Preface xv
Contributors xix

PART I
DOUBLE-NEGATIVE (DNG) METAMATERIALS 1

SECTION I
THREE-DIMENSIONAL VOLUMETRIC DNG METAMATERIALS 3

CHAPTER 1 INTRODUCTION, HISTORY, AND SELECTED TOPICS IN FUNDAMENTAL THEORIES OF METAMATERIALS 5
Richard W. Ziolkowski and Nader Engheta

1.1 Introduction 5
1.2 Wave Parameters in DNG Media 9
1.3 FDTD Simulations of DNG Media 10
1.4 Causality in DNG Media 11
1.5 Scattering from a DNG Slab 13
1.6 Backward Waves 16
1.7 Negative Refraction 17
1.8 Phase Compensation with a DNG Medium 19
1.9 Dispersion Compensation in a Transmission Line Using a DNG Medium 21
1.10 Subwavelength Focusing with a DNG Medium 23
1.11 Metamaterials with a Zero Index of Refraction 32
1.12 Summary 37

References 37

CHAPTER 2 FUNDAMENTALS OF WAVEGUIDE AND ANTENNA APPLICATIONS INVOLVING DNG AND SNG METAMATERIALS 43
Nader Engheta, Andrea Alù, Richard W. Ziolkowski, and Aycan Erentok

2.1 Introduction 43
2.2 Subwavelength Cavities and Waveguides 44
2.3 Subwavelength Cylindrical and Spherical Core–Shell Systems 54
2.4 ENG–MNG and DPS–DNG Matched Metamaterial Pairs for Resonant Enhancements of Source-Generated Fields 60
2.5 Efficient, Electrically Small Dipole Antennas: DNG Nested Shells 62
CHAPTER 3 WAVEGUIDE EXPERIMENTS TO CHARACTERIZE PROPERTIES OF SNG AND DNG METAMATERIALS 87
Silvio Hrabar

3.1 Introduction 87
3.2 Basic Types of Bulk Metamaterials with Inclusions 88
 3.2.1 Thin-Wire Epsilon-Negative (ENG) Metamaterial 88
 3.2.2 SRR Array Mu-Negative (MNG) Metamaterial 89
 3.2.3 DNG Metamaterial Based on Thin Wires and SRRs 91
3.3 Theoretical Analysis of Rectangular Waveguide Filled with General Metamaterial 91
3.4 Investigation of Rectangular Waveguide Filled with 2D Isotropic ENG Metamaterial 96
3.5 Investigation of Rectangular Waveguide Filled with 2D Isotropic MNG Metamaterial 99
3.6 Investigation of Rectangular Waveguide Filled with 2D Uniaxial MNG Metamaterial 100
3.7 Investigation of Rectangular Waveguide Filled with 2D Isotropic DNG Metamaterial 105
3.8 Investigation of Subwavelength Resonator 106
3.9 Conclusions 110
References 110

CHAPTER 4 REFRACTION EXPERIMENTS IN WAVEGUIDE ENVIRONMENTS 113
Tomasz M. Grzegorczyk, Jin Au Kong, and Ran Lixin

4.1 Introduction 113
4.2 Microscopic and Macroscopic Views of Metamaterials 114
 4.2.1 Microscopic View: Rods and Rings as Building Blocks of Metamaterials 114
 4.2.2 Macroscopic View: Effective Medium with Negative Constitutive Parameters 116
 4.2.2.1 Modeling Metamaterials 116
 4.2.2.2 Properties of Metamaterials 118
4.3 Measurement Techniques 123
 4.3.1 Experimental Constraints 123
 4.3.1.1 Obtaining a Plane-Wave Incidence 123
 4.3.1.2 Contacting Issue with Waveguide Walls 125
 4.3.2 Measurements of Various Rings 125
 4.3.2.1 Axially Symmetric SRR 125
 4.3.2.2 Omega (Ω) SRR 128
SECTION II
TWO-DIMENSIONAL PLANAR NEGATIVE-INDEX STRUCTURES 141

CHAPTER 5 ANTENNA APPLICATIONS AND SUBWAVELENGTH FOCUSING USING NEGATIVE-REFRACTIVE-INDEX TRANSMISSION LINE STRUCTURES 143
George V. Eleftheriades

5.1 Introduction 143
5.2 Planar Transmission Line Media with Negative Refractive Index 144
5.3 Zero-Degree Phase-Shifting Lines and Applications 145
5.3.1 Nonradiating Metamaterial Phase-Shifting Lines 149
5.3.2 Series-Fed Antenna Arrays with Reduced Beam Squinting 150
5.3.3 Broadband Wilkinson Balun Using Microstrip Metamaterial Lines 153
5.3.4 Low-Profile and Small Ring Antennas 157
5.4 Backward Leaky-Wave Antenna Radiating in Its Fundamental Spatial Harmonic 160
5.5 Superresolving NRI Transmission Line Lens 162
5.6 Detailed Dispersion of Planar NRI-TL Media 164
Acknowledgments 167
References 167

CHAPTER 6 RESONANCE CONE ANTENNAS 171
Keith G. Balmain and Andrea A. E. Lüttgen

6.1 Introduction 171
6.2 Planar Metamaterial, Corner-Fed, Anisotropic Grid Antenna 172
6.3 Resonance Cone Refraction Effects in a Low-Profile Antenna 181
6.4 Conclusions 189
Acknowledgments 189
References 189

CHAPTER 7 MICROWAVE COUPLER AND RESONATOR APPLICATIONS OF NRI PLANAR STRUCTURES 191
Christophe Caloz and Tatsuo Itoh

7.1 Introduction 191
7.2 Composite Right/Left-Handed Transmission Line Metamaterials 192
7.2.1 Left-Handed Transmission Lines 192
7.2.2 Composite Right/Left-Handed Structures 192
7.2.3 Microwave Network Conception and Characteristics 195
7.2.4 Microstrip Technology Implementation 197
CONTENTS

7.3 Metamaterial Couplers 198
 7.3.1 Symmetric Impedance Coupler 198
 7.3.2 Asymmetric Phase Coupler 202

7.4 Metamaterial Resonators 205
 7.4.1 Positive, Negative, and Zero-Order Resonance in CRLH Resonators 205
 7.4.2 Zero-Order Antenna 207
 7.4.3 Dual-Band Ring Antenna 208

7.5 Conclusions 209
References 209

PART II
ELECTROMAGNETIC BANDGAP (EBG) METAMATERIALS 211

SECTION I
THREE-DIMENSIONAL VOLUMETRIC EBG MEDIA 213

CHAPTER 8 HISTORICAL PERSPECTIVE AND REVIEW OF FUNDAMENTAL PRINCIPLES IN MODELING THREE-DIMENSIONAL PERIODIC STRUCTURES WITH EMPHASIS ON VOLUMETRIC EBGs 215
Maria Kafesaki and Costas M. Soukoulis

8.1 Introduction 215
 8.1.1 Electromagnetic (Photonic) Bandgap Materials or Photonic Crystals 215
 8.1.2 Left-Handed Materials or Negative-Index Materials 219

8.2 Theoretical and Numerical Methods 221
 8.2.1 Plane-Wave Method 222
 8.2.2 Transfer Matrix Method 225
 8.2.3 Finite-Difference Time-Domain Method 228

8.3 Comparison of Different Numerical Techniques 232
8.4 Conclusions 233
Acknowledgments 233
References 234

CHAPTER 9 FABRICATION, EXPERIMENTATION, AND APPLICATIONS OF EBG STRUCTURES 239
Peter de Maagt and Peter Huggard

9.1 Introduction 239
9.2 Manufacturing 241
 9.2.1 Manufacture of 3D EBGs by Machining from the Solid 241
 9.2.2 Manufacture of 3D EBGs by Stacking 242
 9.2.3 Manufacture of 3D EBGs by Growth 244
 9.2.4 Effect of Tolerances in Manufacture of EBGs 245

9.3 Experimental Characterization of EBG Crystals 245
 9.3.1 Surface Wave Characterization 246
CHAPTER 12 DEVELOPMENT OF COMPLEX ARTIFICIAL GROUND PLANES IN ANTENNA ENGINEERING 313
Yahya Rahmat-Samii and Fan Yang

12.1 Introduction 313
12.2 FDTD Analysis of Complex Artificial Ground Planes 315
 12.2.1 Bandgap Characterizations of an EBG Structure 315
 12.2.2 Modal Diagram and Scattering Analysis of EBG Structure 317
12.3 Various Complex Artificial Ground-Plane Designs 319
 12.3.1 Parametric Study of EBG Ground Plane 319
 12.3.2 Polarization-Dependent EBG (PDEBG) Surface Designs 321
 12.3.3 Characterizations of Grounded Slab Loaded with Periodic Patches 324
12.4 Applications of Artificial Ground Planes in Antenna Engineering 324
 12.4.1 Enhanced Performance of Microstrip Antennas and Arrays 324
 12.4.2 Dipole Antenna on EBG Ground Plane: Low-Profile Design 329
 12.4.2.1 Comparison of PEC, PMC, and EBG Ground Planes 329
 12.4.2.2 Operational Frequency Band of EBG Structure 331
 12.4.3 Novel Surface Wave Antenna Design for Wireless Communications 333
 12.4.3.1 Antenna Performance 333
 12.4.3.2 Radiation Mechanism 335
 12.4.4 Low-Profile Circularly Polarized Antennas: Curl and Dipole Designs 337
 12.4.4.1 Curl Antenna on EBG Ground Plane 337
 12.4.4.2 Single-Dipole Antenna Radiating CP Waves 339
 12.4.5 Reconfigurable Wire Antenna with Radiation Pattern Diversity 341
12.5 Summary 346
References 346

CHAPTER 13 FSS-BASED EBG SURFACES 351
Stefano Maci and Alessio Cucini

13.1 Introduction 351
 13.1.1 Quasi-Static Admittance Models 352
 13.1.2 Chapter Outline 353
13.2 MoM Solution 354
 13.2.1 Patch-Type FSS (Electric Current Approach) 354
 13.2.2 Aperture-Type FSS (Magnetic Current Approach) 357
 13.2.3 Dispersion Equation 357
13.3 Accessible Mode Admittance Network 358
 13.3.1 Patch-Type FSS 359
 13.3.2 Aperture-Type FSS 359
 13.3.3 Dispersion Equation in Terms of Accessible Modes 360
13.4 Pole–Zero Matching Method for Dispersion Analysis 361
 13.4.1 Dominant-Mode Two-Port Admittance Network 361
 13.4.2 Diagonalization of FSS Admittance Matrix 363
 13.4.3 Foster’s Reactance Theorem and Rational Approximation of Eigenvalues 365
 13.4.4 Poles and Zeros of FSS and Metamaterial Admittance 366
 13.4.5 Analytical Form of Dispersion Equation 369
13.4.6 Examples 369
13.5 Conclusions 374
Acknowledgments 375
References 375

CHAPTER 14 SPACE-FILLING CURVE HIGH-IMPEDANCE GROUND PLANES 377
John McVay, Nader Engheta, and Ahmad Hoorfar

14.1 Resonances of Space-Filling Curve Elements 379
14.2 High-Impedance Surfaces Made of Space-Filling Curve Inclusions 383
 14.2.1 Peano Surface 383
 14.2.1.1 Effects of Substrate Height and Interelement Spacing 385
 14.2.2 Hilbert Surface 387
 14.2.2.1 Hilbert Surface of Order 3: Experimental Results 389
 14.2.2.2 Use of Space-Filling Curve High-Impedance Surfaces for Thin Absorbing Screens 391
14.3 Use of Space-Filling Curve High-Impedance Surfaces in Antenna Applications 393
14.4 Space-Filling Curve Elements as Inclusions in DNG Bulk Media 397
14.5 Conclusions 399
References 400

Index 403