Contents

List of Figures x

List of Tables xiii

Preface xv

1 Review of Digital Electronics and Computer Architecture 1
 1.1 Embedded Systems 1
 1.1.1 Processor Architecture (Revision) 2
 1.1.2 Interface Subsystem 3
 1.2 Software Architecture 4
 1.3 Essential Basic Logic Elements 5
 1.3.1 The Basic Flip/Flop 5
 1.3.2 The Edge-Triggered D-Type Flip/Flop (Latch) 7
 1.3.3 Edge-Triggered Latch with Enable 8
 1.3.4 Multi-Bit Registers 9
 1.4 Output Configuration Options 10
 1.4.1 Open Drain Configuration 10
 1.5 The Address Decode 11
 1.5.1 Partial Address Decode 12
 1.6 ARM Architecture 14
 1.7 Interface Software Development 14
 1.7.1 Software Development for Embedded Systems 18
1.8 C Programming Revision
 1.8.1 Arrays 19
 1.8.2 Structures and typedef 21
 1.8.3 Header Files 21
1.9 Conclusion 22
References 23
Further Reading 23

2 Simple Input and Output Functions 24
 2.1 Introduction 24
 2.2 Computer Structure 25
 2.3 Simple Interface Circuit Concepts 26
 2.3.1 An Output Interface 26
 2.3.2 Address Decode for Output 28
 2.3.3 A Simple Input Interface 29
 2.3.4 Address Decode for Input 29
 2.4 Activation of I/O Circuits 30
 2.4.1 Programming an Output 30
 2.4.2 Programming an Input 31
 2.5 Universal I/O Circuits 31
 2.5.1 Combined I/O Address Decode 32
 2.6 Practical I/O Circuits 33
 2.6.1 STM32F4 Address Decoding 35
 2.7 A Typical I/O Programme 35
 2.7.1 Example GPIO Application 37
 2.7.2 A Summary of Alternative I/O Operations 40
 2.7.3 Programming I/O in Assembler Language 41
 2.8 Suggested Design Challenge 41
 2.9 Conclusion 43
References 44
Further Reading 44

3 Timer Subsystems 45
 3.1 Timer Subsystems 45
 3.2 Basic Timer Configuration 46
 3.3 The STM32F4 Timers 47
 3.3.1 The Individual Timers 50
 3.4 Programming the STM32F4 Timers 51
 3.5 Timer Triggering 55
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5.1 Setting up the Time-Base</td>
</tr>
<tr>
<td>3.5.2 Using the Timer for an Input Measurement</td>
</tr>
<tr>
<td>3.6 Basic Timers</td>
</tr>
<tr>
<td>3.7 PWM Applications</td>
</tr>
<tr>
<td>3.8 Programming Challenge</td>
</tr>
<tr>
<td>3.9 Conclusion</td>
</tr>
<tr>
<td>References</td>
</tr>
</tbody>
</table>

| 4 Analogue Interface Subsystems | 66 |
| 4.1 Analogue Interfaces | 66 |
| 4.2 Digital to Analogue |
4.2.1 The STM32F4 DAC	69
4.3 Analogue to Digital Conversion	69
4.3.1 Sampling	70
4.3.2 Switched Capacitor Converter	72
4.3.3 The Software Interface	73
4.3.4 The STM32F4 ADC	74
4.4 Software Control of DAC	75
4.4.1 Waveform Generation	76
4.4.2 Waveform Timing	77
4.4.3 DAC Using DMA	79
4.5 Software Control of ADC	83
4.5.1 ADC Interface Using Timer and DMA	85
4.6 Programming Challenge	88
4.7 Conclusion	89
References	89
Further Reading	89

5 Serial Interface Subsystems	90
5.1 Introduction	90
5.2 RS232 Universal Asynchronous Receiver/Transmitter (UART) Communications	91
5.3 The I2C Interface	
5.3.1 Using the Touch Screen with an I2C Interface	96
5.4 SPI Interface	
5.4.1 SPI Interface to an Analogue to Digital Converter	103
5.5 HDLC Serial Communication	105
5.6 The Universal Serial Bus (USB)	
5.6.1 Hand-shake Packets	109
5.6.2 Token Packets 109
5.6.3 Data Packets 109
5.6.4 USB Protocol 110
5.7 Programming Challenge 110
5.8 Conclusion 111
References 111

6 Advanced Functions 112
6.1 Advanced Functions 112
6.2 Interrupts 112
 6.2.1 Interrupts in the STM32F4 114
 6.2.2 The Nested Vector Interrupt Controller (NVIC) 115
 6.2.3 Exceptions 117
6.3 Direct Memory Access (DMA) 118
 6.3.1 The STM32F4 DMA System 118
 6.3.2 DMA Request Mapping 119
 6.3.3 DMA Management 119
6.4 The LCD Display Module 121
 6.4.1 Character Generation 125
 6.4.2 Parallel Interface 127
 6.4.3 Touch Screen 128
6.5 The Wireless Interface Module 131
6.6 Digital Camera Interface 133
6.7 Conclusion 134
Further Reading 134

7 Application Case Study Examples 135
7.1 An Open-Loop Digital Compass 135
 7.1.1 Program Design 136
 7.1.2 Setting up the MAG3110 136
 7.1.3 Programming Challenge: A 360° Servo 140
7.2 The MSF Time Decoder 140
 7.2.1 MSF Receiver Circuit Arrangement 141
 7.2.2 Program Design 141
 7.2.3 Setting up for an Interrupt 142
 7.2.4 Acquiring the Data Bits 143
 7.2.5 Decoding the MSF Data 147
 7.2.6 Displaying the MSF Time Data 150