Index

ABC, see Approximate Bayesian Computation
acceptance probability
indendence sampler, 120
Metropolis–Hastings method, 110, 113
random walk Metropolis, 117
rejection sampling, 15
RJMCMC, 163, 164
thinning method, 65
antithetic paths, 247–248
antithetic variables, 88–93
for SDEs, 247–248
Approximate Bayesian Computation, 182–188
with regression, 188–192
autocorrelation, 132–135
Bayes’ rule, 139, 267
Bayesian inference, 72, 138–142, 147–152, 172–179
bias, 76
bootstrap estimates, 199–201
Monte Carlo estimation, 97–99
of discretised SDEs, 243–244
binomial distribution, 293
boolean values, 281
bootstrap confidence intervals, 203–208
BCa, 207
simple, 205
bootstrap estimates, 192–208
general, 196
of confidence intervals, 203–208
of the bias, 199–201
of the standard error, 201–203
Box–Muller transform, 34
Brownian bridge, 220
Brownian motion, 214–221
geometric, 221–223
interpolation, 218–221
Markov property, 216
scaling property, 216
simulation, 217–218
burn-in period, 130–132, 137, 151
Cauchy distribution, 37
CDF, see cumulative distribution function
change of variables, 33
χ²-distribution, 6, 293
componentwise simulation, 48–50, 142
computational cost
ABC, 184
MCMC, 135
Monte Carlo estimation, 75
rejection sampling, 20, 22
SDEs, 233, 235, 247
conditional density, 267
conditional distribution, 23–27, 183
conditional expectation, 194
confidence intervals, 83, 100–103, 245
bootstrap, 203–208
continuous-time processes, 213–261
control variates, 93–96, 251
convergence diagnostics, 136–137
correlation, 90, 91–93, 95, 132
 auto-, 132–135
 of a sample, 97–99
critical region, 104
cumulative distribution function, 12, 264
detailed balance condition, 114
diffusion coefficient, 225
discretisation error, 214
 for SDEs, 236–242
don’t repeat yourself
drift, 225
DRY, see don’t repeat yourself
effective sample size, 134
empirical distribution, 192
energy, 154
Euler–Maruyama scheme, 232–233
 for the Heston model, 256
events, 263
exponential distribution, 13, 265, 293
gamma distribution, 293
geometric Brownian motion, 221–223
geometric distribution, 11, 17, 20, 185
Gibbs measure, 154
Gibbs sampler, 142–159
 image processing, 157–159
 Ising model, 154–157
 parameter estimation, 147–152
half-normal distribution, 21
Harris recurrence, 127
Heston model, 255–259
hierarchical models, 45–50, 52, 147
hypothesis tests, 5, 103–106
i.i.d., 2
i.i.d. copies, 75
importance sampling, 84–88, 223
 for SDEs, 248–250
independence, 109, 266
independence sampler, 120–121
indicator function, 268
initial distribution
 for Markov chains, 50, 128
 for SDEs, 224
intensity function, 59, 161
inverse temperature, 154
inverse transform method, 12–15, 92
irreducible Markov chain, 127
Ising model, 154
Ito integral, 226–227
Ito’s formula, 227–230
Jacobian matrix, 33, 34, 37, 164, 165
Kronecker delta, 168
kurtosis, 294
Lagrange multipliers, 246
law of large numbers, 269
 for Markov chains, 128–130
LCG, see linear congruential generator
Linear Congruential Generator, 2–4
marginal distribution, 48–50
Markov chain, 50–58, 109, 126–130
 continuous state space, 56–58
 discrete state space, 51–56
 Harris recurrent, 127
 initial distribution, 50, 128
 irreducible, 127
 law of large numbers, 128–130
 reversible, 112, 114
 time-homogeneous, 51
Markov Chain Monte Carlo, 109–180
 convergence, 126–138
 reversible jump, 159–179
Markov property
 of Brownian motion, 216
MCMC, see Markov Chain Monte Carlo
<table>
<thead>
<tr>
<th>Concept</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean squared error</td>
<td>76</td>
</tr>
<tr>
<td>For antithetic variables</td>
<td>90</td>
</tr>
<tr>
<td>For control variates</td>
<td>94</td>
</tr>
<tr>
<td>For importance sampling</td>
<td>85</td>
</tr>
<tr>
<td>For MCMC</td>
<td>130</td>
</tr>
<tr>
<td>For Monte Carlo estimates</td>
<td>77</td>
</tr>
<tr>
<td>For SDEs</td>
<td>243, 245–247</td>
</tr>
<tr>
<td>Metropolis–Hastings method</td>
<td>110–126</td>
</tr>
<tr>
<td>Continuous state space</td>
<td>110–113</td>
</tr>
<tr>
<td>Discrete state space</td>
<td>113–116</td>
</tr>
<tr>
<td>Independence sampler</td>
<td>120–121</td>
</tr>
<tr>
<td>Move types</td>
<td>121–126, 163, 173–177</td>
</tr>
<tr>
<td>Random walk Metropolis</td>
<td>116–119, 129, 140–142</td>
</tr>
<tr>
<td>Milstein scheme</td>
<td>234, 233–236</td>
</tr>
<tr>
<td>Mixture distributions</td>
<td>46–48, 147, 172</td>
</tr>
<tr>
<td>Models</td>
<td></td>
</tr>
<tr>
<td>Continuous-time</td>
<td>213–261</td>
</tr>
<tr>
<td>Hierarchical</td>
<td>45–50, 52, 147</td>
</tr>
<tr>
<td>Statistical</td>
<td>1, 41–68</td>
</tr>
<tr>
<td>Monte Carlo estimates</td>
<td>69–108</td>
</tr>
<tr>
<td>Choice of sample size</td>
<td>80–82</td>
</tr>
<tr>
<td>Error</td>
<td>76–80, 82–84</td>
</tr>
<tr>
<td>For integrals</td>
<td>72</td>
</tr>
<tr>
<td>For probabilities</td>
<td>71, 81, 87, 91, 102, 105, 244, 249</td>
</tr>
<tr>
<td>For SDEs</td>
<td>243–255</td>
</tr>
<tr>
<td>Multi-level</td>
<td>250–255</td>
</tr>
<tr>
<td>Variance reduction</td>
<td>84–96, 247–255</td>
</tr>
<tr>
<td>MSE</td>
<td>79, 344</td>
</tr>
<tr>
<td>Multi-level Monte Carlo estimates</td>
<td>250–255</td>
</tr>
<tr>
<td>Normal distribution</td>
<td>265, 293</td>
</tr>
<tr>
<td>Generation</td>
<td>23, 34</td>
</tr>
<tr>
<td>Half</td>
<td>21</td>
</tr>
<tr>
<td>Multivariate</td>
<td>41–45, 214</td>
</tr>
<tr>
<td>Normalisation constant</td>
<td>266</td>
</tr>
<tr>
<td>Optimisation under constraints</td>
<td>245</td>
</tr>
<tr>
<td>Option pricing</td>
<td>255–259</td>
</tr>
<tr>
<td>Pareto distribution</td>
<td>162</td>
</tr>
<tr>
<td>Partition function</td>
<td>154</td>
</tr>
<tr>
<td>Pixels</td>
<td>153</td>
</tr>
<tr>
<td>Plug-in estimator</td>
<td>198</td>
</tr>
<tr>
<td>Plug-in principle</td>
<td>198</td>
</tr>
<tr>
<td>Point estimators</td>
<td>83, 97–100, 197–203</td>
</tr>
<tr>
<td>Poisson distribution</td>
<td>58, 102, 162, 293</td>
</tr>
<tr>
<td>Poisson process</td>
<td>58–67</td>
</tr>
<tr>
<td>Intensity function</td>
<td>59</td>
</tr>
<tr>
<td>Thinning method</td>
<td>65</td>
</tr>
<tr>
<td>Posterior distribution</td>
<td>73, 138–141, 147, 158, 181</td>
</tr>
<tr>
<td>Prior distribution</td>
<td>138</td>
</tr>
<tr>
<td>PRNG, see pseudo random number generator</td>
<td></td>
</tr>
<tr>
<td>Probability</td>
<td>263–270</td>
</tr>
<tr>
<td>Probability density</td>
<td>264</td>
</tr>
<tr>
<td>Probability distribution</td>
<td>263</td>
</tr>
<tr>
<td>Probability vector</td>
<td>52</td>
</tr>
<tr>
<td>Pseudo random number generator</td>
<td></td>
</tr>
<tr>
<td>R programming</td>
<td>271–297</td>
</tr>
<tr>
<td>Random number generators</td>
<td>2–8</td>
</tr>
<tr>
<td>Random variables</td>
<td>263, 292</td>
</tr>
<tr>
<td>Transformation of</td>
<td>32–38</td>
</tr>
<tr>
<td>Random walk</td>
<td>50</td>
</tr>
<tr>
<td>Random walk Metropolis</td>
<td>116–119</td>
</tr>
<tr>
<td>Ratio-of-uniforms method</td>
<td>35–38</td>
</tr>
<tr>
<td>Rayleigh distribution</td>
<td>14</td>
</tr>
<tr>
<td>Rejection sampling</td>
<td>15–32, 73, 120</td>
</tr>
<tr>
<td>Basic</td>
<td>15–19, 182</td>
</tr>
<tr>
<td>Envelope</td>
<td>19–23</td>
</tr>
<tr>
<td>For resampling methods</td>
<td>23–27, 150</td>
</tr>
<tr>
<td>Reversible jump Markov Chain Monte Carlo</td>
<td>159–179</td>
</tr>
<tr>
<td>Dimension matching</td>
<td>163–166, 175</td>
</tr>
<tr>
<td>State space</td>
<td>161, 172</td>
</tr>
<tr>
<td>Target distribution</td>
<td>161, 173</td>
</tr>
<tr>
<td>Transitions</td>
<td>162, 173</td>
</tr>
<tr>
<td>Reversible Markov chain</td>
<td>112, 114</td>
</tr>
<tr>
<td>RJMCMC, see reversible jump Markov Chain Monte Carlo</td>
<td></td>
</tr>
<tr>
<td>RMSE, see root-mean-square error</td>
<td>79, 344</td>
</tr>
</tbody>
</table>
INDEX

sample correlation, 97–99
scaling property
 of Brownian motion, 216
SDE, see stochastic differential equations
seed, 2, 8, 153, 293
semicircle distribution, 18
skewness, 105
slice sampler, 145
stability of discretisation schemes, 241
standard error, 76, 201
 bootstrap estimates, 201–203
standard normal distribution, see normal distribution
state space
 Gibbs sampler, 142
 Markov chain, 50, 51, 56
 RJMCMC, 161
stationary density, 58
stationary distribution, 55
statistical computing, 1–262
statistical hypothesis tests, 5, 103–106
statistical inference, 96–106
 Bayesian, 138–142, 147–152, 172–179
 bootstrap methods, 197–208
 statistical models, 1, 41–68
 stochastic analysis, 226–231
 stochastic differential equations, 224–242
 Euler–Maruyama scheme, 232–233
 initial distribution, 224
 Milstein scheme, 233–236
 Monte Carlo estimates, 243–255
 strong error, 236–237
 weak error, 237–240
 stochastic integrals, 226–231
 time discretisation, 226
 stochastic matrix, 52
 Stratonovich integral, 230, 230–231
 strong error, 236, 236–237
 substitution rule, 33, 170
 sufficient statistic, 183
test functions, 238
tests
 statistical, 5, 103–106
 time discretisation, 214
 Brownian motion, 217
 for SDEs, 231–242
 stochastic integrals, 226
transformation
 of random variables, 32–38, 43
 of \(\ell([0, 1]) \), 13
 transition density, 57
 transition kernel, 56
 transition matrix, 51
 truncation error, 276
uniform distribution, 4, 8, 27, 293
 discrete, 9, 293
 ratio-of-uniforms, 35
variance reduction methods, 84–96, 247–255
 weak error, 237–240
Wiener process, see Brownian motion
Wigner’s semicircle distribution, 18