CONTENTS

PREFACE xvii

1 INTRODUCTION 1
 1.1 History 2
 1.2 Basics of Reactive Distillation 3
 1.3 Neat Operation Versus Excess Reactant 7
 1.4 Limitations 8
 1.4.1 Temperature Mismatch 8
 1.4.2 Unfavorable Volatilities 9
 1.4.3 Slow Reaction Rates 9
 1.4.4 Other Restrictions 9
 1.5 Scope 9
 1.6 Computational Methods 10
 1.6.1 Matlab Programs for Steady-State Design 10
 1.6.2 Aspen Simulations 10
 1.7 Reference Materials 11

vii
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4</td>
<td>Two-Column System with 20% Excess of A</td>
<td>81</td>
</tr>
<tr>
<td>4.5</td>
<td>Economic Comparison</td>
<td>85</td>
</tr>
<tr>
<td>4.6</td>
<td>Conclusion</td>
<td>86</td>
</tr>
</tbody>
</table>

PART II STEADY-STATE DESIGN OF OTHER IDEAL SYSTEMS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>TERNARY REACTIVE DISTILLATION SYSTEMS</td>
<td>89</td>
</tr>
<tr>
<td>5.1</td>
<td>Ternary System Without Inerts</td>
<td>90</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Column Configuration</td>
<td>90</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Chemistry and Phase Equilibrium Parameters</td>
<td>90</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Design Parameters and Procedure</td>
<td>92</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Effect of Pressure</td>
<td>94</td>
</tr>
<tr>
<td>5.1.5</td>
<td>Holdup on Reactive Trays</td>
<td>94</td>
</tr>
<tr>
<td>5.1.6</td>
<td>Number of Reactive Trays</td>
<td>94</td>
</tr>
<tr>
<td>5.1.7</td>
<td>Number of Stripping Trays</td>
<td>94</td>
</tr>
<tr>
<td>5.2</td>
<td>Ternary System With Inerts</td>
<td>99</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Column Configuration</td>
<td>99</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Chemistry and Phase Equilibrium Parameters</td>
<td>99</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Design Parameters and Procedure</td>
<td>100</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Effect of Pressure</td>
<td>102</td>
</tr>
<tr>
<td>5.2.5</td>
<td>Control Tray Composition</td>
<td>103</td>
</tr>
<tr>
<td>5.2.6</td>
<td>Reactive Tray Holdup</td>
<td>105</td>
</tr>
<tr>
<td>5.2.7</td>
<td>Effect of Reflux</td>
<td>107</td>
</tr>
<tr>
<td>5.2.8</td>
<td>Chemical Equilibrium Constant</td>
<td>109</td>
</tr>
<tr>
<td>5.2.9</td>
<td>Feed Composition</td>
<td>109</td>
</tr>
<tr>
<td>5.2.10</td>
<td>Number of Reactive Trays</td>
<td>113</td>
</tr>
<tr>
<td>5.2.11</td>
<td>Number of Rectifying and Stripping Trays</td>
<td>113</td>
</tr>
<tr>
<td>5.3</td>
<td>Conclusion</td>
<td>116</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>TERNARY DECOMPOSITION REACTION</td>
<td>119</td>
</tr>
<tr>
<td>6.1</td>
<td>Ternary Decomposition Reaction: Intermediate-Boiling Reactant</td>
<td>120</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Column Configuration</td>
<td>120</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Chemistry and Phase Equilibrium Parameters</td>
<td>120</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Design Parameters and Procedure</td>
<td>121</td>
</tr>
<tr>
<td>6.1.4</td>
<td>Holdup on Reactive Trays</td>
<td>123</td>
</tr>
<tr>
<td>6.1.5</td>
<td>Number of Reactive Trays</td>
<td>124</td>
</tr>
<tr>
<td>6.1.6</td>
<td>Number of Rectifying and Stripping Trays</td>
<td>126</td>
</tr>
<tr>
<td>6.1.7</td>
<td>Location of Feed Tray</td>
<td>126</td>
</tr>
<tr>
<td>6.2</td>
<td>Ternary Decomposition Reaction: Heavy Reactant with Two-Column Configurations</td>
<td>127</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Column Configurations</td>
<td>127</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Chemistry and Phase Equilibrium Parameters</td>
<td>128</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Design Parameters and Procedure</td>
<td>128</td>
</tr>
</tbody>
</table>
PART III STEADY-STATE DESIGN OF REAL CHEMICAL SYSTEMS 145

7 STEADY-STATE DESIGN FOR ACETIC ACID ESTERIFICATION 147

7.1 Reaction Kinetics and Phase Equilibria 147
7.1.1 Reaction Kinetics 147
7.1.2 Phase Equilibria 149
7.2 Process Flowsheets 153
7.2.1 Type I Flowsheet: MeAc 153
7.2.2 Type II Flowsheet: EtAc and IPAe 156
7.2.3 Type III Flowsheet: BuAc and AmAc 157
7.3 Steady-State Design 158
7.3.1 Design Procedure 158
7.3.2 Optimized Design 160
7.4 Process Characteristics 168
7.4.1 Type I: MeAc 168
7.4.2 Type II: EtAc and IPAe 168
7.4.3 Type III: BuAc and AmAc 170
7.5 Discussion 175
7.6 Conclusion 177

8 DESIGN OF TAME REACTIVE DISTILLATION SYSTEMS 179

8.1 Chemical Kinetics and Phase Equilibrium 180
8.1.1 Chemical Kinetics 180
8.1.2 Phase Equilibria Using Aspen Plus 181
8.1.3 Conceptual Design 186
9 DESIGN OF MTBE AND ETBE REACTIVE DISTILLATION COLUMNS

9.1 MTBE Process
9.1.1 Phase Equilibrium
9.1.2 Reaction Kinetics
9.1.3 Aspen Plus Simulation Issues
9.1.4 Setting up the Aspen Plus Simulation
9.1.5 Effect of Design Parameters
9.1.6 Chemical Equilibrium Model

9.2 ETBE Process
9.2.1 Kinetic Model
9.2.2 Process Studied
9.2.3 User Subroutine for ETBE
9.2.4 Chemical Equilibrium Model
9.2.5 Effects of Design Parameters

9.3 Conclusion

PART IV CONTROL OF IDEAL SYSTEMS

10 CONTROL OF QUATERNARY REACTIVE DISTILLATION COLUMNS

10.1 Introduction
10.2 Steady-State Design
10.3 Control Structures
10.4 Selection of Control Tray Location
10.5 Closed-Loop Performance
10.5.1 CS7-R Structure
10.5.2 CS7-RR Structure
10.6 Using More Reactive Trays
10.6.1 Steady-State Design
10.6.2 SVD Analysis
10.6.3 Dynamic Performance of CS7-RR
11 CONTROL OF EXCESS REACTANT SYSTEMS

11.1 Control Degrees of Freedom

11.2 Single Reactive Column Control Structures
 11.2.1 Two-Temperature Control Structure
 11.2.2 Internal Composition Control Structure

11.3 Control of Two-Column System
 11.3.1 Two-Temperature Control
 11.3.2 Temperature/Composition Cascade Control

11.4 Conclusion

12 CONTROL OF TERNARY REACTIVE DISTILLATION COLUMNS

12.1 Ternary System Without Inerts
 12.1.1 Column Configuration
 12.1.2 Control Structure CS1
 12.1.3 Control Structure CS2
 12.1.4 Control Structure CS3

12.2 Ternary System With Inerts
 12.2.1 Column Configuration
 12.2.2 Control Structure CS1
 12.2.3 Control Structure CS2
 12.2.4 Control Structure CS3

12.3 Ternary $A \leftrightarrow B + C$ System: Intermediate-Boiling Reactant
 12.3.1 Column Configuration
 12.3.2 Control Structure CS1
 12.3.3 Control Structure CS2
 12.3.4 Control Structure CS3

12.4 Ternary $A \leftrightarrow B + C$ System: Heavy Reactant
 With Two-Column Configuration
 12.4.1 Column Configuration
 12.4.2 Control Structure CS1
 12.4.3 Control Structure CS2

12.5 Ternary $A \leftrightarrow B + C$ System: Heavy Reactant
 With One-Column Configuration
 12.5.1 Column Configuration
 12.5.2 Control Structure CS1
 12.5.3 Control Structure CS2
 12.5.4 Control Structure CS3
 12.5.5 Conclusion for Ternary $A \leftrightarrow B + C$ System
PART V CONTROL OF REAL SYSTEMS 353

13 CONTROL OF REACTIVE DISTILLATIONS FOR ACETIC ACID ESTERIFICATION 355
13.1 Process Characteristics 355
 13.1.1 Process Studies 355
 13.1.2 Quantitative Analysis 356
13.2 Control Structure Design 362
 13.2.1 Selection of Temperature Control Trays 363
 13.2.2 Control Structure and Controller Design 366
 13.2.3 Performance 368
 13.2.4 Alternative Temperature Control Structures 376
13.3 Extension to Composition Control 380
13.4 Conclusion 388

14 PLANTWIDE CONTROL OF TAME REACTIVE DISTILLATION SYSTEM 389
14.1 Process Studied 389
 14.1.1 Prereactor 390
 14.1.2 Reactive Column C1 391
 14.1.3 Extractive Column C2 391
 14.1.4 Methanol Recovery Column C3 397
14.2 Control Structure 397
 14.2.1 Prereactor 397
 14.2.2 Reactive Distillation Column C1 399
 14.2.3 Extractive Distillation Column C2 399
 14.2.4 Methanol Recovery Column C3 401
14.3 Results 403
14.4 Conclusion 406

15 CONTROL OF MTBE AND ETBE REACTIVE DISTILLATION COLUMNS 407
15.1 MTBE Control 407
 15.1.1 Steady State 407
 15.1.2 Control Structure with C4 Feedflow Controlled 408
 15.1.3 Control Structure with Methanol Feedflow Controlled 416
15.2 ETBE Control 418
 15.2.1 Control Structure with Flow Control of C4 Feed 419
 15.2.2 Control Structure with Flow Control of Ethanol Feed 424
PART VI HYBRID AND NONCONVENTIONAL SYSTEMS

16 DESIGN AND CONTROL OF COLUMN/SIDE REACTOR SYSTEMS

16.1 Introduction

16.2 Design for Quaternary Ideal System
 16.2.1 Assumptions and Specifications
 16.2.2 Reactor and Column Equations
 16.2.3 Design Optimization Procedure
 16.2.4 Results and Discussion
 16.2.5 Reactive Column with Optimum Feed Tray Locations

16.3 Control of Quaternary Ideal System
 16.3.1 Dynamic Tubular Reactor Model
 16.3.2 Control Structures

16.4 Design of Column/Side Reactor Process for Ethyl Acetate System
 16.4.1 Process Description
 16.4.2 Conceptual Design

16.5 Control of Column/Side Reactor Process for Ethyl Acetate System
 16.5.1 Determining Manipulated Variables
 16.5.2 Selection of Temperature Control Trays
 16.5.3 Controller Design
 16.5.4 Performance
 16.5.5 Extension to Composition Control
 16.5.6 Comparison with Reactive Distillation Temperature Control

16.6 Conclusion

17 EFFECTS OF BOILING POINT RANKINGS ON THE DESIGN OF REACTIVE DISTILLATION

17.1 Process and Classification
 17.1.1 Process
 17.1.2 Classification

17.2 Relaxation and Convergence

17.3 Process Configurations
 17.3.1 Type I: One Group
 17.3.2 Type II: Two Groups
 17.3.3 Type III: Alternating

17.4 Results and Discussion
 17.4.1 Summary
 17.4.2 Excess Reactant Design

17.5 Conclusion