Contents

Preface xi
Acknowledgments xiii
Biography xv

1 Introduction 1

2 Regioselective Syntheses of Polysubstituted Benzenes Catalyzed by Transition Metal Complexes 5
 2.1 [2+2+2] Cycloaddition Reactions of Acetylenes 5
 2.1.1 Reactions of Alkynes with Metallocyclopentadiene as an Intermediate 5
 2.1.2 Intra-intermolecular [2+2+2] Cycloaddition of Alkynes 6
 2.2 Stereochemical Aspect of Intramolecular and Intermolecular Reactions of Diynes with Monoalkynes 18
 2.2.1 Strategy of Enantioselective [2+2+2] Cycloaddition 18
 2.3 Heteroatom Bound to the Triple Bond 28
 2.3.1 Nitrogen-Containing Substrates 28
 2.3.2 [2+2+2] Cycloadditions of Alkynes to Nitriles: Synthesis of Pyridines 29
 2.4 Heterohelicens. Asymmetric Syntheses 33
 2.4.1 Oxygen-Containing Helicens 34
 2.4.2 Nitrogen-Containing Helicens. Helical Dications 36
 2.5 Aromatic Rings with Boron and Silicon Substituents 39
2.6 [2+2+2] Cycloaddition Reactions of 1-Alkynylphosphines and Their Derivatives 41
2.7 Intramolecular [2+2+2] Cycloaddition of Diynes to Alkenes 45
 2.7.1 Allene as an Alkene Component 45
 2.7.2 Formation of Polycyclic Cyclohexadienes by Ru-catalyzed Cascade Reactions of 1,6-Diynes and Alkenes 46
 2.7.3 Stereochemical Aspects of the Reaction of Diynes with Alkenes 49
 2.7.4 Hetero-[2+2+2] Cycloaddition of Alkynes to Compounds with a Multiple Carbon–Heteroatom Bond 51
2.8 Reactions of [4+2] Cycloaddition and Other Approaches to the Synthesis of Polysubstituted Benzenes 54
 2.8.1 Reactions of Conjugated Enynes 54
 2.8.2 Acceleration of Pd-catalyzed [4+2]-Benzannulation in the Reaction of Enynes and Diynes in the Presence of Lewis Acids and Bronsted Bases 59
2.9 Combined Reactions 63
 2.9.1 Formal [4+2+2] Cycloaddition of 1,6-Diynes to 1,3-Dienes Catalyzed by Ru: Formation of Cyclooctatrienes and Vinlycyclohexadienes 65
 2.9.2 Formation of Eight-Membered Ring Systems by [4+2+2] Annulation 66
 2.9.3 AuBr₃ (AlCl₃)- and Cu(OTf)₂-Catalyzed [4+2] Cycloaddition of Alkynyl- and Alkenyl-Enynones and Enynals: An Approach to Functionalized Polycyclic Hydrocarbons 69
2.10 Construction of Polycyclic Systems 71
 2.10.1 Strategies for the Synthesis of Steroid Systems by Co-catalyzed [2+2+2] Cycloaddition of Nonconjugated Enyne-Alkynes and Enediynes 72
 2.10.2 Cobalt(I)-Mediated [2+2+2] Cyclization of Allene-Diynes: A Diastereoselective Approach to 11-aryl Steroid Core. 11-Aryl-Substituted Steroid Systems by Co-catalyzed [2+2+2] Cyclization of Allene-Diynes 74
CONTENTS

2.10.3 Synthesis of (3S)-hydroxyandrosta-5,7-diene-17-ones via Intramolecular Cobalt-Mediated [2+2+2] Cycloaddition 77
2.10.4 Intramolecular Cycloaddition of Nonconjugated Enediynes of a Higher Order as a Route to Functionalized Condensed Polycyclic Systems 79
2.10.5 A Strategy for the Synthesis of Aromatic Molecular-Bowl Hydrocarbons 85
2.10.6 A Route to Archimedes: Total Synthesis of C_{3b}-symmetric [7]phenylenes 92
2.10.7 Polycyclic Aza heterocycles 97

3 Radical Cycloaromatization of Systems Containing (Z)-3-hexene-1,5-dienes and (Z)-1,2,4-heptatrien-6-ynes and Related Heteroatomic Blocks 107
3.1 The Historical Aspect of the Chemistry of Enediynes, Enyne-Allenes and Enyne-Cumulenes 107
3.1.1 Anticancer Enediyne Antibiotics 108
3.2 Routes to the Cycloaromatization of Enediyne and Enyne-Allene Systems. Bergman and Myers–Saito Cyclization 113
3.2.1 Generation of Free Radicals by (Z)-3-hexene-1,5-dienes and (Z)-1,2,4-heptatrien-6-ynes 113
3.2.2 Thermal Cyclization 114
3.2.3 Photochemical Cyclization 122
3.2.4 Catalytic Cyclization 128
3.3 Cycloaromatization by C^{1–C^5}, C^{2–C^7} and C^{2–C^6} (Myers–Saito and Schmittel) Routes to Indeno-Fused Structures 135
3.3.1 Thermal C^{1–C^5} Radical Cyclization of Enediynes 135
3.3.2 The Limitations of the Cycloaromatization Reactions 136
3.3.3 Thermal and Photochemical C^{2–C^6} Cyclization of Enyne-Allenes: Switching the Regioselectivity from C^{2–C^7} (Myers–Saito) to C^{2–C^6} (Schmittel) Cyclization Mode 138
3.3.4 Practical Aspects of Syntheses Based on Enyne-Allenes 141
x CONTENTS

3.4 External Initiation of Enediyne Cycloaromatization 157
 3.4.1 Cycloaromatization Initiated by External Radicals 157
 3.4.2 Ionic Activation of Cyclization of Enediynes 166
 3.4.3 Other Types of Cyclization 174

3.5 Features of Cycloaromatization of Heteroatomic Enediynes 179
 3.5.1 Trigger Mechanisms for the Cycloaromatization of Enediynes 179
 3.5.2 Nitrogen-Containing Enediynes 185
 3.5.3 Metal-Induced Bergman Cycloaromatization 208
 3.5.4 Sulfur-Containing Enediynes 218

3.6 Cycloaromatization of Hetero-Systems 223
 3.6.1 Enyne-Heteroallene and Enyne-(hetero)cumulenes 224
 3.6.2 Features of Dienyne Cyclizations 225

4 Selected Cycloaddition and Heterocyclization Reactions with Unusual Acetylenic and Allenic Starting Compounds 233
 4.1 Cycloaddition and Heterocyclization Reactions of Acetylenic Compounds with Electron-Withdrawing Substituents 233
 4.2 Diels–Alder [4+2] Cycloaddition: Acetylenes as Dienophiles 235
 4.3 Formation of Cyclobutene Derivatives by [2+2]-Cycloaddition 237
 4.4 [2+2] Cyclization of Some 1,3-Butadienes Produced from Acetylenic Alcohols of the Propargyl Type 243
 4.5 Heterocyclization of Electron-Deficient Acetylenes with Nucleophilic Reagents 245

5 Concluding Remarks 249

References 255

Index 287