INDEX

Acetic acid esterification, 147
Acetic acid dimerization, 149
Activation energy, 533
Activity coefficients, 182
Allgower’s nonlinearity measure, 355, 359
Antoine equation, 62, 433, 488
Aspen Split, 186
Average temperature control, 399

Biodiesel, 500
Boiling-point rankings, 487
Bubblepoint calculation, 46, 436, 488,
 522, 523

Cascade temperature/composition, 285, 334,
 345, 485
Coordinated control, 539
Chemical equilibrium constant, 27, 49
Closedloop performance, 247
Column/side reactor, 431
Conceptual design, 181, 186
Conflict between design and control, 24,
 241, 249
Control degrees of freedom, 261
Controllability, 244
Controller action, 241, 247, 253
Controller gain and reset, 256

Convergence in RADFRAC, 218
Convergence of recycles, 199, 209
Conversion, 54
Counterintuitive results, 23, 206, 207, 259
Damkohler number, 488
Decanter, 150
Decomposition reaction, 324
Design procedure, 122, 128, 139, 158, 436,
 466, 495, 517
Design spec/vary, 199, 218
Difference point method, 134
Direct sequence, 516
Distillation boundary, 186
Disturbance sensitivity, 453
Dual composition control, 329
DuPont, 2

Eastman Chemical, 2
Eastman control structure, 241, 245
Equilibrium RD model, 225, 234
Estimates, 199
Excess reactant operation, 7, 71, 242, 514
Exporting to Aspen Dynamics, 397, 407
External reactor, 433
Extractive distillation, 209
Euler integration, 47, 437

Copyright © 2008 John Wiley & Sons, Inc.

573
Feasibility analysis, 134
Feed ratio, 159, 356, 475, 495
Feed tray location, 33, 445, 519, 523
Fenske equation, 40, 42, 522
Fragility of simulation, 177
Francis weir formula, 522
Hayden–O’Connell, 149
Holdup on reactive trays, 20, 254
Indirect sequence, 516
Inerts in ternary system, 99, 310
Input multiplicity, 360, 381
Internal composition control, 272, 539
Inverse response, 250, 256, 451
LHHW, 214, 230
Literature survey, 11
Liquid hydraulic time constant, 489, 522
Lumped tubular reactor model, 446
Minimum number of trays, 500
Model inversion, 363
Multiunit process, 38, 432
Neat operation, 7, 71, 243
Newton–Raphson, 436
Nonsquare relative gain, 363, 366, 474, 479
NRTL, 149
Number reactive trays, 22
On-aim control, 388
On-demand control, 261
Packing sizing, 408
Payback period, 437
Plumbing, first law, 399
Prereactor, 195, 390
Pressure-driven dynamic simulation, 407
Pressure effects, 5, 24, 94, 497
Pressure-swing distillation, 206
Pseudoneat operation, 193
Rangeability, 241, 256
Reactant losses in ternary system, 102
 Reactive azetropes, 136
 Reactive tray holdup, 94
 Recovery column, 75
Rectifying trays, 32
Recycle impurity, 54
Relative volatility, 26, 30, 487, 491, 531
 Temperature dependent, 30, 61, 433
Relaxation method, 436, 492, 523
Relay-feedback testing, 246, 266, 296, 313, 335, 344, 449, 451, 454
Sequential, 363, 381, 413, 421, 424
Residue curve, 186, 193
Residue curve maps, 150, 475
RGA, 363, 366, 369, 475, 540
Robustness, 255, 363
Sensitivity analysis, 363, 479, 539
Shark-tooth shape, 451
Side reactor, 464
Sign reversal, 358
Split-range valves, 541
Steady-state gains, 246, 265, 303, 320, 326, 449
Step test, 252
Stripping trays, 32, 94
Suboptimal design, 249
SVD, 246, 250, 307, 320, 326, 344, 449
Temperature control tray location, 246
Temperature mismatch, 8
Ternary map analysis, 181, 459
Ternary mixing rule, 136, 185
Ternary system, 89
Ternary decomposition reaction, 119
Tradeoff between design and control, 249
Tradeoff between reactor and separation, 50, 439
Transformed variables, 136
Trap-out tray, 432
Tray holdup, 6
Tray sizing, 397, 408
Tubular reactor dynamic model, 446
Two-temperature control, 376, 447
Txy diagram, 182
Tyreus–Luyben tuning, 246, 266, 296, 313, 326, 335, 345
Ultimate gain, 246, 252, 256, 285, 296
Ultimate period, 246, 252, 256, 285, 296
UNIQUAC, 149
Underwood equation, 40, 42
Wang–Henke method, 523