Contents

Preface

1. **Propagation of Waves in Ducts**
 - 1.1 Plane Waves in an Inviscid Stationary Medium
 - 1.2 Three-Dimensional Waves in an Inviscid Stationary Medium
 - 1.2.1 Rectangular Ducts
 - 1.2.2 Circular Ducts
 - 1.3 Waves in a Viscous Stationary Medium
 - 1.4 Plane Waves in an Inviscid Moving Medium
 - 1.5 Three-Dimensional Waves in an Inviscid Moving Medium
 - 1.6 One-Dimensional Waves in a Viscous Moving Medium
 - 1.7 Waves in Ducts with Compliant Walls (Dissipative Ducts)
 - 1.7.1 Rectangular Duct with Locally Reacting Lining
 - 1.7.2 Circular Duct with Locally Reacting Lining
 - 1.7.3 Rectangular Duct with Bulk Reacting Lining
 - 1.7.4 Circular Duct with Bulk Reacting Lining
 - 1.8 Three-Dimensional Waves along Elliptical Ducts

References

2. **Theory of Acoustic Filters**
 - 2.1 Units for the Measurement of Sound
 - 2.2 Uniform Tube
 - 2.3 Radiation Impedance
 - 2.4 Reflection Coefficient at an Open End
 - 2.5 A Lumped Inertance
 - 2.6 A Lumped Compliance
 - 2.7 End Correction
 - 2.8 Electroacoustic Analogies
 - 2.9 Electrical Circuit Representation of an Acoustic System
 - 2.10 Acoustical Filter Performance Parameters
 - 2.10.1 Insertion Loss, IL
 - 2.10.2 Transmission Loss, TL

References
2.10.3 Level Difference, LD 56
2.10.4 Comparison of the Three Performance Parameters 58
2.11 Lumped-Element Representations of a Tube 58
2.12 Simple Area Discontinuities 60
2.13 Gradual Area Changes 62
 2.13.1 Conical Tube 62
 2.13.2 Exponential Tube 64
 2.13.3 Elliptical Tube 65
2.14 Extended-Tube Resonators 67
2.15 Helmholtz Resonator 69
2.16 Concentric Hole-Cavity Resonator 70
2.17 An Illustration of the Classical Method of Filter Evaluation 71
2.18 The Transfer Matrix Method 74
 2.18.1 Definition of Transfer Matrix 74
 2.18.2 Transfer Matrix of a Uniform Tube 76
 2.18.3 A General Method for Derivation of Transfer Matrix 76
 2.18.4 Transfer Matrices of Lumped Elements 77
 2.18.5 Transfer Matrices of Variable Area Tubes 78
 2.18.6 Overall Transfer Matrix of the System 81
 2.18.7 Evaluation of TL in Terms of the Four-Pole Parameters 83
2.19 TL of a Simple Expansion Chamber Muffler 85
2.20 An Algebraic Algorithm for Tubular Mufflers 88
 2.20.1 Development of the Algorithm 88
 2.20.2 Formal Enunciation and Illustration of the Algorithm 89
2.21 Synthesis Criteria for Low-Pass Acoustic Filters 91
References 94

3 Flow-Acoustic Analysis of Cascaded-Element Mufflers 97
 3.1 The Exhaust Process 97
 3.2 Finite Amplitude Wave Effects 101
 3.3 Mean Flow and Acoustic Energy Flux 102
 3.4 Aeroacoustic State Variables 105
 3.5 Aeroacoustic Radiation 108
 3.6 Insertion Loss 111
 3.7 Transfer Matrices for Tubular Elements 112
 3.7.1 Uniform Tube 113
 3.7.2 Extended-Tube Elements 114
 3.7.3 Simple Area Discontinuities 118
 3.7.4 Physical Behaviour of Area Discontinuities 118
 3.8 Perforated Elements with Two Interacting Ducts 119
 3.8.1 Concentric-Tube Resonator 124
 3.8.2 Cross-Flow Expansion Element 124
 3.8.3 Cross-Flow Contraction Element 125
 3.8.4 Some Remarks 125
 3.9 Acoustic Impedance of Perforates 126
 3.10 Matrizant Approach 129
4 Flow-Acoustic Analysis of Multiply-Connected Perforated Element Mufflers 147
4.1 Herschel-Quincke Tube Phenomenon 147
4.2 Perforated Element with Several Interacting Ducts 151
4.3 Three-Pass Double-Reversal Muffler 154
4.4 Flow-Reversal End Chambers 158
4.5 Meanflow Lumped Resistance Network Theory 163
4.6 Meanflow Distribution and Back Pressure Estimation 169
 4.6.1 A Chamber with Three Interacting Ducts 169
 4.6.2 Three-Pass Double-Reversal Chamber 171
 4.6.3 A Complex Muffler Configuration 173
4.7 Integrated Transfer Matrix Approach 175
 4.7.1 A Muffler with Non-Overlapping Perforated Ducts and a Baffle 176
 4.7.2 Muffler with Non-Overlapping Perforated Elements, Baffles and Area Discontinuities 180
 4.7.3 A Combination Muffler 184
References 186

5 Flow-Acoustic Measurements 187
5.1 Impedance of a Passive Subsystem or Termination 187
 5.1.1 The Probe-Tube Method 188
 5.1.2 The Two-Microphone Method 193
 5.1.3 Transfer Function Method 197
 5.1.4 Comparison of the Various Methods for a Passive Subsystem 202
5.2 Four-Pole Parameters of a Flow-Acoustic Element or Subsystem 203
 5.2.1 Theory of the Two Source-Location Method 204
 5.2.2 Theory of the Two-Load Method 207
 5.2.3 Comparison of the Two Methods 208
 5.2.4 Experimental Validation 208
5.3 An Active Termination – Aeroacoustic Characteristics of a Source 210
 5.3.1 Direct Measurement of Source Impedance 211
 5.3.2 Indirect Measurement of Source Characteristics 214
 5.3.3 Numerical Evaluation of the Engine Source Characteristics 224
 5.3.4 A Comparison of the Various Methods for Measuring Source Characteristics 228
References 229

6 Dissipative Ducts and Parallel Baffle Mufflers 233
6.1 Acoustically Lined Rectangular Duct with Moving Medium 234
6.2 Acoustically Lined Circular Duct with Moving Medium 239
6.3 Transfer Matrix Relation for a Dissipative Duct 241
6.4 Transverse Wave Numbers for a Stationary Medium 244
6.5 Normal Impedance of the Lining 245
6.6 Transmission Loss 249
6.7 Effect of Protective Layer 251
6.8 Parallel Baffle Muffler 257
6.9 The Effect of Mean Flow 259
6.10 The Effect of Terminations on the Performance of Dissipative Ducts 260
6.11 Lined Bends 261
6.12 Plenum Chambers 261
6.13 Flow-Generated Noise 262
6.14 Insertion Loss of Parallel Baffle Mufflers 263
References 264

7 Three-Dimensional Analysis of Mufflers 267
7.1 Collocation Method for Simple Expansion Chambers 268
 7.1.1 Compatibility Conditions at Area Discontinuities 269
 7.1.2 Extending the Frequency Range 272
 7.1.3 Extension to Other Muffler Configurations 275
7.2 Finite Element Methods for Mufflers 275
 7.2.1 A Single Element 276
 7.2.2 Variational Formulation of Finite Element Equations 281
 7.2.3 The Galerkin Formulation of Finite Element Equations 285
 7.2.4 Evaluation of Overall Performance of a Muffler 288
 7.2.5 Numerical Computation 290
7.3 Green’s Function Method for a Rectangular Cavity 292
 7.3.1 Derivation of the Green’s Function 292
 7.3.2 Derivation of the Velocity Potential 295
 7.3.3 Derivation of the Transfer Matrix 297
 7.3.4 Validation Against FEM 299
7.4 Green’s Function Method for Circular Cylindrical Chambers 301
7.5 Green’s Function Method for Elliptical Cylindrical Chambers 303
7.6 Breakout Noise 306
 7.6.1 Breakout Noise from Hoses 306
 7.6.2 Breakout Noise from Rectangular Ducts 310
 7.6.3 Breakout Noise from Elliptical Ducts 312
 7.6.4 Breakout Noise from Mufflers 315
References 316

8 Design of Mufflers 321
8.1 Requirements of an Engine Exhaust Muffler 321
8.2 Simple Expansion Chamber 322
8.3 Double-Tuned Extended-Tube Expansion Chamber 324
8.4 Tuned Concentric Tube Resonator 326
8.5 Plug Mufflers 327
8.6 Side-Inlet Side-Outlet Mufflers 329
8.7 Designing for Insertion Loss 331