, 644
18.8.2 Frequency Selective Fading, 645

Acronyms, 647
Problems, 647
References, 647
20.2.1 Equatorial Region, 702
20.2.2 Mid-to-Low Latitude Region, 702
20.2.3 Polar Region, 702
20.3 Electron Densities: Nuclear-Disturbed Environment, 703
20.4 The Refractive Index and Signal Propagation, 704
20.4.1 Magnetic Field and No Electron Collisions, 705
20.4.2 No Magnetic Field and No Electron Collisions, 706
20.4.3 No Magnetic Field with Electron Collisions, 706
20.5 Signal Propagation in Severe Scintillation Environment, 706
20.5.1 Impact on Directive Antenna Gain, 710
20.5.2 Ionospheric Absorption, 711
20.5.3 Receiver Noise, 711
20.6 Propagation Disturbances Following Severe Absorption, 712
20.6.1 Signal Delay and Dispersion, 713
20.6.2 Example of Signal Delay Distortion, 714
20.7 Rayleigh Scintillation Channel Model, 715
20.7.1 Spatial Correlation of Receiver Electric Field Strength, 716
20.7.2 Concatenation of Computer-Generated Scintillation Records, 718
20.7.3 Spatial-to-Temporal Conversion of Computer-Generated Data Records, 718
20.7.4 Additional Simulation Considerations, 720
20.8 Scintillation Mitigation Techniques, 721
20.9 Case Study: BPSK and DCBPSK Performance in Rayleigh Fading Channel, 722
20.9.1 Performance of Robust Modulations in Rayleigh Fading Channel, 723
20.9.2 Performance of Frequency Hopped DCBPSK with Combining in Rayleigh Fading Channel, 724
20.9.3 Performance of Convolutional Coded DCBPSK with Interleaving in Rayleigh Fading Channel, 725
20.9.4 Performance of Concatenated Convolutional and Reed–Solomon Block Codes with DCBPSK and DCQPSK in Rayleigh Fading Channel, 725
20.9.5 Performance of Uncoded Noncoherent M-ary FSK Modulation with Rayleigh Fading Channel, 726

Appendix 20A, 727
Acronyms, 729
Problems, 729
References, 730

Appendix A: Classical Filters and Applications 733
Appendix B: Digital Filter Design and Applications 747
Appendix C: Detection of Signals in Noise 755
Index 769