Index

Note: Page references in italics refer to figures and tables.

A
Academia, calls to action for, 344–349, 345
Academy of Project/Program and Engineering Leadership (APPEL) (NASA), 351
Accountability, 336–337
Accreditation Board for Engineering and Technology, Inc. (ABET), 344–345
Advanced Collaborative Environment (ACE), 25
Agile programs
 case studies, 288–291
 Integration Framework and, 148, 149, 209
 mindset for integration and, 68, 82 overview, 43
 pulsed product integration, 149–150
Airbus, 9, 10
American Association of Colleges of Nursing, 348
American Institute of Architects (AIA), 224
American Society for Engineering Management (ASEM), 52
Anzac Class Frigate (Royal Australian Navy) (case study), 249–255, 251
APM Body of Knowledge (Association for Project Management), 60
Apollo program (NASA), 3, 359–360
Application Development Center (ADC), 289–290
Arnold, E., 271
Assessment
 developing integrated engineering program assessments, 201–202
 as pervasive integration mechanism, 151–154
 readiness for change, 271–273, 272
 reevaluation, 337–338
Association for Project Management (APM), 60
Aurora (Colorado), Prairie Waters project of, 40–42
Authority
role definition and, 72, 72–73
shared, 336–337

B
Babiceanu, R. F., 346
BAE Systems, 22–24, 251
Baldrige Performance Excellence Program, 272
Barnard, C. I., 86
Barreto, F., 102
Becerril, L., 247
Bechtel/Parsons Brinckerhoff, 39
Best, A., 175
Big Dig (Boston)
case study, 299–303
overview, 9, 10, 12, 37–40
program life cycle, 218, 226–227, 227, 232, 233
BMW (case study), 291–299, 293, 298
Boeing, 9, 10, 45, 119, 184
Boisjoly, Roger, 205–207
Book, organization of, liii–liv
Boston (Massachusetts), Central Artery/Tunnel project. See Big Dig (Boston)
Boston Globe, 38, 39
Boyd, John, 209–210
British Airport Authority (BAA), 180
British Airways, 180
Bureaucracy, 85
Business plans, 147

C
C2HM Hill, 40
California Air Resources Board (CARB), 30
California High-Speed Train Project (CHSTP), 225
Calls to action, 343–363
for academia, 344–349, 345
for enterprise, 349–353
for industry and professional societies, 357–359, 359
overview, 341, 343–344
for policymakers, 353–357
for researchers, 359–361
Career paths, integrated, 199
Catmull, Ed, 171, 172, 175
CEA Technologies, 251
Center for Alternative Fuels, Engines and Emissions (West Virginia University), 30
Central Artery/Tunnel (Boston). See Big Dig (Boston)
Central Intelligence Agency, 284–285
Cernan, Gene, 3
Challenger case study (NASA), 205–207, 206
Change initiation, 309–339
achieving and sustaining new ways of working, 327–329
commitment and involvement required of leaders and decision makers, 323–324
communications planning, 319–323, 320, 321, 322
Integration Framework input dimensions for, 329–334, 330
measures, metrics, and reporting, 326–327
observing and interviewing, 314–316, 315
organizational context for, 310–312
overview, 259, 309
planning for, 312–314
practices needed for, 334–338
prioritizing initiatives, 324–326, 325, 326
synthesizing, sharing, and mapping, 316–319, 317
Change Life Cycle Framework (PMI), 266, 266–270, 272
Change practices case studies (See Change programs (case studies))
impact of, 182
leading integration change program
(See Change initiation)
overview, 259
readiness assessment, 271–273
sustaining, 261–277 (See also Sustained change)
Change programs (case studies), 279–307
Big Dig (Boston), 299–303
BMW, 291–299, 293, 298
Lockheed Missiles & Space Company (LMSC), 280–284
overview, 259, 279–280
U.S. government agency acquisition programs, 284–287
“Change Through Persuasion” (Garvin, Roberto), 323
Chartering process, 41
Chettiparamb, A., 361
Chief systems engineers
assignment of, 11
defined, 13 (see also systems engineers)
Clinton, Bill, 44
Collaboration
creating knowledge foundation through exploratory research, xlviii–li, xlix
F/A-18E/F Super Hornet example, 131–132
for implementing change, 328–329
Integration Framework and effective integration, 110, 110–112
mindset for, 12–14
overview, xlvii–xlvi, xlvii–livi, xlix, liii–liv
Program Performance of Integration Framework for, 243
success of high-functioning programs, 44, 47
Collective consciousness, creating, 45–47
Colocation, 6, 127
Combe, M., 272, 350
Communication
change initiation and communications planning, 319–323, 320, 321, 322
change initiation and information sharing, 329
F/A-18E/F Super Hornet example, 135–138, 136, 138
integration concepts and, 85
Integration Framework and effective integration, 110, 110–112
Program Performance of Integration Framework for, 243–244
success of high-functioning programs, 47
Competitive advantage, workforce and organizational capabilities for, 10–12
Complexity
defined, 20
reducing, 124–125
Conforto, E. C., 102
Consortium for Engineering Program Excellence (CEPE) (MIT), xlvii–liii
Contextual Factors of Integration Framework (dimension IV)
change initiation, 329–334, 330
F/A-18E/F Super Hornet example, 121–122
overview, 107–110, 108
Continental Airlines, 22–24
Contingency theory, 86
Control theory, 209
Conway’s Law, 112
Crawford, Gary, 252
Credier, K. A., 352
Crew Resource Management (CRM), 207–219
Cynefin Framework, 20, 21
D
Decision making
change initiation and, 329
collaboration example, 131–132
decision theory, 73
Decision making (continued)
decision theory and OODA Loop, 209–210
F/A-18E/F Super Hornet example, 128–131, 134
information sharing and, 135–138, 136, 138
Integration Framework and effective integration, 110, 110–112
program gate reviews, 144–147, 146
Program Performance of Integration Framework for, 241–243
team empowerment example, 132–134
De Faber, L, 175
Defense Advanced Research Projects Agency, 25, 281
Demaria, A., 57, 57
Deming, W. E., 230
Denver International Airport (DIA), 22–24
Department of Defence (Australia), 249–250
DeRosa, J. K., 352
Design, simplicity of, 6
DiBella, A. J., 261–262
Diesel Technology Forum, 29
Discoverer (Lockheed Missiles & Space Company), 280–284
Disney, 170–171, 172, 175
Dragon 2 (SpaceX), 4–5
Dweck, Carol, 289
Dyer, Joseph, 126–128, 132, 137

E
Eastern Airlines, 207–209
E Change LIFE (BMW case study), 296–298
Economist Intelligence Unit (EIU), 9
Education, 203–204
Effectiveness, of integration programs.
See Program Performance of Integration Framework (dimension VI)
E/F program (F/A-18E/F Super Hornet example), 126–128, 127, 138–140, 139
Eisner, H., 87
Electronic warfare (EW), 250–252
Embry-Riddle Aeronautical University, 346
Emissions scandal example (Volkswagen), 29–30
Encyclopedia of Lean Enablers (MIT CEPE), 156
Engagement, 318
“Engine” approach, for strategy implementation, 349–353
Engineering Standard Work (ESW) (Pratt & Whitney), 156–157
Enterprise
calls to action for, 349–353
environmental change. See Organizational culture environmental factors, 174–178
Enterprise Transformation Roadmap (LAI), 266–270, 267
Episodic integration mechanisms
dedicated team meeting space, 148–149
joint planning, 147–148
overview, 144
program gate reviews, 144–147, 146
pulsed product integration and iterative development, 149–150
summarized, 150–151
See also Processes, Practices, Tools of Integration Framework (dimension I)
Erskin, Pamela, 310
European Higher Education Area (EHEA), 345

F
F-80 fighter planes, development of, 42–43
F/A-18E/F, The (Institute for Defense Analyses), 121
F/A-18E/F Super Hornet, 119–142
E/F program and hierarchy, 126–128, 127, 138–140, 139
improved decision making process, 128–138, 136, 138 (See also Decision making)
integration enabled by reduced program complexity, 124–125
Integration Framework practices used, 140–141, 141 (See also Integration Framework)
overview, 97–98, 119–121, 120
parallel integration process in NAVAIR, 121, 125–126
program background and context of integration, 121–122
program delivery, 138–140, 139
program initiation, 122–124
See also Processes, Practices, Tools of Integration Framework (dimension I)
Falcon 9 Rocket (SpaceX), 4–6
Federal Acquisition Institute, 286
Federal Aviation Administration, 208
Fifth Discipline, The (Senge), 196–197, 201
Financial issues
of F/A-18E/F Super Hornet, 120
of high-functioning programs, 37
of program performance, 20, 21
of sustained change, 263
Force-field analysis, 263
Formal integration practices, assessing, 79–83, 80, 81
Forsberg, Kevin, 285
From Crisis to Opportunity (Professional Services Council), 11–12
Frosch, Robert, 185
Gate decision process, 144–147, 146
General Electric (GE), 119, 124, 133–134. See also F/A-18E/F Super Hornet
Generic life style stages, of large-scale programs, 217–218, 219
Geraldi, J., 170
Glennan, T. Keith, 359
Global Accreditation Center for Project Management Education Programs (GAC), 344
Global Partnership for Social Accountability (GPSA) (World Bank), 210
Godwin, Gib, 128
Goldsmith, A. H., 348–349
“Go/no go” review, 27
Governance
change leadership team composition, 314
pervasive integration mechanisms, 162–163, 163
program performance and, 19, 24
Graduate Reference Curriculum for Systems Engineering (GRCSE), 346–347
Guidebook of Project & Program Management for Enterprise Innovation, The (Project Management Association of Japan), 59
Guide for the Application of Systems Engineering in Large Infrastructure Projects (INCOSE), 225–226
on developing integration competencies, 202
mindset for integration and, 9
overview, xlvii–xlviii
on policy, 354
on program performance, 20, 31
Guide to the Project Management Body of Knowledge, A (PMI), 74, 164, 285
H

Hamilton, D., 348–349
Harrington, H. J., 262, 273
Harvard Business Review, 323
Hawthorne Effect, 85
Heathrow Terminal 5 program, 179–180, 222–225
High-functioning program success, 37–49
Big Dig (Boston) example, 37–40
integration, defined, 1–2
LEAP (Rockwell Collins) example, 45–47
Next Generation Launch Technology Program (NASA) example, 43–45
overview, 37
Prairie Waters (Aurora, Colorado) example, 40–42
Skunk Works (Lockheed Martin) example, 42–43
summarized, 47–48
HMAS Warramunga, 251
HornetWEB (McDonnell Douglas), 135–136, 136
Hornsby, K., 348–349
Hubble Space Telescope (NASA), 179
Human resources
change initiation and systems of, 331–332
developing multidisciplinary teams, 204
human relations movement, 75
Integration Framework and, 105–107, 106
talent management for program performance, 28
talent management needs, 105–107, 106
See also Management; People Competencies of Integration Framework (dimension III)

I

I-15 Reconstruction Program (Salt Lake City), 180

Industry, calls to action for, 357–359, 359
Informal integration practices, assessing, 79–83, 80, 81
Information sharing. See Communication Infrastructure and Projects Authority (IPA), 355
Institute for Defense Analyses, 121
Integrated Management Information Control System (IMICS), 136–137
Integrated Product and Process Development, 154–155
Integrated Product and Process Development Case Study (Institute for Defense Analyses), 121
Integrated Product Team (IPT) (McDonnell Douglas) defined, 121, 122
technical performance management, 161–162
See also F/A-18E/F Super Hornet
Integrated Project Delivery (IPD) (American Institute of Architects), 224
Integrated project organizations (IPO), 301–302
Integration concepts, 79–95
assessing integration between disciplines, 79–83, 80, 81
attributes of integration in complex organizations, 83–88
effective integration, of Integration Framework (dimension V), 110, 110–112
formalized approach to integration, 80–83, 200
future of integration, 365–368
integration, defined, 1–2, 93, 200
overview, 79
practitioner perspectives on integration, 88–93, 92
summarized, 93–94
See also Integration Framework; Integration importance
Integration Framework, 99–117
change initiation with, 329–334, 330
contextual factors (dimension IV), 107–110, 108
effective integration (dimension V), 110, 110–112 (See also Program life cycle)
integration in practice (See F/A-18E/F Super Hornet)
Organizational Environment (dimension II), overview, 103, 103–105 (See also Organizational Environment of Integration Framework (dimension II))
overview, xlix, liii, 97–98, 99–100, 100, 114
People Competencies (dimension III), 105–107, 106 (See also People Competencies of Integration Framework (dimension III))
Processes, Practices, Tools (dimension I), 100–103, 101 (See also Processes, Practices, Tools of Integration Framework (dimension I))
Program Performance (dimension VI), 113–115, 114
Integration importance, 51–78
difficulty of integration, 75–76
divergence as problem, 69–75, 70, 71, 72, 74, 75 (See also Tension between program management and systems engineering)
overview, liii, 1–2, 51–52
program management, definitions, 53–62, 55, 56, 57, 61–62
project management and systems engineering differences, 52–53
systems engineering, definitions, 62–69, 65
See also Integration concepts; Mindset for integration
Interdisciplinary Approaches to Teaching (Goldsmith, Hamilton, Hornsby, Wells), 348–349
International Council on Clean Transportation (ICCT), 30
International Council on Systems Engineering (INCOSE)
call to action for professional societies, 357, 358
Guide for the Application of Systems Engineering in Large Infrastructure Projects, 225–226
overview, xlvii–liii
Pathways to Influence, 204
systems engineering defined by, 63–66, 65
Systems Engineering Handbook (INCOSE), 73–74
systems engineering life cycle stages, 218, 220, 226
on systems thinking, 197
A World in Motion, 10
See also PMI/INCOSE study
International Organization for Standardization (ISO), 59–60, 67
International Project Management Association (IPMA), 52, 59
International Space Station, 182–185, 184
Interviewing, for change initiation, 314–316, 315
IPMA Competence Baseline (International Project Management Association), 59
Isaacson, Walter, 170
ITIL and Organizational Change (Erskin), 310
J
Jackson, A., 320, 324, 327
Jet Propulsion Laboratory (NASA), 231
Jobs, Steve, 170
Johnson, Clarence L., 43
Joint Planning, 147–148
Jones, C., 239
K
KC-46 aerial refueling tankers, 45
Keenan, P., 320, 324, 327
INDEX

Keleher, Dan, 252, 254
Kennedy, John F., 44, 191
Knowledge creation
 knowledge sharing importance, 104
 through exploratory research, xlviii–lii, xlix
Kotter, J., 264, 273, 320
Kowalski, C., 67

L
LAI, 266, 272
LAI Enterprise Self-Assessment Tool (LESAT), 272
Large-scale infrastructure programs (LIPs)
 Big Dig leadership style example, 218,
 226–227, 227, 232, 233
 program life cycle, 225–227, 227
Large-scale programs, challenges of, 178–180
Leadership
 Big Dig program life cycle and leadership style, 218,
 226–227, 227, 232, 233
 BMW change program case study, 294–295
 integration concepts and, 88
Organizational Environment of Integration Framework (dimension II),
 174–178, 175
People Competencies of Integration Framework (dimension III),
 194–196, 195
 program performance and, 28
Lead Systems Integrator (LSI), 25
Lean Advancement Initiative (MIT), 266, 272
Lean Aerospace Initiative (United Kingdom), 272
Lean engineering accelerated planning (LEAP) team (Rockwell Collins),
 45–47
Lean programs
 change program case studies, 290,
 295–296
 The Guide to Lean Enablers for Managing Engineering Programs (Oehman),
 xlvii–xlvi, 9, 20, 31, 202, 354
Lemke, Larry, 122
Lessard, D., 181
Lewin, K., 263
Lexicon of Project Management Terms (PMI), 56
Linebacker (software architecture), 192–194
Locatelli, G., 181
Lockheed Martin, 42–43
Lockheed Missiles & Space Company (LMSC) (case study), 280–284
London Olympics Authority, 9, 19
Loufrani-Fedida, S., 204
Lucae, S., 147
Lund, Robert, 205–207

M
Maani, K. E., 197
Majaraj, V., 197
Major Projects Authority (United Kingdom), 203, 355
Management
 commitment to change initiation by, 323–324
 program performance and, 19, 24, 28
 strategy realization and, 8–10
Management of technology (MOT) programs, 360
Managing Change in Organizations (PMI), 182
Managing Successful Programmes (AXELOS), 57, 59, 60
Mancini, M., 181
Mantel, S. J., 217
Mapping
 for change initiation, 316–319, 317
 value-stream mapping, 46
Maritime Electronic Warfare Systems Program Office (MEWSPO),
 250–252
MARS Pathfinder (NASA), 180–182
Mars Science Laboratory (NASA), 109–110
Massachusetts Highway Department (MHD), 300
Massachusetts Institute of Technology (MIT), xlvii–liii, 156, 272, 360
Massachusetts Turnpike Authority (MTA), 300
Mayo, E., 85
McChrystal, Stanley, 192
McDonnell Douglas Corporation
F/A-18E/F Super Hornet, overview, 119, 121, 122–124
HornetWEB, 135–136, 136
Integrated Product Team (IPT) (McDonnell Douglas), defined, 121, 122 (See also F/A-18E/F Super Hornet)
Integrated Product Team (IPT) (McDonnell Douglas), technical performance management, 161–162
See also Boeing; F/A-18E/F Super Hornet
McKinney, D., 271
McDonnell Douglas Corporation
F/A-18E/F Super Hornet, overview, 119, 121, 122–124
HornetWEB, 135–136, 136
Integrated Product Team (IPT) (McDonnell Douglas), defined, 121, 122 (See also F/A-18E/F Super Hornet)
Integrated Product Team (IPT) (McDonnell Douglas), technical performance management, 161–162
See also Boeing; F/A-18E/F Super Hornet
McKinney, D., 271
Measurement/metrics. See Program Performance of Integration Framework (dimension VI)
Meredith, J. R., 217
Methodologies, as pervasive integration mechanism, 151–154, 153
Miller, R., 181
Mindset (Dweck), 289
Mindset for integration, 3–16
competitive advantage, 10–12
enabling collaboration with, 12–14
example, 1, 4–8, 7
strategy realization and good management, 8–10
striving for perfection in complex work, 3–4
Miniature Seeker Technology Integration (MSTI) (NASA), 222, 230–232
Mission, developing, 173
Mission assurance, in routine operations, 7–8
Missonier, S., 204
MITRE Corporation, 352
Model-based program planning, 148
Modern Continental, 39
Modular Six Degrees of Freedom (Mod SDF), 137–138, 138
Mooz, Hal, 285
Morris, P. W. G., 172
Morton-Thiokol, 205–207
Müller, R., 181, 194
Multidisciplinary teams, developing, 204
Musk, Elon, 1, 4–8, 7
National Aeronautics and Space Administration (NASA)
Academy of Project/Program and Engineering Leadership (APPEL), 351
Apollo program, 3, 359–360
call to action for researchers, 359–360
Challenger case study, 205–207, 206
collaboration and integration by, 12
Hubble Space Telescope, 179
International Space Station, 182–185, 184
Jet Propulsion Laboratory, 231
Mars Science Laboratory, 109–110
Miniature Seeker Technology Integration, 222, 230–232
Next Generation Launch Technology Program, 43–45
People Competencies case study, 191–194
SpaceX and, 3–4, 5
systems engineering defined by, 67–68
National Audit Office (United Kingdom), 10
Nationwide Mutual Insurance Company (case study), 287–291
Naval Air Systems Command (NAVAIR), 121, 125–126
Naval Sea Systems Command, 150
Next Generation Launch Technology Program (NASA), 43–45
Nightingale, D. J., 263
Nimgade, A., 176
Northrop, 119, 123–124. See also F/A-18E/F Super Hornet

O
Obeya, 148–149
Observing, for change initiation, 314–316, 315
Observing, Orienting, Deciding, Acting (OODA) Loop, 209–210
Oehmen, J., xlvi–xlvi, 9, 20, 31, 147, 170, 202, 354
Office of Government Commerce (United Kingdom), 59, 60
Ogburn, C., Jr., 263
Olwell, D. H., 346–347
Olympic Games, 9, 17–20, 19
Optical Systems Failure Report (NASA), 179
Organizational culture
change initiation and, 332–333
competitive advantage and, 10–12
environmental change and integration, 86
integration concepts and, 86–87
Integration Framework and organizational environment (dimension II), 103, 103–105
mindset for integration, 5
Organizational Environment of Integration Framework (dimension II), 174–178, 175
Organizational Environment of Integration Framework (dimension II), 169–189
challenges of integration in large-scale programs (systems failure), 178–180
change initiation, 329–334, 330
characteristics of successful program integration, 180–182
International Space Station as model of systems integration, 182–185, 184
organizational environmental factors, 174–178, 175
overview, 98, 169
structural dimensions of integration, 169–174, 173
summarized, 185
team-driven process for problem solving, 172
See also Integration Framework
Organization Design Team (ODT) (NASA), 43
Organization theory, 84, 87

P
Parraguez Ruiz, P., 170
Partnering concept, 302–303
Pathways to Influence (INCOSE), 204
People Competencies of Integration Framework (dimension III)
background and case study, 191–194
change initiation, 329–334, 330
developing integration competencies, 198–207, 202, 206
identifying integration competencies, 194–197, 195
leadership, 176–177
managing integration competencies, 207–210
overview, 98, 105–107, 106, 191
summarized, 210–211
Pervasive integration mechanisms
governance, 162–163, 163
integrated product and process development, 154–155
overview, 151
requirements management, 157–158, 158, 159
risk management, 159–160
standards, methodologies, assessments, 151–154, 153
summarized, 163–164
technical performance management, 161–162
work design processes, 155–157
See also Processes, Practices, Tools of Integration Framework (dimension I)
Phillips Laboratories, 231
Pinto, J. K., 172
Pixar, 170–171, 172, 175
Planning
change process and, 268–269
episodic integration mechanisms, 147–148
lack of, 71–72
program performance and, 19, 24
See also Change initiation; Integration importance
PMI/INCOSE study
assessing integration between disciplines, 79
importance of integration of systems engineering and program management, 70–71
Integration Framework, overview, 101, 105, 106, 108–109, 112, 113
Integration Framework elements, 99–117 (See also Integration Framework)
overview, xlvii–xlviii
on program performance, 242, 243–244, 249
on standards, 100–103, 101
See also Assessment; Calls to action; Change practices; Integration Framework; Standards
Policymakers, calls to action for, 353–357
Position on Interdisciplinary Education and Practice (American Association of Colleges of Nursing), 348
Powers of Two (Shenk), 204, 210
Prairie Waters (Aurora, Colorado), 12, 40–42
Pratt & Whitney, 156
Prioritization, for change, 324–326, 325, 326
Processes, Practices, Tools of Integration Framework (dimension I)
See also Integration Framework
Product concept
for planning, 147
product development and pervasive integration mechanisms, 154–155
Professional Services Council, 11–12
Professional societies, call to action for, 357–359
Program gate reviews, 144–147, 146
Program life cycle, 217–257
Big Dig leadership style example, 218, 232, 233 integration and generic life cycle, 217–218, 219
Integration Framework effective integration (dimension V), 110, 110–112 large-scale infrastructure programs, 225–227, 227 life cycle integration, 227–232, 229, 230 overview, 98, 217
program management life cycle characteristics, 220–225, 221 systems engineering life cycle characteristics, 219–220, 220
Program management
as defined by PMI, 54–55, 55 as defined worldwide, 58–62, 61–62 benefits management, 222–223 life cycle characteristics, 220–225, 221 (See also Program life cycle)
overview, 53–54
Program management *(continued)*

program delivery and F/A-18E/F Super Hornet example, 138–140, 139
projects compared to programs, 55–58, 56, 57
systems engineering compared to, 52–53 *(See also Integration importance)*
understanding program managers, 62 *(See also Program managers)*

Program Management Professional (PgMP®) (PMI) credential, 58

Program managers
assignment of, 11
collaboration with systems engineers, xlvii–liv, xlix
competencies, 58–59
defined, 13
practitioner perspectives on integration, 88–93, 92
roles of team members, 100–103, 101 *(See also Integration Framework)*
understanding, 62
(See also Program management)

Program organization/processes, 147–148

Program performance, 17–36
complexity of large engineering programs, overview, 20–22, 21
Denver International Airport baggage handling example, 22–24
Future Combat Systems (FCS) (U.S. Army) example, 24–28, 25
Olympic Games examples, 17–20 overview, 1, 17
scope of programs and, 20, 31
typical engineering program challenges, 31, 32
Volkswagen emissions scandal example, 29–30

Program Performance of Integration Framework (dimension VI)
change initiation measures, metrics, and reporting, 326–327
effective collaboration, 243
effective decision making, 241–243
effective information sharing, 243–244
importance of measurement, 240–241, 241
integration as catalyst for program performance, 244–249, 245, 246, 247, 248
key elements to measure integration, 241, 242
management and technical program performance metrics, 238–240, 239, 240
overview, 98, 113–115, 114, 237–238
Royal Australian Navy’s Anzac Class Frigate (case study), 249–255, 251
summarized, 255–256
(See also Integration Framework)

Programs, defined, 13, 55–58, 56, 57
Project and Program Management for Innovation (Project Management Association of Japan), 60–61, 61–62
Project Management Association of Japan (PMAJ), 59, 60–61, 357
Project Management Institute (PMI)
call to action for professional societies, 357
Change Life Cycle Framework, 266, 266, 267
A Guide to the Project Management Body of Knowledge, 74, 164
integration importance and, 52
Lexicon of Project Management Terms, 56
Managing Change in Organizations, 182
mindset for integration, 10
overview, xlvii–lii, lii
program management defined by, 54–55, 55
Project Manager Competency Development Framework, 203
Pulse of the Profession® In-Depth Report 2014, 210
The Standard for Program Management, 54, 164, 173
Pulse of the Profession® In-Depth Report 2012, 182
See also PMI/INCOSE study; Standard for Program Management, The (PMI)

Project Manager Competency Development Framework (PMI), 203

Project managers, defined, 13

Projects, defined, 13, 55–58, 56, 57

Pulsed product integration and iterative development, 149–150

Pulse of the Profession® In-Depth Report (PMI)

2012, 182

2014, 210

Pyster, A., 346–347

Q

Quadrennial Defense Review (1996) (U.S. Navy), 139

R

Reagan, Ronald, 44

Rebentisch, E., 102, 147

Remko, Allen, 348

Requirements breakdown structures (RBS), 155

Requirements management, 157–158, 158, 159

Researchers, call to action for, 359–361

Responsible Engineering Authorities (REAs), 231–232

Rhodes, D. H., 239

Richmond, Barry, 197

Risk management

F/A-18E/F Super Hornet example, 134

pervasive integration mechanisms, 159–160

program performance and, 19, 24

success of high-functioning programs and, 41

See also Program Performance of Integration Framework (dimension VI)

Roberto, Michael, 323

Rockwell Collins, 45–47

Roedler, G., 239

Rogers Commission, 205–207

Role delineation

for change initiation, 331

defining roles, 72, 72–73

Integration Framework processes, practices, tools (dimension I), overview, 100–103, 101

roles of team members, 105–107, 106

(See also People Competencies of Integration Framework (dimension III))

Romano, E., 181

Rossi, M., 102

Roth, G., 156, 261–262

Royal Australian Navy’s Anzac Class Frigate (case study), 249–255, 251

S

Saab Australia, 251

Schedule Compliance Risk Assessment Methodology (SCRAM)

(Australian Department of Defence), 249–250

Schein, E., 86

Schimmoller, H., 239

Schwalb, J., 64

Scientific management, 84–85

Secor, Deborah, 45–46

Senge, Peter, 196–197, 201

Sharing, for change initiation, 316–319, 317

Sheard, S., 271

Shenk, Joshua Wolk, 198, 204, 210

Shewark Cycle, 270–271

Siemens global R&D network (case study), 176

Simplicity of design, 6

Sirkin, H. L., 320, 324, 327

Skunk Works (Lockheed Martin), 42–43

Smit, J., 175

Snowden, David, 20

Sopko, J. A., 57, 57

Space programs

International Space Station, 182–185, 184

Kennedy on, 191
Space programs (continued)

Lockheed Missiles & Space Company (LMSC) (case study), 280–284
NASA, 3–4, 5
SpaceX example, 1, 4–8, 7
U.S. Air Force, 4
Space Shuttle (NASA), 5
Space Station Control Board (SSCB), 184
SpaceX Corporation, 1, 4–8, 7
Specialization, 10–11, 69, 344, 358
Spectrum Astro, 231
Srinivasan, J., 263
Stakeholders
 commitment to change initiation by, 323–324
 program performance and, 19
 stakeholder identification/analysis for change, 269–270
Standard for Program Management, The (PMI)
 overview, 54, 58
 on program life cycle phases, 220, 227–228
 on program performance, 238
Standards
 Integration Framework processes, practices, tools (dimension I), 100–103, 101
 International Organization for Standardization (ISO), 59–60, 67
Managing Successful Programmes (AXELOS), 57, 59, 60
People Competencies of Integration Framework and, 199–200
pervasive integration mechanisms, 151–154, 153
program management as defined worldwide, 58–62, 61–62
The Standard for Program Management (PMI), 54
systems engineering, 64–69
Systems Engineering Handbook (INCOSE), 67–68, 73–74, 201, 227
tailoring of, 164–165
See also Integration importance
use of, 74, 82, 199–200
Stapleton International Airport (Denver), 22
State of the American Manager, The (Gallup), 195
Steidle, Craig E., 122, 123
Stephenson, Brett, 46
Strategic Defense Initiative, 44
Strategy implementation, 8–10
Structural dimensions, of integration, 169–174, 173
Success, of high-functioning programs.
 See High-functioning program success
Sustained change, 261–277
 change agent characteristics, 271
 change initiation and, 327–329
 frameworks and models for change, 265–271, 266, 267
 overview, 259, 261–262
 preparing for, 273
 readiness assessment for, 271–273, 272
 stumbling blocks to, 263–265
 summarizing, 273–274
 SUSTAIN (model for sustainable change), 262, 262, 273
 thinking about change, 262–265, 264
 transformational change, 273
Synthesizing, for change initiation, 316–319, 317
System of systems (SoS)
 defined, 64
 program performance and, 25, 27, 28
Systems Dynamics Modeling techniques, 246–247
Systems engineering
 as defined by small entities, 68–69
 ISO definition, 67
 life cycle characteristics, 219–220, 220 (See also Program life cycle)
 NASA definition, 67–68
 organization theory and integration concepts, 87 (See also Integration concepts)
overview, 62
program management compared to, 52–53 (See also Integration importance)
program performance and application of, 24, 28 (See also Program performance)
for success of high-functioning programs, 44 (See also High-functioning program success)
systems engineering technical reviews (SETRs), 145–146
understanding systems engineers, 69 (See also Systems engineers)
U.S. Department of Defense definition, 68
Systems Engineering Handbook (INCOSE), 67–68, 73–74, 201, 227
Systems engineers
collaboration with program managers, xlvi–liv, xlix
defined, 62
practitioner perspectives on integration, 88–93, 92
roles of team members, 100–103, 101 (See also Integration Framework)
See also Systems engineering
Systems thinking, 196–197, 263

T
Tactical Intelligence Fusion for Fires (TUFF) program (NASA), 191–194
Tailoring, 164–165
“Talented management,” 195–196
Taylor, Fredrick, 84–85
Teaming
change leadership team composition, 313–314
dedicated team meeting space, 148–149
F/A-18E/F Super Hornet example, 132–134
interdisciplinary teams, 174–178, 175
Organizational Environment of Integration Framework (dimension II) and interdisciplinary teams, 174–178, 175
success of high-functioning programs, 47
team-driven process for problem solving, 172
Technical performance management, 161–162
Tennessee State University, 346
Tension between program management and systems engineering
authority not clearly defined, 72, 72–73
conflicting practices between disciplines, 73–75, 74
creative, 201
lack of integrated planning, 71–72
overcoming, 75–76
overview, 69–71, 70, 71
practitioner perspectives about, 88–93, 92
shared responsibilities and, 201, 202
unproductive, 55, 69–71
Tesla, 4, 109
Thiry, M., 223, 314
Thomke, S., 176
Thuessen, C., 170
Toyota, 148
Toy Story (film), 170–171, 172
Training, 203–204
Trust, 318
Turner, R., 194

U
United Airlines, 22–24, 207–209
United Launch Alliance (ULA), 5
United Technologies Corporation (UTC), 146, 146, 156–157
U.S. Air Force, 4, 45, 281–284
U.S. Army, 24–28, 25
U.S. Congress, on “go/no go” review, 27
U.S. Department of Justice, 30
U.S. Department of Veterans Affairs, 285, 286
U.S. Environmental Protection Agency (EPA), 30
U.S. government agency acquisition programs (case study), 284–287
U.S. Navy, integration used by, 119–124, 139. See also F/A-18E/F Super Hornet

V
Validation, 318
Value-stream mapping, 41, 46
Vee model concept, 57, 57–58, 64–65, 65
Vertical integration, 6–7
Visualizing Project Management (Forsberg, Mooz), 285
Voehl, C. F., 262
Voehl, F., 262
Volkswagen, 29–30
Weber, Max, 85
Welch, Jack, 261
Wells, D., 348–349
Welsh, James, 348
West Virginia University, 30
“White elephant” issues, 17–20
Whole system optimization, 230–232
Why Good Strategies Fail (Economist Intelligence Unit), 9
Winch, G., 172
Wirt, Bob, 131
Work breakdown structure (WBS), 128, 129–131, 155
Work design processes, 155–157
World Bank, 210
World Cup (2014, Brazil), 18
World Economic Forum, 32
World in Motion, A (INCOSE), 10
World War II implementing change activity during, 265
Skunk Works (Lockheed Martin) and, 42–43
systems engineering, project management, and program management evolution during, 51

Z
Z6 Systems Engineering Competency Framework, 65, 66
Zeer, Jack, 131