Contents

Contributors xxiv

Preface xxxi

Part I Introduction

1 Novel Omics Technologies in Food Nutrition
 Xuewu Zhang, Lijun You, Wei Wang, and Kaijun Xiao
 1.1 Introduction 3
 1.2 Transcriptomics in Nutritional Research 4
 1.3 Proteomics in Nutritional Research 5
 1.4 Metabolomics in Nutritional Research 7
 1.5 Systems Biology in Nutritional Research 9
 1.6 Conclusions 9
 References 10

2 Seafood Authentication using Foodomics: Proteomics, Metabolomics, and Genomics
 Karola Böhme, Jorge Barros-Velázquez, Pilar Calo-Mata, José M. Gallardo, and Ignacio Ortea
 2.1 Introduction 14
 2.2 Proteomic Approaches 15
 2.3 Metabolomic Approaches 19
 2.4 Genomic Approaches 20
 2.5 Conclusions 25
 References 26

3 A Foodomics Approach Reveals Hypocholesterolemic Activity of Red Microalgae
 Irit Dvir, Aliza H. Stark, and Shoshana (Malis) Arad
 3.1 Introduction 31
 3.2 Marine Functional Foods and Supplements 32
 3.2.1 Algae as a Functional Food 32
 3.2.2 The Nutritional Value of Algae 32
 3.3 Microalgae 33
 3.3.1 Red Microalgae 34
 3.3.2 Sulfated Polysaccharides from Red Microalgae 34
 3.3.3 Red Microalgae as a Hypocholesterolemic Agent 35
 3.4 Summary 37
 References 37

Part II Genomics

4 Gene-Diet Interaction and Weight Management
 Lu Qi
 4.1 Introduction 43
 4.2 Diet and Lifestyle Modifications in Weight Management 44
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3 The Role of Genetic Factors in Determining Body Weight and Weight Loss</td>
<td>44</td>
</tr>
<tr>
<td>4.4 Gene-Diet Interactions on Body Weight and Risk of Obesity</td>
<td>46</td>
</tr>
<tr>
<td>4.5 Gene-Diet Interactions on Weight Loss in Randomized Clinical Trials</td>
<td>47</td>
</tr>
<tr>
<td>4.6 Gene-Diet Interactions on Weight Maintenance</td>
<td>48</td>
</tr>
<tr>
<td>4.7 Personalized Weight Management through Diet and Lifestyle Modifications</td>
<td>49</td>
</tr>
<tr>
<td>4.8 Summary and Concluding Remarks</td>
<td>50</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>50</td>
</tr>
<tr>
<td>References</td>
<td>50</td>
</tr>
<tr>
<td>5 NutrimiRomics: The Promise of a New Discipline in Nutrigenomics</td>
<td>53</td>
</tr>
<tr>
<td>Amitava Das and Chandan K. Sen</td>
<td></td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>53</td>
</tr>
<tr>
<td>5.2 miRomics: A New Cornerstone</td>
<td>56</td>
</tr>
<tr>
<td>5.3 Nutrigenomics and miR</td>
<td>57</td>
</tr>
<tr>
<td>References</td>
<td>58</td>
</tr>
<tr>
<td>6 Genomics as a Tool to Characterize Anti-inflammatory Nutraceuticals</td>
<td>61</td>
</tr>
<tr>
<td>Amitava Das, Scott Chaffee, and Sashwati Roy</td>
<td></td>
</tr>
<tr>
<td>6.1 Chronic Inflammation in Disease</td>
<td>61</td>
</tr>
<tr>
<td>6.1.1 Vascular Disorders</td>
<td>61</td>
</tr>
<tr>
<td>6.1.2 Respiratory Disorders</td>
<td>62</td>
</tr>
<tr>
<td>6.1.3 Gastrointestinal Tract</td>
<td>62</td>
</tr>
<tr>
<td>6.1.4 Neurodegenerative Diseases</td>
<td>63</td>
</tr>
<tr>
<td>6.1.5 Cancer</td>
<td>63</td>
</tr>
<tr>
<td>6.1.6 Rheumatic Diseases</td>
<td>63</td>
</tr>
<tr>
<td>6.2 Nutraceuticals in the Management of Chronic Inflammation</td>
<td>64</td>
</tr>
<tr>
<td>6.3 GeneChip™ as a Tool to Characterize the Anti-Inflammatory Properties of Nutraceuticals</td>
<td>65</td>
</tr>
<tr>
<td>References</td>
<td>68</td>
</tr>
<tr>
<td>7 Nutrigenomics, Inflammaging, and Osteoarthritis: A Review</td>
<td>71</td>
</tr>
<tr>
<td>Ali Mobasheri, Richard Barrett-Jolley, Caroline A. Staunton, Chris Ford, and Yves Henrotin</td>
<td></td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>71</td>
</tr>
<tr>
<td>7.2 Osteoarthritis (OA)</td>
<td>72</td>
</tr>
<tr>
<td>7.3 Antioxidants and the Inflammatory Microenvironment</td>
<td>73</td>
</tr>
<tr>
<td>7.4 Inflammaging</td>
<td>75</td>
</tr>
<tr>
<td>7.5 Nutrigenomics</td>
<td>76</td>
</tr>
<tr>
<td>7.6 Muscle Inflammation in OA</td>
<td>77</td>
</tr>
<tr>
<td>7.7 Conclusions</td>
<td>80</td>
</tr>
<tr>
<td>Acknowledgments, Competing Interests, and Disclosures</td>
<td>80</td>
</tr>
<tr>
<td>References</td>
<td>80</td>
</tr>
<tr>
<td>8 Genetic Basis of Anti-Inflammatory Properties of Boswellia Extracts</td>
<td>85</td>
</tr>
<tr>
<td>Golakoti Trimurtulu, Chandan K. Sen, Alluri V. Krishnaraju, Kiran Bhupathiraju, and Krishanu Sengupta</td>
<td></td>
</tr>
<tr>
<td>8.1 Introduction</td>
<td>85</td>
</tr>
<tr>
<td>8.2 Boswellia serrata</td>
<td>86</td>
</tr>
<tr>
<td>8.3 Mechanism of Action</td>
<td>87</td>
</tr>
<tr>
<td>8.4 Development of 5-LOXIN® (BE-30)</td>
<td>87</td>
</tr>
<tr>
<td>8.4.1 Genetic Basis for Efficacy of 5-LOXIN® (BE-30)</td>
<td>88</td>
</tr>
<tr>
<td>8.5 Gene Chip Probe Array Analysis</td>
<td>88</td>
</tr>
<tr>
<td>8.6 Proteomics</td>
<td>89</td>
</tr>
<tr>
<td>8.7 Molecular Basis of Anti-Inflammatory Properties of 5-LOXIN®</td>
<td>95</td>
</tr>
</tbody>
</table>
8.8 *In vivo* Studies 96
8.9 Safety of 5-LOXIN® 96
8.10 Clinical Efficacy of 5-LOXIN® in the Management of Osteoarthritis 97
8.11 An Advanced 5-LOXIN®: Aflapin® 99
8.12 Conclusion 100
References 100

9 **Cancer Chemopreventive Phytochemicals Targeting NF-κB and Nrf2 Signaling Pathways** 102

Hye-Kyung Na and Young-Joon Surh

9.1 Introduction 102
9.2 Molecular-Based Cancer Chemoprevention 104
9.3 Nuclear Factor-Kappa B (NF-κB)
 9.3.1 Curcumin 106
 9.3.2 [6]-Gingerol 107
 9.3.3 Capsaicin 107
 9.3.4 Resveratrol 107
 9.3.5 Quercetin 108
 9.3.6 Sulforaphane 108
 9.3.7 Genistein 108
9.4 Nrf2
 9.4.1 Sulforaphane 108
 9.4.2 Curcuminoids 111
 9.4.3 EGCG 111
 9.4.4 Allyl Sulfides 111
 9.4.5 Resveratrol 112
 9.4.6 Pungent Vanilloids 112
 9.4.7 Lycopene 112
 9.4.8 Coffee-Derived Diterpenes 113
 9.4.9 Carnosol 113
 9.4.10 Xanthohumol 113
 9.4.11 Zerumbone 113
 9.4.12 Chalcones 114
9.5 Interplay/Crosstalk between Nrf2 and NF-κB Signaling Pathways 114
9.6 Conclusion 115
Acknowledgment 116
References 116

10 **The Beneficial Health Effects of Fucoxanthin** 122

Kazuo Miyashita and Masashi Hosokawa

10.1 Introduction 122
10.2 The Beneficial Health Effects of Carotenoids as Antioxidants 124
10.3 Anticancer Activity of Fucoxanthin 124
10.4 Anti-Obesity Effects of Fucoxanthin 126
10.5 Anti-Diabetic Effects of Fucoxanthin 127
10.6 Conclusion 130
References 131

11 **Nutrition, Genomics, and Human Health: A Complex Mechanism for Wellness** 135

Okezie I. Aruoma

11.1 Introduction 135
11.2 Nutrition Sciences and Clinical Applications in Nutritional Genomics 136
References 139
12 Application of Genomics and Bioinformatics Analysis in Exploratory Study of Functional Foods

Kohsuke Hayamizu and Aiko Manji

12.1 Introduction
12.2 Analysis Tools
 12.2.1 GeneSpring GX
 12.2.2 Bioconductor
 12.2.3 Others
12.3 Interpretation Tools
 12.3.1 Go Analysis Tools
 12.3.2 Pathway Analysis Tools
 12.3.3 Association Network Analysis Tools
12.4 Application Example of Kale (Brassica oleracea L. Var Acephala DC)
 12.4.1 Animal Study and DNA Microarray Analysis
 12.4.2 Data Analysis
 12.4.3 Result
12.5 Conclusion

References

13 Omics Analysis and Databases for Plant Science

Masaaki Kobayashi, Hajime Ohyanagi, and Kentaro Yano

13.1 Introduction
13.2 NGS Technologies and Data Processing
13.3 De novo Plant Genome Assembly by NGS
 13.3.1 Basics of Plant Genome Assembly
 13.3.2 Plant Genome Assembly by NGS Short Reads
 13.3.3 Hybrid-Type Assembly
13.4 Plant Genome Resequencing by NGS
 13.4.1 Conventional Resequencing Technologies
 13.4.2 GBS/RAD-Seq
13.5 Plant Transcriptome Analysis by NGS
 13.5.1 Transcriptome Analysis with Reference Genome Sequences
 13.5.2 Reference-Free Transcriptome Analysis
13.6 Plant Genome and Annotation Databases
 13.6.1 TAIR (Arabidopsis)
 13.6.2 RAP-DB (Rice)
 13.6.3 Other Plants
13.7 Plant Omics Databases
 13.7.1 Transcriptome Databases
 13.7.2 Gene Expression Network Databases
 13.7.3 Metabolic Pathway Databases
 13.7.4 Other Databases for Omics Integration
13.8 Conclusion

References

14 Synergistic Plant Genomics and Molecular Breeding Approaches for Ensuring Food Security

Shouvik Das and Swarup K. Parida

14.1 Introduction
14.2 Plant Genomics, Transcriptomics, Proteomics, and Metabolomics Resources
14.3 Molecular Markers in Plant Genome Analysis
 14.3.1 Microsatellite Markers
 14.3.2 Single Nucleotide Polymorphism (SNP) Markers
14.4 Identification of Functionally Relevant Molecular Tags Governing Agronomic Traits
 14.4.1 Plant Genetic Resources Rich in Trait Diversity

References
14.4.2 High-Throughput Phenotyping
14.4.3 High-Throughput Marker Genotyping
14.4.4 Identification and Mapping of QTLs/Genes
14.4.5 Trait Association Mapping
14.5 Genomics-Assisted Crop Improvement
References

15 Combinatorial Approaches Utilizing Nutraceuticals in Cancer Chemoprevention and Therapy: A Complementary Shift with Promising Acuity
Madhulika Singh and Yogeshwer Shukla

15.1 Introduction
15.2 Nutraceuticals
15.3 Nutraceuticals and Key Events in Cancer Development
15.3.1 Inflammation
15.3.2 Oxidative Stress
15.3.3 Antiproliferation
15.3.4 Cell-Cycle Arrest
15.3.5 Apoptosis
15.3.6 Transforming Growth Factor-β (TGF-β)/Smad Signaling Pathway
15.3.7 β-Catenin
15.4 Nutraceuticals in Combinatorial Therapy of Human Cancer: A Pledge of the Future
15.4.1 Nutraceuticals in Cruciferous Vegetables: Potential for Combination Therapy
15.4.2 Indole-3-Carbinol (I3C) and Combinations
15.4.3 Phenethylisothiocyanate (PEITC) and Combinations
15.4.4 Sulforaphane (SFN) and Combinations
15.4.5 Synergism among Cruciferous Compounds
15.4.6 Combinations of Cruciferous Compounds with Conventional Cancer Chemotherapeutics
15.5 Curcumin: Potential for Combination Therapy
15.5.1 Curcumin with Xanthorrhizol
15.5.2 Curcumin with Docosahexaenoic Acid (DHA, Polyunsaturated Fatty Acids Present in Fish Oil)
15.5.3 Curcumin and Genistein
15.5.4 Curcumin and Resveratrol
15.5.5 Curcumin and EGCG
15.5.6 Curcumin and Citrus Limonoids
15.5.7 Curcumin with Apigenin
15.5.8 Curcumin and Triptolide
15.5.9 Combinations of Curcumin with Conventional Cancer Chemotherapeutics
15.6 Resveratrol: Potential for Combination Therapy
15.6.1 Resveratrol and Genistein
15.6.2 Resveratrol and Piperine
15.6.3 Resveratrol and Black Tea Polyphenols
15.6.4 Resveratrol and Melatonin
15.6.5 Synergism among Resveratrol and Other Grapes’ Polyphenols
15.6.6 Resveratrol in Combination with Anticancer Drugs
15.7 Lycopene (a Carotenoid): Potential for Combinations Therapy
15.7.1 Lycopene and Genistein
15.7.2 Lycopene and Sc-allyl Cysteine
15.7.3 Lycopene and 1,25-Dihydroxyvitamin D3
15.7.4 Lycopene with Selenium
15.7.5 Lycopene and FruHis (Ketosamine)
15.7.6 Combination of Lycopene with Cancer Chemotherapeutic Drugs
15.8 Soy Nutraceuticals: Potential for Combination Therapy
15.8.1 Genistein and Daidzein
15.8.2 Genistein and 3,3’-Diindolylmethane 203
15.8.3 Genistein and Capsaicin 204
15.8.4 Combination of Genistein with Conventional Cancer Chemotherapeutics 204
15.9 Tea Polyphenols Potential for Combinatorial Therapy 204
15.9.1 Green Tea and Quercetin 205
15.9.2 EGCG and Soy Phytochemical 205
15.9.3 EGCG and Thymoquinone 205
15.9.4 EGCG and Trichostatin A 205
15.9.5 EGCG and Luteolin 205
15.9.6 EGCG and Pterostilbene (a Stilbenoid Derived from Blueberries) 205
15.9.7 EGCG and Panaxadiol 206
15.9.8 Polyphenon E 206
15.9.9 EGCG with Conventional Cancer Chemotherapy 206
15.10 D-Limonene: Potential for Combination Therapy 207
15.10.1 D-Limonene and Chemotherapeutic Drugs 207
15.11 Miscellaneous: Novel Nutraceuticals Formulation 207
15.11.1 Collect: A Dietary Supplement 207
15.11.2 BreastDefend: A Natural Dietary Supplement 208
15.11.3 ProstaCaid: A Dietary Supplement 208
15.12 Conclusion 208
References 208

16 Nutrigenomic Approaches to Understanding the Transcriptional and Metabolic Responses of Phytochemicals to Diet-Induced Obesity and its Complications 218
Myung-Sook Choi and Eun-Young Kwon

16.1 Introduction 218
16.2 Nutrigenomics 219
16.2.1 Tools for Bioinformatics and Systems Biology 219
16.3 Obesity and Cardiometabolic Syndrome 222
16.3.1 Obesity 222
16.3.2 Inflammation and Insulin Resistance in Obesity 223
16.3.3 Obesity and Cardiometabolic Syndrome: A Possible Role for Nutrigenomics 224
16.4 Anti-Obesity Action of Luteolin 225
16.5 Conclusion 226
Acknowledgments 226
References 226

17 Going Beyond the Current Native Nutritional Food Through the Integration of the Omic Data in the Post-Genomic Era: A Study in (Resistant) Starch Systems Biology 230
Treenut Saithong and Saowalak Kalapanulak

17.1 Introduction 230
17.2 Starch and its Yield Improvement in Plants 231
17.3 An Extension of the (Resistant) Starch Yield Improvement Research on the Systems Biology Regime: Integration of the Omic Data from the Post-Genomic Technology 233
References 239

Part III Proteomics 243

18 Proteomics and Nutrition Research: An Overview 245
Arun K. Tewari, Sudhasri Mohanty, and Sashwati Roy

18.1 Introduction 245
18.2 Proteomics 245
18.2.1 Proteomics Tools and Technologies 246
18.3 Nutrition and Proteins 246
18.4 Nutritional Biomarkers 248
18.5 Nutritional Bioactives 248
 18.5.1 Wheat Proteins 248
 18.5.2 Vitamins 248
 18.5.3 Glucose 249
 18.5.4 Wine and Soy Nutrients 249
18.6 Diet-Based Proteomics Application to Animal Products (Livestock Applications) 249
18.7 Proteomics and Food Safety 249
18.8 Conclusion 249
18.9 Significance 250
Conflict of Interests 250
References 250

19 Proteomics Analysis for the Functionality of Toona sinensis 253
Sue-Joan Chang and Chun-Yung Huang

 19.1 Introduction 253
 19.2 Toona sinensis 253
 19.2.1 Functions of Toona sinensis Leaf Extracts (TSLs) 254
 19.2.2 Preparation of TSLs 254
 19.3 TSLs Regulate Functions of Testes/Spermatozoa 254
 19.3.1 TSL-2 Exhibits Pro-oxidants but Protects Germ Cells from Apoptosis 254
 19.3.2 TSL-2P Exhibits Prooxidant Properties and Impairs Sperm Maturation 255
 19.3.3 TSL-6 Exhibits Antioxidant Properties and Enhances Sperm Functions 255
 19.4 TSLs Regulate Liver Metabolism 257
 19.4.1 TSL-CE Decreases Gluconeogenesis 257
 19.4.2 TSL-CE Enhances Lipolysis 258
 19.4.3 TSL-CE Decreases Glutamate Metabolism 258
 19.4.4 TSL-CE Alleviates Oxidative Stress 259
 19.4.5 TSL-CE Increases Protein Kinase C –λ 260
 19.4.6 TSL-CE Activates the PPARα/γ Pathway 260
 19.4.7 TSL-CE Inhibits the Polyol Pathway 260
 19.5 TSL as a Novel Antioxidant 261
 19.6 Possible Active Compounds in TSL Extracts 261
 19.7 Conclusion 261
References 262

20 Proteomic Approaches to Identify Novel Therapeutics and Nutraceuticals from Filamentous Fungi: Prospects and Challenges 265
Samudra Prosad Banik, Suman Khowala, Chiranjib Pal, and Soumya Mukherjee

 20.1 Introduction 265
 20.2 Mushroom Derived Immunomodulators and their Target Cells in the Immune System 266
 20.2.1 Macrophages 266
 20.2.2 Dendritic Cells 266
 20.2.3 NK Cells 269
 20.3 Mushroom Derived Metabolites in Treating Cancer 271
 20.4 Mushroom Derived Metabolites in Infectious Diseases 271
 20.5 Fungal Enzymes as Therapeutics and Dietary Supplements 274
 20.6 Identification and Characterization of Mushroom Derived Bioactive Therapeutics 275
 20.6.1 Proteomic Methodologies for Characterization of Fungal Complexes 276
 20.7 Challenges in Intracellular Proteome Preparation 279
20 Challenges in Extracellular Proteome Preparation
- Challenges in Extracellular Proteome Preparation: 279
- New Generation MS Technologies to Track the Dynamic Proteome: 280
- Glycoproteomics: A New Arsenal in the Proteomic Toolbox: 280
- Glycoproteomics of Filamentous Fungi: 281
- High-Throughput Approaches to Decipher Fungal Glycan Structures: 282
- Challenges in MS Studies of Glycans/Glycopeptides: 284
- Optimized MS Instrumentation for Glycan Analysis: 284
- Tandem Mass Spectrometry: 285
- Bioinformatics for Glycoproteomics: Hitting Databases with MS Peaks: 285
- Predicting Glycan Structures with Computational Tools: 286
- Concluding Remarks: The Road Ahead: 287

Acknowledgment
Acknowledgment: 287

References
References: 287

21 Proteomics and Metaproteomics for Studying Probiotic Activity
- Proteomics and Metaproteomics for Studying Probiotic Activity: 296
 - Rosa Anna Siciliano and Maria Fiorella Mazzeo

21.1 Introduction
Introduction: 296

21.2 Molecular Mechanisms of Probiotic Action as Studied by Proteomics
- Molecular Mechanisms of Probiotic Action as Studied by Proteomics: 297
 - Adaptation Mechanisms to GIT Environment: 297
 - Adhesion Mechanisms to the Host Mucosa: 298
 - Molecular Mechanisms of Probiotic Immunomodulatory Effects: 299

21.3 Probiotics and Prebiotics
Probiotics and Prebiotics: 299

21.4 Investigation on Human Microbiota Dynamics by Proteomics
Investigation on Human Microbiota Dynamics by Proteomics: 300

21.5 Concluding Remarks and Future Directions
Concluding Remarks and Future Directions: 301

References
References: 301

22 Proteomics Approach to Assess the Potency of Dietary Grape Seed Proanthocyanidins and Dimeric Procyanidin B2
- Proteomics Approach to Assess the Potency of Dietary Grape Seed Proanthocyanidins and Dimeric Procyanidin B2: 304
 - Hai-qing Gao, Bao-ying Li, Mei Cheng, Xiao-li Li, Fei Yu, and Zhen Zhang

22.1 Chemoprotective Properties of GSPs
- Chemoprotective Properties of GSPs: 305
 - Components and Molecules: 305
 - Antioxidant Effects: 305
 - Anti-Nonglycemic Glycation and Anti-Inflammation Effects: 305
 - Protective Effects on the Cardiovascular System: 306
 - Protective Effects on Diabetes and its Complications: 307
 - Anti-Aging Effects: 308
 - Anti-Oncogenesis Effects: 308
 - Effect on Wound Healing: 309
 - Anti-Osteoporosis: 309

22.2 Proteomic Platform
Proteomic Platform: 309
- Based on Two-Dimensional Gel Electrophoresis (2-DE) Proteomics: 309
- “Gel-Free” Proteomics: 310
- Protein Chips: 311

22.3 Proteomics Analysis of the Actions of GSPs
Proteomics Analysis of the Actions of GSPs: 311
- Proteomics Analysis of the Actions of GSP in the Brain of Normal Rats: 311
- Proteomics Analysis of the Actions of GSP in Rats with Diabetic Nephropathy: 312
- Proteomics Analysis of the Actions of GSPB2 in the Aorta of db/db Mice: 314
- Proteomics Analysis of the Actions of GSPB2 in the Kidneys of db/db Mice: 315

22.4 Functional Confirmation of Proteins
Functional Confirmation of Proteins: 317
23 Genomic and Proteomic Approaches to Lung Transplantation: Identifying Relevant Biomarkers to Improve Surgical Outcome

John Noel, Ronald Carnemola, and Shampa Chatterjee

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.1 Introduction</td>
<td>321</td>
</tr>
<tr>
<td>23.2 Lung Transplantation</td>
<td>322</td>
</tr>
<tr>
<td>23.2.1 A Case of Ischemia-Reperfusion (I/R)</td>
<td>322</td>
</tr>
<tr>
<td>23.2.2 The I/R Signaling Cascade</td>
<td>322</td>
</tr>
<tr>
<td>23.3 Challenges of Lung Transplantation</td>
<td>323</td>
</tr>
<tr>
<td>23.3.1 Oxidative Damage and Bronchiolitis Obliterans Syndrome</td>
<td>323</td>
</tr>
<tr>
<td>23.3.2 Oxidative Damage and Inflammation</td>
<td>323</td>
</tr>
<tr>
<td>23.4 Inflammatory Biomarkers with Lung Rejection: Markers of Inflammation Signaling such as CAMs, Chemokines, and Cytokines and their Status with Transplants</td>
<td>324</td>
</tr>
<tr>
<td>23.4.1 Proinflammatory Cytokines and Chemokines</td>
<td>324</td>
</tr>
<tr>
<td>23.4.2 Cellular Adhesion Molecules</td>
<td>324</td>
</tr>
<tr>
<td>23.5 Microarray Technology to Identify Transplant Rejection Biomarkers</td>
<td>324</td>
</tr>
<tr>
<td>23.6 Challenges and Future Directions</td>
<td>325</td>
</tr>
</tbody>
</table>

References

325

24 Proteomics in Understanding the Molecular Basis of Phytochemicals for Health

Jung Yeon Kwon, Sanguine Byun, and Ki Won Lee

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.1 Introduction</td>
<td>328</td>
</tr>
<tr>
<td>24.2 Proteomics in Phytochemical Research in Cancer Prevention</td>
<td>329</td>
</tr>
<tr>
<td>24.2.1 Genistein</td>
<td>329</td>
</tr>
<tr>
<td>24.2.2 Curcumin</td>
<td>330</td>
</tr>
<tr>
<td>24.2.3 Sulforaphane and β-Phenylethyl Isothiocyanate</td>
<td>330</td>
</tr>
<tr>
<td>24.2.4 Apigenin 7-Glucoside</td>
<td>331</td>
</tr>
<tr>
<td>24.2.5 Quercetin</td>
<td>331</td>
</tr>
<tr>
<td>24.3 Perspectives</td>
<td>331</td>
</tr>
<tr>
<td>24.4 Proteomics in Phytochemical Research for Metabolic Diseases</td>
<td>333</td>
</tr>
<tr>
<td>24.5 Proteomics for Neuroprotective Phytochemicals</td>
<td>333</td>
</tr>
<tr>
<td>24.6 Proteomics for Phytochemicals with Other Functions for Health Benefits</td>
<td>334</td>
</tr>
<tr>
<td>24.7 Conclusions</td>
<td>334</td>
</tr>
</tbody>
</table>

References

335

25 Genomics/Proteomics of NEXT-II®, a Novel Water-Soluble, Undenatured Type II Collagen in Joint Health Care

Orie Yoshinari, Hiroyoshi Moriyama, Manashi Bagchi, and Debasis Bagchi

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.1 Introduction</td>
<td>338</td>
</tr>
<tr>
<td>25.2 Mechanism of RA</td>
<td>339</td>
</tr>
<tr>
<td>25.3 About NEXT-II®</td>
<td>340</td>
</tr>
<tr>
<td>25.3.1 Preparation of NEXT-II®</td>
<td>341</td>
</tr>
<tr>
<td>25.3.2 Safety of NEXT-II®</td>
<td>341</td>
</tr>
<tr>
<td>25.3.3 Efficacy of NEXT-II® in Collagen-Induced Arthritic Mice</td>
<td>342</td>
</tr>
<tr>
<td>25.4 Hypothesized Mechanism of NEXT-II®</td>
<td>342</td>
</tr>
<tr>
<td>25.5 Future Perspectives</td>
<td>343</td>
</tr>
<tr>
<td>25.6 Conclusion</td>
<td>343</td>
</tr>
</tbody>
</table>

References

343
Part IV Metabolomics

26 Harnessing Metabolic Diversity for Nutraceutical Plant Breeding
Ashish Saxena and Vicki L. Schlegel

26.1 What is Metabolomics? 349
26.2 Nutraceuticals 350
26.3 Importance of Secondary Metabolites 350
26.4 Complementing Plant Breeding with “Omics” 351
26.5 Nutraceutical Breeding 352
26.6 Crop Quality 353
26.7 Metabolomics and Plant Stresses 353
26.8 Food Safety 354
26.9 Future 354
References 354

27 Metabolomics and Fetal-Neonatal Nutrition: An Overview
Angelica Dessì, Flaminia Cesare Marincola, and Vassilios Fanos

27.1 Introduction 357
27.2 IUGR and LGA: Fetal Programming 358
27.3 Metabolomics in Nutritional Research 358
27.4 Nutrimetabolomics in Animal Models 360
27.5 Nutrimetabolomics in Human Models 361
27.6 Conclusions 362
References 363

28 Metabolomics, Bioactives, and Cancer
Shannon R. Sweeney, John DiGiovanni, and Stefano Tiziani

28.1 Introduction 365
28.2 Nuclear Magnetic Resonance Spectroscopy 366
28.3 Mass Spectrometry 367
28.4 Application of Scientific Computing and Data Analysis 368
28.5 Metabolomics, Bioactive Food Components, and Cancer 369
 28.5.1 Resveratrol 370
 28.5.2 Epigallocatechin Gallate 370
 28.5.3 Curcumin 372
 28.5.4 Ursolic Acid 372
 28.5.5 Omega-3 Fatty Acids 373
28.6 Future Perspectives 373
References 374

29 NMR-Based Metabolomics of Foods
Takuya Miyakawa, Tingfu Liang, and Masaru Tanokura

29.1 Introduction 379
29.2 Principal Aspects of NMR in Food Analyses 380
29.3 NMR Techniques Applied to Food Metabolomics 380
29.4 Monitoring of Metabolic Changes in Food Processing Using Quantitative NMR 381
29.5 NMR Profiling Based on Multivariate Analyses 382
 29.5.1 Food Quality and Safety 383
 29.5.2 Sensory Assessment for Food Development 384
 29.5.3 Food Functionality and Identification of Bioactive Metabolites 385

References 385
30 Cancer Chemopreventive Effect of Curcumin through Suppressing Metabolic Crosstalk between Components in the Tumor Microenvironment

Dong Hoon Suh and Yong-Sang Song

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.1 Introduction</td>
<td>388</td>
</tr>
<tr>
<td>30.2 Cancer Metabolism</td>
<td>389</td>
</tr>
<tr>
<td>30.2.1 The Warburg and Reverse Warburg Effect</td>
<td>389</td>
</tr>
<tr>
<td>30.2.2 Paradigm Shift from Cancer Cells to Cancer Microenvironment</td>
<td>389</td>
</tr>
<tr>
<td>30.2.3 Cancer-Associated Cells in the Tumor Microenvironment</td>
<td>390</td>
</tr>
<tr>
<td>30.3 Metabolic Onco-Targets of Curcumin in the Tumor Microenvironment</td>
<td>391</td>
</tr>
<tr>
<td>30.3.1 Xenohormetic Inhibition of NF-κB</td>
<td>391</td>
</tr>
<tr>
<td>30.4 Clinical Trials of Curcumin as Metabolic Modulators in Cancer</td>
<td>393</td>
</tr>
<tr>
<td>30.5 Conclusions and Future Perspectives</td>
<td>393</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>394</td>
</tr>
<tr>
<td>References</td>
<td>394</td>
</tr>
</tbody>
</table>

31 Metabolomics of Green Tea

Yoshinori Fujimura and Hirofumi Tachibana

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.1 Introduction</td>
<td>397</td>
</tr>
<tr>
<td>31.2 Metabolic Profiling</td>
<td>398</td>
</tr>
<tr>
<td>31.3 Tea Chemical Composition</td>
<td>401</td>
</tr>
<tr>
<td>31.4 Metabolic Responses to Tea Consumption</td>
<td>402</td>
</tr>
<tr>
<td>31.5 Biotransformation of Dietary Tea Components</td>
<td>403</td>
</tr>
<tr>
<td>31.6 Conclusion</td>
<td>404</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>404</td>
</tr>
<tr>
<td>References</td>
<td>405</td>
</tr>
</tbody>
</table>

Part V Epigenetics

32 The Potential Epigenetic Modulation of Diabetes Influenced by Nutritional Exposures *In Utero*

Jie Yan and Huixia Yang

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.1 Introduction</td>
<td>409</td>
</tr>
<tr>
<td>32.2 Insulin Resistance</td>
<td>409</td>
</tr>
<tr>
<td>32.3 Skeletal Muscle</td>
<td>410</td>
</tr>
<tr>
<td>32.4 Type 2 Diabetes</td>
<td>410</td>
</tr>
<tr>
<td>32.5 Influence of High-Fat Diet</td>
<td>410</td>
</tr>
<tr>
<td>32.6 Obesity</td>
<td>410</td>
</tr>
<tr>
<td>32.7 Intrauterine Growth Restriction (IUGR)</td>
<td>411</td>
</tr>
<tr>
<td>32.8 Environmental Factors and Epigenetic Modifications</td>
<td>411</td>
</tr>
<tr>
<td>32.9 Mitochondria and Energy Homeostasis</td>
<td>413</td>
</tr>
<tr>
<td>32.10 Diabetes Progression</td>
<td>413</td>
</tr>
<tr>
<td>32.11 Conclusion</td>
<td>414</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>414</td>
</tr>
<tr>
<td>References</td>
<td>414</td>
</tr>
</tbody>
</table>

33 The Time has Come (and the Tools are Available) for Nutriepigenomics Studies

Pearly S. Yan

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.1 Introduction: Great Strides in Deciphering Methylomes</td>
<td>418</td>
</tr>
<tr>
<td>33.2 Recent Findings in Methylome Research and their Implications for Future Nutriepigenomic Research</td>
<td>419</td>
</tr>
</tbody>
</table>
33.2.1 Cohort Size and Data Reproducibility 419
33.2.2 Proxy/Surrogate Tissues 419
33.2.3 Confounders of Methylome Profiles 419

33.3 Strategies for Identifying and Optimizing a Small Number of Promising Methylation Markers 419
33.3.1 Methylome Profiling Protocols 419
33.3.2 Integrating Transcriptional Information 420
33.3.3 Genetic-Associated Epigenetic Changes 420
33.3.4 Other Approaches to Identify Functional Markers 420

33.4 Validation of Methylation Markers Performance in Large Cohorts using Highly Targeted Assays 421
33.4.1 Validation Using Methylation-Based Assays 421
33.4.2 Validation Using Gene Expression-Based Sequencing Panels as Readouts for Functional Methylation Markers 421

33.5 Summaries 422
References 422

34 Natural Phytochemicals as Epigenetic Modulators 424
Gauri Deb and Sanjay Gupta

34.1 Introduction 424
34.2 Epigenetic Mechanisms in Mammals 425
34.2.1 DNA Methylation 425
34.2.2 Histone Modifications 426
34.2.3 Non-Coding RNAs 426

34.3 Natural Phytochemicals and Epigenetic Mechanisms 427
34.3.1 Apigenin 427
34.3.2 Curcumin 428
34.3.3 (-)-Epigallocatechin-3-Gallate (EGCG) 428
34.3.4 Genistein and Soy Isoflavones 429
34.3.5 Indole-3-Carbinol and Diindolylmethane 430
34.3.6 Lycopene 430
34.3.7 Organosulfur Compounds 431
34.3.8 Phenethyl Isothiocyanate (PEITC) 431
34.3.9 Quercetin 431
34.3.10 Resveratrol 432
34.3.11 Sulforaphane 432

34.4 Conclusion and Future Perspectives 433
Acknowledgments 433
References 433

Part VI Peptidomics 441

35 Detection and Identification of Food-Derived Peptides in Human Blood: Food-Derived Short Chain Peptidomes in Human Blood 443
Kenji Sato and Daisuke Urado

35.1 Introduction 443
35.2 Detection of Apparent Bioactive Peptides in Human Blood 444
35.3 Identification of Food-Derived Peptides in Human Blood 444
35.3.1 Identification of Food-Derived Peptides as Intact Forms 444
35.3.2 Isolation of Phenyl Thiocarbamyl Peptide for Sequence Analysis Based on Edman Degradation 446
35.3.3 MS/MS Analyses of Derivatized Peptides 448

35.4 Future Prospects 448
References 451
Part VII Nutrigenomics and Human Health 453

36 Use of Omics Approaches for Developing Immune-Modulatory and Anti-Inflammatory Phytomedicines 455
Shu-Yi Yin, Pradeep M. S., and Ning-Sun Yang

36.1 Introduction 455
36.1.1 Needs and Importance of Systems Biology and Bioinformatics 456
36.1.2 Omics Technologies 456
36.1.3 Phytomics 457
36.2 Transcriptomics Study in Medicinal Plant Research 458
36.2.1 Application of DNA Microarrays in Toxicogenomics, Pharmacogenomics, and Functional Genomics Studies of Bioactivity from Medicinal Plants 458
36.2.2 Immuno-Modulatory Effects of Different Phyto-Compounds/Candidate Phytomedicines 459
36.2.3 Use of cDNA Microarray/Expression Sequence Tags (ESTs) for Evaluating Bioactivities of Medicinal Plants 461
36.2.4 Immuno-Modulatory Effects of Traditional Herbal Medicines Revealed by microRNA Analysis 461
36.3 Proteomics Studies on Research into Medicinal Plants 462
36.3.1 Use and Advancement of Analytical and Instrumentation Systems: Two-Dimensional Gel Electrophoresis (2-DE), Electrospray Ionization, Matrix-Assisted Laser Desorption/Ionization and Surface-Enhanced Laser Desorption 462
36.3.2 Application of Proteomics for Research into Traditional Herbal Medicine 462
36.4 Metabolomics Study on the Research of Medicinal Plants 463
36.4.1 Use of GC-MS, LC-MS, FT-IR, and NMR Technologies 463
36.4.2 Metabolomics Research in Medicinal Chemistry Studies 465
36.4.3 Metabolomics Approach Applied to Research into Immunomodulatory Effects of Phytomedicine 465
36.5 Lipidomics Study on the Research of Medicinal Plants 466
36.6 Comparative and Bioinformatics Tools for Omics Studies 466
36.6.1 Ingenuity 466
36.6.2 Metacore™ 466
36.6.3 TRANSPATH 468
36.6.4 KEGG 468
36.7 Challenges and Perspectives 469
References 471

37 The Application of Algae for Cosmeceuticals in the Omics Age 476
Nyuk Ling Ma, Su Shihung Lam, and Rahman Zaidah

38 Gut Microbiome and Functional Foods: Health Benefits and Safety Challenges 489
Abhai Kumar, Smita Singh, and Anil Kumar Chauhan

38.1 Introduction 489
38.2 Microbiome Symbiosis 490
38.2.1 Diarrhea (Infectious and Antibiotic Associated) 491
38.2.2 Lactose Intolerance 491
38.2.3 Inflammatory Intestinal Diseases 492
38.2.4 Immune Modulation 492
38.3 Functional Food Intervention of Gut Microbiota 492
38.4 Types of Functional Foods and Their Effects 493
38.4.1 Probiotics and Prebiotics 493
38.4.2 Proteins and Peptides 495
38.4.3 Carbohydrates and Fibers 496
38.4.4 Lipids and Fatty Acids 497
38.4.5 Flavanoids and Lycopene 497
38.4.6 Vitamins 497
38.5 Regulations and Safety of Functional Food 497
38.6 Safety Challenges of Functional Food 499
38.7 Functional Foods and Nutrigenomics 499
38.8 Conclusions 500
Acknowledgment 500
Conflict of Interest 500
References 500

39 An Overview on Germinated Brown Rice and its Nutrigenomic Implications 504
Mustapha Umar Imam and Maznah Ismail
39.1 Diet and Health: The Role of Staple Foods and Nutrigenomic Implications 504
39.2 Health Implications of White Rice and Brown Rice Consumption 506
39.3.1 Nutrigenomic Effects of Germinated Brown Rice on Obesity and Cholesterol Metabolism 509
39.3.2 Nutrigenomic Effects of Germinated Brown Rice on Oxidative Stress 511
39.3.3 Nutrigenomic Effects of Germinated Brown Rice on Glycemic Control 511
39.3.4 Nutrigenomic Effects of Germinated Brown Rice on Menopause-Related Problems 512
39.4 Conclusions 513
39.5 Future Considerations 513
Acknowledgments 513
Conflict of Interest 513
References 513

40 Novel Chromium (III) Supplements and Nutrigenomics Exploration: A Review 518
Sreejayan Nair, Anand Swaroop, and Debasis Bagchi
40.1 Introduction 518
40.2 Trivalent Chromium, Insulin Regulation, and Signaling 519
40.3 Regulatory Pathways 519
40.4 MicroRNAs 522
40.5 Summary and Conclusions 522
References 522

Part VIII Transcriptomics 525

41 Transcriptomics of Plants Interacting with Pathogens and Beneficial Microbes 527
Hooman Mirzaee, Louise Shuey, and Peer M. Schenk
41.1 Introduction 527
41.2 Plant Defense Responses against Pathogens 528
41.3 Transcriptomics during Plant-Pathogen Interactions 529
41.4 Plant Responses during Interactions with Beneficial Microbes 530
41.5 Transcriptomics during Beneficial Plant-Microbe Interactions

41.6 Knowledge on Modulation of Host Immunity by Pathogens and Beneficial Microbes May Lead to New Resistance Strategies

References

42 Transcriptomic and Metabolomic Profiling of Chicken Adipose Tissue: An Overview

Brynn H. Voy, Stephen Dearth, and Shawn R. Campagna

42.1 Introduction

42.2 Chicken as a Model Organism

42.3 Chicken Genome and Genetic Diversity

42.4 Chicken as a Model for Studies of Adipose Biology and Obesity

42.5 Natural and Selected Models of Differential Fatness

42.5.1 Broilers

42.5.2 Selected Lines

42.6 Transcriptomics and Metabolomics as Tools for the Studies of Adipose Biology in Chicken

42.7 Insight into Control of Adipose Tissue Growth and Metabolism in Chickens from Transcriptomics and Metabolomics

42.8 Conclusions and Future Directions

References

43 Nutritional Transcriptomics: An Overview

M. R. Noori-Daloii and A. Nejatizadeh

43.1 Introduction

43.2 Molecular Nutrition

43.3 From Nutrients to Genes Expression Profiling

43.4 Biological Actions of Nutrients

43.5 Nutritional Transcriptomics

43.6 Transcriptomic Technologies

43.7 Transcriptomics and Development of New Nutritional Biomarkers

43.8 The Micronutrient Genomics Project

43.9 Transcriptomics in Nutrition Research

43.10 Perspectives

References

44 Dissecting Transcriptomes of Cyanobacteria for Novel Metabolite Production

Sucheta Tripathy, Deeksha Singh, Mathumalar C., and Abhishek Das

44.1 Introduction

44.2 Phylogenetic Relationships in Cyanobacteria

44.3 Genomic Studies of Cyanobacteria

44.4 Plasmids in Cyanobacteria

44.5 Dissecting Transcriptomes of Cyanobacteria

44.5.1 Biofuel Production

44.5.2 Novel Metabolite Producing Genes in Cyanobacteria

44.6 Conclusion

Acknowledgment

References

45 Inflammation, Nutrition, and Transcriptomics

Gareth Marlow and Lynnette R. Ferguson

45.1 Introduction

45.2 Inflammation
45.3 Nutrition
 45.3.1 Mediterranean Diet 575
45.4 Nutrigenomics 575
45.5 Dietary Factors and Inflammation 576
45.6 Transcriptomics 577
 45.6.1 RNA-seq 578
45.7 Conclusions 578
References 578

46 Transcriptomics and Nutrition in Mammals 581
 Carmen Arnal, Jose M. Lou-Bonafonte, María V. Martínez-Gracia,
 María J. Rodríguez-Yoldi, and Jesús Osada
46.1 Introduction 581
 46.1.1 DNA Chips or Microarrays 583
46.2 Adipocyte Transcriptome 584
 46.2.1 Influence of Caloric Restriction 585
 46.2.2 Effect of Dietary Carbohydrate Content 586
 46.2.3 Effect of Dietary Fat Content 586
 46.2.4 Nature of Fat 587
 46.2.5 Effects of Quality and Protein Content 587
46.3 Intestinal Transcriptome 587
 46.3.1 Influence of Caloric Restriction 588
 46.3.2 Effects of Carbohydrate Content of Diets 589
 46.3.3 Effect of Dietary Fat Content 589
 46.3.4 Effects of Quality and Protein Content 589
 46.3.5 Environmental Conditions of Intestine 590
46.4 Hepatic Transcriptome 590
 46.4.1 Influence of Fasting and Feeding 590
 46.4.2 Influence of Caloric Restriction 591
 46.4.3 Effects of Carbohydrate Content of Diets 592
 46.4.4 Effect of Dietary Fat Content 593
 46.4.5 Effects of Quality and Protein Content 598
46.5 Muscular Transcriptome 599
 46.5.1 Influence of Caloric Restriction 599
 46.5.2 Effect of Dietary Fat Content 600
 46.5.3 Effects of Quality and Protein Content 601
46.6 Conclusion 601
Acknowledgments 601
References 602

Part IX Nutriethics 609

47 Nutritional Sciences at the Intersection of Omics Disciplines and Ethics:
 A Focus on Nutritional Doping 611
 Nicola Luigi Bragazzi
47.1 Introduction 611
47.2 Nutrigenomics and Nutriproteomics 612
47.3 Sports Nutriproteogenomics 614
47.4 Nutritional and Sports Ethics 615
47.5 Conclusions 617
References 618
Part X Nanotechnology

48 Current Relevant Nanotechnologies for the Food Industry

Kelvii Wei Guo

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>48.1</td>
<td>Introduction</td>
<td>625</td>
</tr>
<tr>
<td>48.2</td>
<td>Nanotechnology in Food Industry</td>
<td>626</td>
</tr>
<tr>
<td>48.2.1</td>
<td>Nanoparticles (NPs)</td>
<td>627</td>
</tr>
<tr>
<td>48.2.2</td>
<td>Nanodispersion</td>
<td>627</td>
</tr>
<tr>
<td>48.2.3</td>
<td>Nanocapsules</td>
<td>628</td>
</tr>
<tr>
<td>48.2.4</td>
<td>Nanocolloids</td>
<td>628</td>
</tr>
<tr>
<td>48.2.5</td>
<td>Nanoemulsions</td>
<td>629</td>
</tr>
<tr>
<td>48.2.6</td>
<td>Nanofibers/Tubes</td>
<td>629</td>
</tr>
<tr>
<td>48.3</td>
<td>Natural Biopolymers</td>
<td>630</td>
</tr>
<tr>
<td>48.4</td>
<td>Nanotechnology for Food Packaging</td>
<td>630</td>
</tr>
<tr>
<td>48.4.1</td>
<td>Silver Nanoparticles and Nanocomposites as Antimicrobial Food Packaging Materials</td>
<td>630</td>
</tr>
<tr>
<td>48.4.2</td>
<td>Nanolaminates/Coating</td>
<td>631</td>
</tr>
<tr>
<td>48.4.3</td>
<td>Nanosensors</td>
<td>631</td>
</tr>
<tr>
<td>48.5</td>
<td>Outstanding State-of-the-Art Issues</td>
<td>633</td>
</tr>
<tr>
<td>48.6</td>
<td>Conclusion</td>
<td>633</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>634</td>
</tr>
</tbody>
</table>

Index

637