Contents

Preface ix

1 Cutting Dynamics and Machining Instability 1
 1.1 Instability in Turning Operation 2
 1.1.1 Impact of Coupled Whirling and Tool Geometry on Machining 3
 1.2 Cutting Stability 10
 1.3 Margin of Stability and Instability 12
 1.4 Stability in Fine Cuts 23
 1.5 Concluding Remarks 31
 References 32

2 Basic Physical Principles 33
 2.1 Euclidean Vectors 33
 2.2 Linear Spaces 34
 2.3 Matrices 36
 2.3.1 Eigenvalue and Linear Transformation 37
 2.4 Discrete Functions 38
 2.4.1 Convolution and Filter Operation 39
 2.4.2 Sampling Theorem 40
 2.4.3 z-Transform 41
 2.5 Tools for Characterizing Dynamic Response 42
 2.5.1 Fourier Analysis 49
 2.5.2 Wavelet Analysis 51
 References 54

3 Adaptive Filters and Filtered-x LMS Algorithm 55
 3.1 Discrete-Time FIR Wiener Filter 55
 3.1.1 Performance Measure 56
 3.1.2 Optimization of Performance Function 58
 3.2 Gradient Descent Optimization 60
 3.3 Least-Mean-Square Algorithm 62
 3.4 Filtered-x LMS Algorithm 64
 References 68
Contents

4 Time-Frequency Analysis
4.1 Time and Frequency Correspondence 71
4.2 Time and Frequency Resolution 72
4.3 Uncertainty Principle 75
4.4 Short-Time Fourier Transform 76
4.5 Continuous-Time Wavelet Transform 79
4.6 Instantaneous Frequency 81
4.6.1 Fundamental Notions 82
4.6.2 Misinterpretation of Instantaneous Frequency 85
4.6.3 Decomposition of Multi-Mode Structure 90
4.6.4 Example of Instantaneous Frequency 94
4.6.5 Characteristics of Nonlinear Response 97
References 100

5 Wavelet Filter Banks
5.1 A Wavelet Example 101
5.2 Multiresolution Analysis 104
5.3 Discrete Wavelet Transform and Filter Banks 112
References 116

6 Temporal and Spectral Characteristics of Dynamic Instability
6.1 Implication of Linearization in Time-Frequency Domains 117
6.2 Route-to-Chaos in Time-Frequency Domain 118
6.3 Summary 125
References 134

7 Simultaneous Time-Frequency Control of Dynamic Instability
7.1 Property of Route-to-Chaos 137
7.1.1 OGY Control of Stationary and Nonstationary Hénon Map 139
7.1.2 Lyapunov-based Control of Stationary and Nonstationary Duffing Oscillator 140
7.2 Property of Chaos Control 144
7.2.1 Simultaneous Time-Frequency Control 145
7.3 Validation of Chaos Control 155
References 162

8 Time-Frequency Control of Milling Instability and Chatter at High Speed 165
8.1 Milling Control Issues 165
8.2 High-Speed Low Immersion Milling Model 167
8.3 Route-to-Chaos and Milling Instability 168
8.4 Milling Instability Control 170
8.5 Summary 175
References 176

9 Multidimensional Time-Frequency Control of Micro-Milling Instability 177
9.1 Micro-Milling Control Issues 177
9.2 Nonlinear Micro-Milling Model 179
Contents

9.3 Multivariable Micro-Milling Instability Control \hspace{1cm} 181
 9.3.1 Control Strategy \hspace{1cm} 183
9.4 Micro-Milling Instability Control \hspace{1cm} 186
9.5 Summary \hspace{1cm} 193
References \hspace{1cm} 197

10 Time-Frequency Control of Friction Induced Instability \hspace{1cm} 199
 10.1 Issues with Friction-Induced Vibration Control \hspace{1cm} 199
 10.2 Continuous Rotating Disk Model \hspace{1cm} 201
 10.3 Dynamics of Friction-Induced Vibration \hspace{1cm} 206
 10.4 Friction-Induced Instability Control \hspace{1cm} 208
 10.5 Summary \hspace{1cm} 214
References \hspace{1cm} 215

11 Synchronization of Chaos in Simultaneous Time-Frequency Domain \hspace{1cm} 217
 11.1 Synchronization of Chaos \hspace{1cm} 217
 11.2 Dynamics of a Nonautonomous Chaotic System \hspace{1cm} 219
 11.3 Synchronization Scheme \hspace{1cm} 222
 11.4 Chaos Control \hspace{1cm} 223
 11.4.1 Scenario I \hspace{1cm} 223
 11.4.2 Scenario II \hspace{1cm} 227
 11.5 Summary \hspace{1cm} 227
References \hspace{1cm} 229

Appendix: MATLAB® Programming Examples of Nonlinear Time-Frequency Control \hspace{1cm} 231
 A.1 Friction-Induced Instability Control \hspace{1cm} 231
 A.1.1 Main Program \hspace{1cm} 232
 A.1.2 Simulink® Model \hspace{1cm} 236
 A.2 Synchronization of Chaos \hspace{1cm} 239
 A.2.1 Main Program \hspace{1cm} 239
 A.2.2 Simulink® Model \hspace{1cm} 244

Index \hspace{1cm} 245