Contents

Preface
page xi

Abbreviations
page xiii

Part I
Introduction
page 1

1
Philosophy of bioinorganic photochemistry
page 3

Part II
Fundamentals
page 13

2
Light and matter
page 15

2.1
Nature of light
page 15

2.2
Accessible light sources
page 16

2.3
Interaction between light and matter
page 17

3
Formation and properties of electronic excited states
page 19

3.1
Wave mechanics and quantum numbers
page 20

3.2
Electronic excitation
page 21

4
Photophysical deactivation of electronic excited states
page 25

4.1
Spontaneous deactivation
page 25

4.2
Quenching
page 27

4.3
Coordination and organometallic compounds
page 29

5
Kinetics of the excited-state decay
page 35

6
Photochemical reactions
page 41

6.1
Photochemical reaction channels
page 42

6.2
Intramolecular photoreactions
page 43

6.2.1
Photodissociation and photoionization
page 44

6.2.2
Photoisomerization
page 46

6.3
Intermolecular photoreactions
page 47

6.4
The coordination compound specificity
page 49
Contents

Part I

6.4.1 Ligand field photochemistry 50
6.4.2 Photochemistry from LC or LLCT states 51
6.4.3 Inner-sphere charge transfer photochemistry 52
6.4.4 Outer-sphere charge transfer photochemistry 55
6.5 Photosensitized reactions 58
6.6 Homogeneous photocatalysis 63

Part II

7.1 From molecules through clusters to crystals 77
7.2 Metallic nanoparticles: metals in the embryonic state 78
7.3 Formation and decay of the excited states of semiconductors 85
7.3.1 Optical excitation of semiconductors 85
7.3.2 Electrons and hole trapping 87
7.3.3 Radiative vs non-radiative decay 88
7.3.4 Surface-molecule interaction: general description 90
7.3.5 Heterogeneous photocatalysis 93

Part III

8.1 Homogeneous systems: from interstellar space to planetary atmospheres and primitive soup models 110
8.2 Heterogeneous photochemistry in ice phases 121

9.1 Solar radiation 127
9.2 Atmospheric photochemistry 129
9.3 Photochemistry in the hydrosphere and soil 138
9.3.1 Nitrate photochemistry 139
9.3.2 Role of humic substances 140
9.3.3 Photocatalysis by FeIII/FeII complexes 141
9.3.4 Photocatalysis by CuII/CuI complexes 144
9.3.5 Photocatalysis by chromium compounds 145
9.4 Photochemical self-cleaning in the environment 148

10.1 (Photo)catalysis on chalcogenide semiconductors 157
10.2 Photocatalytic nitrogen fixation 159
10.3 Photocatalytic carbon dioxide reduction 160
10.4 ‘Fossils’ of prebiotic catalysts: metal clusters in active centres of metalloenzymes 161

11.1 Photosynthetic structures 172
11.2 Aerobic photosynthesis 174
11.2.1 Photosystem II (PSII) 176
11.2.2 Photosystem I (PSI) 177

Part IV

7 Photochemistry and photophysics of supramolecular systems and nanoassemblies 77
7.1 From molecules through clusters to crystals 77
7.2 Metallic nanoparticles: metals in the embryonic state 78
7.3 Formation and decay of the excited states of semiconductors 85
7.3.1 Optical excitation of semiconductors 85
7.3.2 Electrons and hole trapping 87
7.3.3 Radiative vs non-radiative decay 88
7.3.4 Surface-molecule interaction: general description 90
7.3.5 Heterogeneous photocatalysis 93

Part III

8 From interstellar space to planetary atmospheres 109

9 Solar radiation and terrestrial environment 127

10 Heterogeneous (photo)catalysis and biogenesis on Earth 157

11 Foundation and evolution of photosynthesis 169
11.3 Light harvesting antennae (LHC) 177
11.3.1 Chlorophyll 179
11.3.2 Bacteriochlorophyll 179
11.4 Electron transfer pathways in PSII and PSI 179
11.5 Oxygen-evolving complex (OEC) 183
11.5.1 Inorganic species in OEC 185

Part IV Photochemistry and photophysics in bioinspired systems: studies and modelling 189

12 Photoenzymes 191
12.1 Natural photoenzymes 191
12.2 Modified natural proteins/enzymes 194
12.3 Artificial photoenzymes 197
12.4 Towards mimicking the photosynthetic processes 200
12.4.1 Light harvesting antennae 200
12.4.2 Charge-separation systems 202
12.4.3 Biomimetic reaction centres 203

13 Photoinduced electron transfer in proteins 209
13.1 Photochemical methodology 210
13.1.1 Photoactive ruthenium complexes 210
13.1.2 Metal-substituted haemoproteins 215
13.1.3 Photoinduced ligand dissociation 216
13.2 Biochemical applications 217
13.2.1 Mechanisms of electron transfer 217
13.2.2 Cross-linking of proteins 218
13.2.3 Analyzing intermediates and testing new inhibitors 219
13.2.4 Folding of proteins 219

14 Nucleic acid photocleavage and charge transport 227
14.1 Mechanisms and strategies for advanced metallophotocleavers 227
14.1.1 Ruthenium complexes 228
14.1.2 Rhodium complexes 232
14.1.3 Other metal complexes 234
14.1.4 Di- and trinuclear complexes 237
14.2 Photoinduced DNA-mediated charge transport 238

Part V Towards applications 247

15 Light and biomatter 249

16 Fluorescent and chromogenic sensing and labelling 257
16.1 Cations as targets in biochemical sensing 259
16.1.1 Cations common in biological systems 262
16.1.2 Fluorescent detection of toxic cations 268
16.2 Fluorescent and chromogenic sensing of anions 270
16.2.1 Common anions 270
16.2.2 Toxic anions 274
16.3 Optical detection of neutral molecules 278
16.4 Nanoparticles in biochemical sensing and labelling 283

17 Therapeutic strategies 293
17.1 Photobiostimulation 295
17.2 Photoactivation of drugs 297
17.3 Photodynamic therapy 303
 17.3.1 Mechanisms of PDT and PTT 304
 17.3.2 Photosensitizers 305
 17.3.3 Inorganic photosensitizers 307
 17.3.4 Supporting role of metal ions in photodynamic therapy 312
 17.3.5 Combination of polypyrrolic photosensitizers and metallopharmaceuticals 313
 17.3.6 Recent PDT development 313
17.4 Nanomedical methods 316

18 Photodynamic inactivation of microorganisms 335
18.1 Bacteria 337
18.2 Viruses 338
18.3 Fungi 340
18.4 Parasites 340
18.5 Perspectives 341

19 Photodelivery and phototargeting 345

20 Phototoxicity and photoprotection 353
 20.1 Chemical and physical photoprotection 353
 20.2 Inorganic sunscreens 355

21 Photocatalysis in environmental protection 359
 21.1 Development of homo- and heterogeneous methods 359
 21.2 Homogeneous photocatalysis 360
 21.3 Heterogeneous photocatalysis 363
 21.3.1 Water and air detoxification 363
 21.3.2 Photocatalytic CO2 reduction 365
 21.3.3 Other applications of photocatalysis 366
 21.4 New ideas in pollution abatement 367
 21.4.1 New emerging techniques 367
 21.4.2 Renewable energy resources 368

Index 377