Contents

Examples xi
Preface xiii
Acknowledgments xv
About the Companion Website xvii

Chapter 1 | Spectroscopy and the Proton NMR Experiment 1

1 What is the Structure of a Molecule? 1
2 Mass Spectrometry 3
2.1 Ionization Methods and Molecular Ions 4
2.1.1 Electron Impact (EI) 4
2.1.2 Soft Ionization 5
2.2 High-Resolution Mass Spectrometry and Exact Mass 5
2.3 Isotope Patterns and the Halogens Br and Cl 7
3 Infrared (IR) Spectroscopy 9
4 Ultraviolet (UV) and Visible Spectroscopy 10
5 A Highly Simplified View of the NMR Experiment 13

Chapter 2 | Chemical Shifts and Splitting Patterns 17

1 Chemical Shifts in the Proton Spectrum 17
2 Splitting: The Effect of One Neighbor: A Doublet 21
3 Splitting: The Effect of Two Neighbors: A Triplet 23
4 Splitting: The Effect of Three Neighbors: A Quartet 25
5 Splitting: The Effect of "n" Neighbors: A Multiplet 30
6 Using Splitting Patterns to Choose from a Group of Isomers 34
7 Peak Intensities (Peak Areas) and the Number of Protons in a Peak 37
8 Publication Format for Proton NMR Data 39
9 Recognizing Common Structure Fragments 41
10 Overlap in Proton NMR Spectra. Example: 1-Methoxyhexane 45
11 Protons Bound to Oxygen: OH Groups. Example: 2-Ethyl-1-Butanol 48
12 Summary of Chemical Shifts and Splitting Patterns 50

Chapter 3 | Proton (1H) NMR of Aromatic Compounds 51

1 Benzene: The Aromatic Ring Current and the Shielding Cone 51
2 Monosubstituted Benzene: X-C6H5 52
2.1 Toluene 52
2.2 Aromatic Chemical Shifts: Resonance Structures 54
2.3 Nitrobenzene 55
2.4 Anisole 56
9.3.2 Pulse Calibration 181
9.3.3 J Value Setting 182
9.3.4 Phase Correction 185

10 The Effect of Other Magnetic Nuclei on the 13C Spectrum: 31P, 19F, 2H and 14N 185
10.1 Splitting of 13C Peaks by Deuterium (2H) 185
10.2 Splitting of 13C Peaks by Phosphorus (31P) 186
10.3 Splitting of 13C Peaks by Fluorine (19F) 188
10.4 Splitting and Broadening of 13C Peaks by Nitrogen (14N) 189

11 Direct Observation of Nuclei Other Than Proton (1H) and Carbon (13C) 190
11.1 Phosphorus-31 (31P) NMR 192
11.2 Fluorine-19 (19F) NMR 194

Chapter 5 | Alkenes (Olefins) 198

1 Proton Chemical Shifts of Simple Olefins 199
2 Short-Range (Two and Three Bond) Coupling Constants (J Values) in Olefins 202
3 The Allylic Coupling: A Long-Range (Four-Bond) J Coupling 205
4 Long-Range Olefin Couplings in Cholesterol: The bis-Allylic Coupling (5J) 209
5 Carbon-13 Chemical Shifts of Hydrocarbon Olefins (Alkenes) 210
6 Resonance Effects on Olefinic 13C Chemical Shifts 214
7 Alkynes 225

Chapter 6 | Chirality and Stereochemistry: Natural Products 227

1 The Molecules of Nature 227
2 Chirality, Chiral Centers, Chiral Molecules, and the Chiral Environment 230
3 The AB System 232
4 Detailed Analysis of the AB Spectrum: Calculating the Chemical Shifts 234
5 The ABX System 237
6 Variations on the ABX Theme: ABX$_3$, ABX$_2$ and ABXY 245
7 The Effect of Chirality on 13C Spectra. Diastereotopic Carbons 249
8 A Closer Look at Chemical Shift Equivalence in an Asymmetric Environment 251
8.1 Chemical Shift Equivalence of CH$_3$ Group Protons 251
8.2 Non-Equivalence of CH$_2$ Group Protons 252
8.3 Chemical Shift Equivalence by Symmetry 252
9 J Couplings and Chemical Shifts in the Rigid Cyclohexane Chair System 255
9.1 Cyclohexene and Cyclohexenone 262
10 A Detailed Look at the Dependence of 3J$_{HH}$ on Dihedral Angle: The Karplus Relation 266
11 Magnetic Non-Equivalence. The X-CH$_2$-CH$_2$-Y Spin System: A$_2$B$_2$ and AA’BB’ Patterns 276
12 Bicyclic Compounds and Small Rings (Three- and Four-Membered) 286
12.1 The Bicyclo[2.2.1] Ring System 286
12.2 The Bicyclo[3.1.0] Ring System 291
12.3 The Bicyclo[3.1.1] Ring System 294

Reference 298

Chapter 7 | Selective Proton Experiments: Biological Molecules 299

1 Sugars: Monosaccharides and Oligosaccharides 299
2 Slowing of OH Exchange in Polar Aprotic Solvents Like DMSO 305
3 Selective TOCSY Applied to the Assignment of the 1H Spectra of Sugars 307
Chapter 8 | Homonuclear Two-Dimensional NMR: Correlation of One Hydrogen (1H) to Another

1 Selective TOCSY Experiments Displayed as a Stacked Plot
2 The Two-Dimensional COSY Experiment
3 Shape and Fine Structure of COSY Crosspeaks; Contour Plots
4 2D-COSY Spectra of Sugars
5 2D-COSY Spectra of Aromatic Compounds
6 Parameter Settings in the 2D COSY Experiment; The DQF-COSY Experiment
7 COSY Spectra of Peptides
8 COSY Spectra of Natural Products
9 Two-Dimensional (2D) TOCSY (Total Correlation Spectroscopy)
10 Two-Dimensional (2D) NOESY (Nuclear Overhauser Effect Spectroscopy)

Parameter Settings Used for 2D Spectra in this Chapter

Chapter 9 | Heteronuclear Two-Dimensional NMR: Correlation of One Hydrogen (1H) to One Carbon (13C)

1 3-Heptanone: A Thought Experiment
2 Edited HSQC: Making the CH2 Protons Stand Out
3 The 2D-HSQC Spectrum of Cholesterol
4 A Detailed Look at the HSQC Experiment
5 Parameters and Settings for the 2D-HSQC Experiment
6 Data Processing: Phase Correction in Two Dimensions
7 Long-Range Couplings between 1H and 13C
8 2D-HMBC (Heteronuclear Multiple-Bond Correlation)
9 Parameters and Settings for the 2D-HMBC Experiment
10 Comparison of HSQC and HMBC
11 HMBC Variants