Contents

List of contributors, xvi

Part I Introductory section, 1

1 Introduction to the microbial ecology of foods, 3
 D. Roy and G. LaPointe
 1.1 Introduction, 3
 1.2 Role of food characteristics and environment on microbial fate, 4
 1.2.1 Temperature, 4
 1.2.2 pH and acidity, 5
 1.2.3 Water activity, 6
 1.2.4 Oxygen and redox potential, 6
 1.2.5 Nutrient content, 7
 1.2.6 Physical structure and microenvironments, 7
 1.2.7 Food preservation processes (antimicrobials, preservatives), 7
 1.3 Understanding microbial growth, death, persistence, competition, antagonism and survival in food, 8
 1.3.1 Principles of microbial growth, 8
 1.3.2 Survival, 8
 1.3.3 Strategies for persistence, 9
 1.3.4 Competition, 9
 1.4 Methods to study the microbial ecology of foods, 11
 1.4.1 Culture-independent analysis of microbial communities, 11
 1.5 Perspectives on applying food ecosystem modeling, 12
 References, 13

2 Predictive microbiology: mathematics towards understanding the fate of food-borne microorganisms in food processing, 16
 P.N. Skandamis and E.Z. Panagou
 2.1 Introduction, 16
 2.2 Probability and kinetic models for food processing and HACCP, 18
 2.2.1 Probability of growth models, 18
 2.2.2 Growth kinetic models, 24
 2.3 Thermal inactivation, 32
 2.4 Non-thermal inactivation and modeling stress-adaptation strategies, 34
 2.4.1 Modeling the adaptive responses of pathogens to inimical factors, 36
 2.5 Fermentation: a dynamic environment for microbial growth and pathogen inactivation, 38
 2.6 Colonial versus planktonic type of growth: modes of microbial existence on surfaces and in liquid, semi-liquid, and solid foods, 41
 2.6.1 Biofilm formation on biotic and abiotic surfaces, 41
 2.6.2 Growth rate of microorganisms in different forms of growth, 42
2.7 Modeling microbial transfer between processing equipment and foods, 45
2.8 Alternative multivariate approaches: the use of bioinformatics for characterizing spoilage and product classification, 49
References, 51

3 Principles of unit operations in food processing, 68
 A. Ibarz and P.E.D. Augusto
 3.1 Introduction, 68
 3.2 Principles of transport phenomena, 68
 3.3 Principles and unit operations of momentum transfer, 69
 3.3.1 Food rheology, 69
 3.3.2 Fluid flow, 71
 3.3.3 Pumping and mixing, 72
 3.4 Principles and unit operations of heat transfer, 73
 3.4.1 Absorbing or removing thermal energy, 73
 3.4.2 Heat transfer mechanisms and process conditions, 74
 3.4.3 Steady state heat transfer, 75
 3.4.4 Unsteady state heat transfer, 76
 3.4.5 Heat transfer in the thermal process, 78
 3.5 Principles and unit operations of mass transfer, 81
 3.5.1 Mass transfer mechanisms, 81
 3.6 Conclusions, 82
 References, 83

Part II Impact of unit operations on microorganisms of relevance in foods, 85

4 Impact of materials handling at pre- and post-harvest operations on the microbial ecology of foods of vegetable origin, 87
 A.N. Olaimat, P.J. Delaquis, and R.A. Holley
 4.1 Introduction, 87
 4.2 The production environment, 90
 4.3 Soil, 91
 4.4 Fertilizers derived from animal wastes, 92
 4.5 Irrigation, 93
 4.6 Harvesting and handling, 98
 4.7 Postharvest processing, 99
 4.8 Packaging, storage, and transportation, 101
 4.9 Conclusions, 103
 References, 103

5 Impact of heating operations on the microbial ecology of foods, 117
 E. Xanthakis and V.P. Valdravidis
 5.1 Background and basic information of heating operations, 117
 5.1.1 Cooking (grilling, broiling, griddle, roasting, frying, stewing, sous-vide, braising), 117
 5.1.2 Blanching, 120
 5.1.3 Pasteurization, 121
 5.1.4 Commercial sterilization, 122
 5.1.5 Ohmic heating, 123
5.1.6 Dielectric heating, 125
5.1.7 Infrared heating, 130
5.2 Quantitative aspects and how unit operations impact on food-borne microorganisms, 131
5.3 Application of F-value concept, 132
5.4 Dealing with non-linearity, 133
5.5 Development of new concepts to assess heat processes, 135
5.6 Microbial safety and stability of heating operations: challenges and perspectives, 136
References, 136

6 Impact of refrigeration operations on the microbial ecology of foods, 142
L. Huang
6.1 Introduction, 142
6.2 Refrigeration as a unit operation, 143
 6.2.1 Basic principles of refrigeration, 143
 6.2.2 Changes in the microorganisms during freezing, 144
 6.2.3 Changes in the microorganisms during refrigerated storage, 145
6.3 Dynamic effect of chilling on growth of C. perfringens during cooling, 147
 6.3.1 Mathematical modeling of growth of C. perfringens during cooling, 148
 6.3.2 Effect of temperature on growth of C. perfringens during cooling – secondary model, 148
 6.3.3 Prediction of growth of C. perfringens during cooling – a finite element analysis, 149
 6.3.4 Heat and mass transfer during heating and cooling, 149
 6.3.5 Finite element analysis, 150
 6.3.6 Computer simulation of transient temperature changes during cooling, 152
 6.3.7 Integration of heat transfer and growth kinetics to simulate dynamic growth of C. perfringens during cooling, 155
 6.3.8 Conclusion and impact on growth of C. perfringens during cooling, 157
References, 158

7 Impact of dehydration and drying operations on the microbial ecology of foods, 160
F. Pérez-Rodríguez, E. Carrasco, and A. Valero
7.1 Introduction, 160
7.2 Modeling the drying process in food, 161
7.3 Modeling microbial survival/inactivation in drying/dehydration processes, 163
 7.3.1 Overview, 163
 7.3.2 Primary models at static conditions, 164
 7.3.3 Linear and non-linear inactivation kinetics at dynamic conditions, 166
 7.3.4 Secondary models, 167
 7.3.5 Survival/inactivation of microorganisms in low-moisture foods, 168
7.4 Example of application/development of predictive microbiology models for describing microbial death during drying processes, 169
 7.4.1 Listeria monocytogenes inactivation as a function of temperature and a_w, 169
 7.4.2 Salmonella inactivation during drying of beef jerky, 171
 7.4.3 Salmonella inactivation during drying of sausages, 172
7.5 Conclusions, 173
References, 173
8 Impact of irradiation on the microbial ecology of foods, 176
S. Unluturk
8.1 Introduction, 176
8.2 Ionizing radiation, 176
 8.2.1 Impact of ionizing radiation on food-borne microorganisms, 177
8.3 Non-ionizing radiation, 180
 8.3.1 Impact of non-ionizing radiation on food-borne microorganisms, 181
References, 187

9 Impact of high-pressure processing on the microbial ecology of foods, 194
S. Mukhopadhyay, D.O. Ukuku, V. Juneja, and R. Ramaswamy
9.1 Introduction, 194
9.2 Processing operation, 195
9.3 Bacteria and enzyme inactivation, 195
9.4 Effect of high pressure on fruit and vegetable products, 198
9.5 Effect of HHP on meat and other food products, 198
9.6 Effect of added antimicrobial on pathogen inactivation by high-pressure processing (hurdle approach), 199
9.7 High-pressure carbon dioxide (HPCD) disinfection, 200
9.8 Effect of HHP on bacteria, virus, insects, and other organisms, 201
9.9 Effect of HHP on quality: color, flavor, texture, sugar, totally soluble, and insolubles, 203
9.10 Advantages and disadvantages of using HHP, 205
9.11 Applications and conclusions, 205
References, 206

10 Impact of Vacuum packaging, modified and controlled atmosphere on the microbial ecology of foods, 217
L. Angiolillo, A. Conte, and M.A.D. Nobile
10.1 Introduction, 217
10.2 Vacuum packaging, 218
10.3 Controlled atmosphere, 219
10.4 Modified atmosphere packaging, 220
References, 223

11 Impact of fermentation on the microbial ecology of foods, 226
M. Mataragas, K. Rantsiou, and L. Cocolin
11.1 Introduction, 226
11.2 Fermentations: microbial ecology and activity, 227
11.3 Factors affecting food-borne pathogen inactivation during fermentation, 227
 11.3.1 Factors associated with the product, 228
 11.3.2 Factors associated with the microorganisms, 228
 11.3.3 Process parameters, 228
11.4 Challenge tests, 229
11.5 Predictive modeling, 230
 11.5.1 Behavior of the food-borne pathogens during inactivation, 230
 11.5.2 Kinetic behavior (inactivation) models, 231
 11.5.3 Case study: process challenge test for fermented products artificially contaminated with L. monocytogenes, 233
11.6 Conclusions, 236
References, 236

12 Impact of forming and mixing operations on the microbial ecology of foods: focus on pathogenic microorganisms, 241
J.C.C.P. Costa, G.D. Posada-Izquierdo, F. Perez-Rodriguez, and R.M. Garcia-Gimeno
12.1 Forming, 241
12.1.1 Description and types, 241
12.1.2 Effect on pathogens/spoilage microorganisms, 242
12.1.3 Predictive models, 242
12.2 Homogenizing, 244
12.2.1 Description and types, 244
12.2.2 Principles of grinding and applications, 244
12.2.3 Effect on pathogens/spoilage microorganisms, 245
12.3 Mixing, 246
12.3.1 Description and types, 246
12.3.2 Principles and applications, 246
12.3.3 Equipment, 247
12.3.4 Effect on pathogens/spoilage microorganisms, 247
References, 248

13 Impact of specific unit operations on food-borne microorganisms: curing, salting, extrusion, puffing, encapsulation, absorption, extraction, distillation, and crystallization, 250
E. Ortega-Rivas, S.B. Perez-Vega, and I. Salmeron
13.1 Introductory remarks, 250
13.2 Burden of food-borne illnesses, 250
13.3 Food safety and food quality, 251
13.4 Prevention and control through processing, 251
13.4.1 Introduction: unit operations in food processing, 251
13.4.2 Unit operations for preservation, 252
13.4.3 Unit operations of physical conversions, 257
13.4.4 Unit operations based on separation techniques, 259
13.5 Conclusions and prospects for the future, 260
References, 261

14 Impact of food unit operations on virus loads in foods, 263
D. Li, A.D. Keuckelaere, and M. Uyttendaele
14.1 Introduction, 263
14.2 The use of surrogate viruses to assess inactivation processes, 263
14.3 Virus contamination in food processing, 264
14.3.1 Raw materials, 264
14.3.2 Food handlers, 266
14.3.3 Cross-contamination during food processing, 266
14.4 Survival of virus in the food processing chain, 267
14.5 Effect of food preservation techniques on the virus load, 267
14.5.1 Reduction of pH, 267
14.5.2 Reduction of aw, 267
14.5.3 Modified atmosphere packaging (MAP), 270
Contents

14.5.4 Use of temperature, 270
14.5.5 Washing and decontamination processes, 273
14.5.6 Radiation, 276
14.5.7 High hydrostatic pressure (HHP), 278
14.5.8 Treatment with natural biochemical substances, 279
14.5.9 Hurdle technologies, 280
14.6 Conclusion and perspectives, 280
References, 281

15 Impact of food unit operations on parasites in foods: focus on selected parasites within the fresh produce industry, 288
L.J. Robertson
15.1 Background and introduction, 288
 15.1.1 Fresh produce as a transmission vehicle for parasites, 288
 15.1.2 Ranking of food-borne parasites; occurrence and impacts, 293
 15.1.3 Parasite selection for this chapter, 293
 15.1.4 Overview of selected parasites, 294
15.2 Detection of selected parasites in fresh produce, 299
 15.2.1 Methods used, 300
15.3 Effects of fresh produce treatments on selected parasites, 303
 15.3.1 Methods for determining control (particularly removal or inactivation), 303
 15.3.2 Effects of different processes, 304
15.4 Conclusion, 315
References, 316

16 Impact of food unit operations on probiotic microorganisms, 327
A. Gandhi and N.P. Shah
16.1 Introduction, 327
 16.1.1 Selection criteria for probiotics, 327
16.2 Probiotic products, 328
16.3 Probiotics and environmental stress: cellular mechanisms and resistance, 328
 16.3.1 Acid tolerance: fermented products, 329
 16.3.2 Oxygen tolerance: fermented products, 330
 16.3.3 Heat and cold tolerance: dried products, 330
 16.3.4 Osmotic tolerance: cheese, probiotic chocolates, 331
16.4 Enhancing stress resistance of probiotics, 332
 16.4.1 Microencapsulation, 332
16.5 Conclusion, 334
References, 334

Part III Microbial ecology of food products, 339

17 Microbial ecology of fresh vegetables, 341
J. Zheng, J. Kase, A. De Jesus, S. Sahu, A.E. Hayford, Y. Luo, A.R. Datta,
E.W. Brown, and R. Bell
17.1 Introduction, 341
17.2 Prevalence and diversity of microbial communities on fresh vegetables (post-harvest), 341
17.3 Post-harvest persistence, colonization, and survival on fresh vegetables, 342
17.4 Routes of contamination during post-harvest handling of fresh and fresh-cut vegetables, 345
21 Microbial ecology of eggs: a focus on *Salmonella* and microbial contamination in post-harvest table shell egg production, 416
S.C. Ricke

21.1 Introduction, 416
21.2 Historical and current trends in commercial egg production, 417
21.3 Egg production management on the farm and incidence of *Salmonella*, 420
21.4 Egg processing and microbial contamination: general aspects, 421
21.5 Microbial contamination during egg collection at the farm to in-line processing, 423
21.6 Microbial contamination during transportation to off-line egg processing facilities, 424
21.7 Microbial contamination during egg processing, 425
21.8 Egg washwater and sanitation, 426
21.9 Egg retail and microbial contamination, 428
21.10 Conclusions and future directions, 429
Acknowledgment, 431
References, 431

22 Microbial ecology of beef carcasses and beef products, 442
X. Yang

22.1 Introduction, 442
22.2 Carcass production process, 442

22.2.1 Slaughtering, 443
22.2.2 Carcass dressing process, 443
22.2.3 Carcass decontaminating treatments that are currently used in commercial beef packing plants, 445
22.2.4 Chilling, 449
22.2.5 Microbiological conditions of carcass sides, 450
22.3 Carcass breaking, 451

22.3.1 Microbiological conditions of beef cuts, 452
22.3.2 Trimmings and offal meats, 455
References, 455

23 Microbial ecology of pork meat and pork products, 463
L. Iacumin and J. Carballo

23.1 Introduction, 463
23.2 Pork meat as a substrate for microbial growth: chemical and physical characteristics, 464

23.2.1 Intrinsic factors, 464
23.2.2 Extrinsic factors, 465
23.3 Microbial ecology of fresh pork meat: sources of contamination and microbial groups, 465
23.4 Microbial ecology of chilled pork meat, 467
23.5 Microbial ecology of vacuum/modified atmosphere packaged pork meat, 468
23.6 Microbial ecology of marinated pork meat, 469
23.7 Microbial ecology of cured and fermented/ripened pork meats, 470
23.8 Microbial ecology of high-pressure preserved pork meat, 473
References, 474

24 Microbial ecology of poultry and poultry products, 483
S. Buncic, D. Antic, and B. Blagojevic

24.1 Introduction, 483
24.2 Microbial hazard identification and prioritization, 483
24.3 Microbial aspects of poultry processing at abattoirs, 484
 24.3.1 Poultry abattoir process steps, 484
 24.3.2 Meat safety management in poultry abattoirs, 489
 24.3.3 Assessment for process hygiene in poultry abattoirs, 490
 24.3.4 Generic framework for comprehensive risk-based poultry carcass meat safety assurance for priority hazards, 490
24.4 Microbial aspects of derived poultry meat products, 492
 24.4.1 Microbial hazards in poultry meat products, 492
 24.4.2 Microbiological criteria applicable to processed poultry meats and products, 494
 24.4.3 Principles of microbial safety assurance of poultry meat products, 494
References, 497

25 Microbial ecology of seafoods: a special emphasis on the spoilage microbiota of North Sea seafood, 499
 K. Broekaert, G. Vlaemynck, and M. Heyndrickx
 25.1 Introduction, 499
 25.2 Total viable counts (TVCs) and microorganisms identified depends on the method used, 499
 25.3 The initial microbiota of marine fish, 501
 25.4 Raw seafood, 503
 25.4.1 Gutting and filleting, 503
 25.4.2 Cooling (icing, superchilling, freezing), 503
 25.5 Processing – lightly preserved seafood, 506
 25.5.1 Lightly salted, marinated, and cold-smoked fish, 506
 25.5.2 Hot-smoked fish products, 507
 25.5.3 Packaging and storage conditions (temperature), 507
 25.5.4 High-pressure treatment (HPP), 508
 25.6 A case study: brown shrimp (Crangon crangon) (adapted from Broekaert et al., 2013), 509
References, 513

26 Microbial ecology of mayonnaise, margarine, and sauces, 519
 O. Sagdic, F. Tornuk, S. Karasu, M.Z. Durak, and M. Arici
 26.1 Introduction, 519
 26.2 Mayonnaise, 519
 26.2.1 Microbial ecology of mayonnaise, 520
 26.3 Margarine, 523
 26.3.1 Microbiological properties of margarine, 523
 26.3.2 Microbial spoilage and pathogenic microorganisms, 524
 26.4 Sauces and salad dressings, 525
 26.4.1 Factors affecting microbial ecology of sauces and dressings, 526
 26.4.2 Microbial ecology of sauces and salad dressings, 526
 26.5 Conclusion, 527
References, 529

27 Microbial ecology of confectionary products, honey, sugar, and syrups, 533
 M. Nascimento and A. Mondal
 27.1 Introduction, 533
 27.2 Cocoa and chocolate, 533
 27.3 Nuts and peanut butter, 535
Contents

27.4 Honey, 538
27.5 Sugar, 539
27.6 Syrups, 539
27.7 Conclusion, 540
References, 540

28 Microbial ecology of wine, 547
E. Vaudano, A. Costantini, and E. Garcia-Moruno
28.1 Introduction, 547
28.2 Biodiversity of grape microorganisms, 547
28.3 Microorganism ecology in winemaking, 548
 28.3.1 Yeast ecology, 549
 28.3.2 LAB ecology, 550
28.4 Microorganism ecology during aging, 550
28.5 Microbial identification by classical methods, 551
28.6 Microbial identification by molecular methods, 551
References, 555

29 Microbial diversity and ecology of bottled water, 560
C.M. Manaia and O.C. Nunes
29.1 Definitions of bottled water, 560
29.2 Characteristics of mineral and spring water, 562
29.3 Useful methods to study bottled water microbiota, 565
 29.3.1 Cultivation, 565
 29.3.2 Microscopic detection, 567
 29.3.3 Total DNA screening, 568
29.4 Microbiological diversity, 568
29.5 Bottling effect, 573
29.6 Microbiological contamination, 574
29.7 A new perspective on microbiological quality and safety, 576
Acknowledgments, 577
References, 577

Part IV Closing section, 581

30 Microbial risk assessment: integrating and quantifying the impacts of food processing operations on food safety, 583
J.-C. Augustin, M. Ellouze, and L. Guillier
30.1 Introduction, 583
30.2 Basic processes encountered during food processing operations, 584
 30.2.1 Microbial processes, 584
 30.2.2 Food-handling processes, 585
 30.2.3 Succession and combination of basic processes, 586
30.3 Risk-based objectives for each processing operation, 590
 30.3.1 Risk-based metrics, 591
 30.3.2 Implementation of process criteria based on food safety metrics with the ICMSF approach, 592
 30.3.3 Implementation of process criteria with quantitative risk assessment models, 594
30.4 Conclusion, 595
References, 596
31 Quorum sensing and microbial ecology of foods, 600
 V.A. Blana, A. Lianou, and G.-J.E. Nychas
 31.1 Introduction, 600
 31.2 Quorum sensing and microbial behavior, 601
 31.2.1 Growth, 601
 31.2.2 Biofilm formation, 603
 31.2.3 Stress resistance, 605
 31.3 Quorum sensing and food ecology, 606
 31.4 Quorum quenching, 610
 References, 611

32 Heterogeneity in *Bacillus subtilis* spore germination and outgrowth: an area of key
 challenges for “omics” in food microbiology, 617
 R. Pandey and S. Brul
 32.1 Bacterial spores in the food industry, 617
 32.2 The *Bacillus* genus, 618
 32.3 Sporulation cycle, 618
 32.4 Endospore structure and its resistance, 619
 32.5 Spore germination and outgrowth, 620
 32.6 Heterogeneity in bacterial (spore) physiology during germination and outgrowth, 623
 32.7 Steps towards single-cell physiology and “omics” measurements, 625
 References, 626

33 Role of stress response on microbial ecology of foods and its impact on the fate of food-borne
 microorganisms, 631
 A. Alvarez-Ordóñez, M. López, and M. Prieto
 33.1 Introduction, 631
 33.2 Acquisition of permanent stress tolerance through adaptive mutagenesis, 631
 33.3 Transient adaptive responses to stress: modulation of membrane fluidity as
 an example, 634
 33.4 Using food components to survive under harsh conditions, 636
 33.4.1 Food components and the response to acid stress, 636
 33.4.2 Food components and the response to osmotic stress, 638
 33.5 The balance between self-preservation and nutritional competence (SPANC), 639
 33.6 Conclusions and future prospects, 641
 Acknowledgment, 643
 References, 643

Index, 649