Contents

1. Pulmonary Tuberculosis and *Mycobacterium Tuberculosis*: Modern Molecular Epidemiology and Perspectives, 1
 Sylvain Godreuil, Loubna Tazi, and Anne-Laure Bañuls

 1.1. Introduction, 1
 1.2. General Points on *Mycobacterium Tuberculosis* (MTB) and Pulmonary Tuberculosis (PTB), 2
 1.2.1. Classification and Cellular Characteristics, 2
 1.2.2. Transmission and Multiplication of MTB, 3
 1.2.3. Clinical and Subclinical TB, 4
 1.2.4. Diagnosis of MTB Species, 5
 1.2.5. Treatment, Drug Resistance, and Control, 6
 1.3. Genetics of MTB, Molecular Tools, and Population Structure, 7
 1.3.1. Genome and Genetic Diversity of MTB, 7
 1.3.2. Genetic Tools for Molecular Epidemiology, 7
 1.3.3. How Should the Most Appropriate Molecular Marker be Chosen? 10
 1.3.4. Population Structure of MTB and Epidemiological Consequences, 11
 1.4. Use of Molecular Epidemiology for Understanding Tuberculosis Transmission and Pathogenesis, 12
 1.4.1. MTB Families and Worldwide Distribution, 13
 1.4.2. MTB in Developing Versus Developed Countries, 14
 1.4.3. Clinical and Epidemiological Relevance of Molecular Epidemiology at the Local Level, 15
 1.4.4. Use of Genotyping to Study the Impact of HIV/AIDS and Drug Resistance on Pathogenesis and Transmission, 16
 1.5. Urgent Needs for TB Control, Limitations, and New Issues for Molecular Epidemiology, 17
 1.5.1. Urgent Needs for TB Control and Molecular Epidemiology, 17
 1.5.2. Limitations of Modern Molecular Tools, 18
 1.5.3. Promising New Technologies, 18
 1.6. Conclusion and Perspectives, 20

 Acknowledgments, 20
 Abbreviations, 20
 Glossary, 20
 References, 22
2. Diseases that Threaten Livestock, 31
 J. Blancou and P.-C. Lefèvre
 2.1. Introduction, 31
 2.2. Animal Diseases Under Control, 31
 2.2.1. General Considerations, 31
 2.2.2. Description of the Diseases, 34
 2.3. Diseases that Are an Economic Burden and Hamper International Trade in Animals and Animal Products, 36
 2.3.1. General Considerations, 36
 2.3.2. Description of the Diseases, 37
 2.4. Animal Diseases that may Threaten Human Health, 39
 2.4.1. Description of the Diseases, 40
 2.5. Surveillance and Control of Transmissible Animal Diseases: Progress Expected from Modern Technologies, 41
 2.6. Conclusion, 42
 References, 43

3. HIV/AIDS Infection in the World with a Special Focus on Africa, 45
 C. Laurent, M. Peeters, and E. Delaporte
 3.1. Introduction, 45
 3.2. Current State of the Epidemic, 45
 3.2.1. Prevalences and Incidences in the World, 45
 3.2.2. Mode of Transmission, 47
 3.2.3. Impact of HIV Infection on Other Endemic Diseases, 47
 3.2.4. Demographic, Social, and Economic Consequences, 48
 3.3. Molecular Epidemiology, 48
 3.3.1. Classification of HIV, 48
 3.3.2. Distribution of HIV-1 in Africa, 50
 3.3.3. Implications of Recombination, 51
 3.4. Implication of HIV Variability on Pathogenesis, Treatment, Diagnosis, and Vaccine Development in Africa, 51
 3.4.1. Impact of HIV Variability on Diagnosis, 52
 3.4.2. Impact of HIV Variability and Antiretroviral Therapy, 52
 3.4.3. Impact of HIV Variability on Transmissibility and Pathogenesis, 53
 3.4.4. Impact of HIV Variability on Vaccine Development, 53
 3.5. Access to Treatment, 53
 3.6. Conclusion, 54
 References, 54

4. Molecular-Phylogenetic Strategies for Characterization of Uncultured Pathogens, 57
 Daniel N. Frank and Robert A. Feldman
 4.1. Introduction, 57
 4.2. A Phylogenetic Framework for Culture-Independent Pathogen Detection, 58
 4.2.1. Molecular-Phylogenetic Analysis of Ribosomal RNA Genes, 58
 4.2.2. Application to Monomicrobial Infections, 60
 4.2.3. Application to Polymicrobial Infections, 62
 4.3. Whole Genome Characterization of Uncultured Pathogens, 66
 4.3.1. Enrichment of Monocultures, 66
 4.3.2. Metagenomics, 67
 4.4. Future Perspectives, 68
 References, 68

5. Molecular or Immunological Tools for Efficient Control of Tuberculosis, 75
 J.L. Hermann and P.H. Lagrange
 5.1. Introduction, 75
 5.2. Definitions: Clinical Characteristics of Tuberculosis, 75
 5.3. Molecular Epidemiology: Advantages and Drawbacks, 77
 5.4. Immunological Epidemiology, 79
 5.4.1. The Immune Response in the Control of Tuberculosis, 79
 5.4.2. IFN-γ-Based Assays: Description—Gold Standard of Tuberculosis Infection, 80
 5.4.3. Impact of T-Cell or B-Cell Assays in the Diagnosis of Active Tuberculosis, 81
 5.5. Conclusions, 82
 Abbreviations, 83
 Glossary, 84
 References, 84

6. Understanding Human Leishmaniasis: The Need for an Integrated Approach, 87
 6.1. Generalities on Leishmaniasis, 87
 6.1.1. Geographic Distribution, 87
6.1.2. The Players in Leishmaniasis, 87
6.1.3. The Life Cycle of the Leishmania Parasite, 88
6.1.4. Symptoms, 89
6.1.5. Prevention, Diagnosis, and Treatments, 90

6.2. Impact of Sand Fly Vectors on Leishmaniasis, 93
6.2.1. The Life Cycle of Leishmania in a Competent Sand Fly Vector, 93
6.2.2. Vector Competence, 94
6.2.3. Metacyclogenesis and Transmission, 95
6.2.4. Sand Fly Modulation of the Mammalian Host Immune Response, 96

6.3. Biodiversity and Genetics of Parasites: Implications in Virulence and Pathogenicity in Humans, 96
6.3.1. Leishmania Species and Epidemiological Diversity, 96
6.3.2. Different Pathogenic Potential of Species and Within Species: Experimental Data, 98
6.3.3. Genetic Markers and Parasitic Factors Involved in Pathogenicity in Humans, 98

6.4. The Immune Response and Genetic Factors from the Mammalian Host, 100
6.4.1. The Host Immune Response to Leishmania, 100
6.4.2. Host Genetic Factors in Resistance/Susceptibility to Leishmaniasis, 102

6.5. The Need for an Integrated Approach: The Kala-Azar Example in India, 107

6.6. Conclusion, 108
Acknowledgments, 108
Abbreviations, 108
Glossary, 109
References, 111

7. Epidemics of Plant Diseases: Mechanisms, Dynamics and Management, 125
Serge Savary

7.1. Botanical Epidemiology, 125
7.2. Phenomenology of Botanical Epidemics, 126
7.3. Processes in Botanical Epidemics, 128
7.4. Factors Influencing Epidemics, 129
7.5. Some Simple Models in Botanical Epidemiology, 130
7.6. Refinement of Models, 131

7.7. Disease Management: A Brief Review of Principles, 132
7.8. Concluding Remarks, 134
References, 134

8. Malaria Vaccines, 137
Charles W. Todd, Venkatachalam Udhayakumar, Ananias A. Escalante, and Altaf A. Lal

8.1. Introduction, 137
8.2. Malaria Vaccine Considerations, 139
8.3. Required Efficacy of Malaria Vaccines, 140
8.4. Duration of Protection, 141
8.5. Field Epidemiology Studies, 141
8.6. Selection of Vaccine Epitopes, 142
8.7. The Vaccine Target: Epitopes or Strains? 142
8.8. Cytoadherence and Variant Genes, 143
8.9. Limitations to Malaria Vaccine Development, 143
8.10. Adjuvants and Antigen Delivery Systems, 144
8.11. Multistage, Multiepitope Malaria Vaccine Candidate Antigens, 144
8.12. Description of FALVAC-1 Antigen, 145
8.13. Designing Artificial Recombinant Antigens, 146
Abbreviations, 146
Glossary, 146
References, 147

9. The SARS Case Study: An Alarm Clock? 151
Gabriel Turinici and Antoine Danchin

9.1. SARS: Definition and Clinical Aspects, 151
9.3. The Double Epidemic Model, 159
9.4. Conclusion, 160
Acknowledgment, 161
References, 161

10. Recombination and Its Role in the Evolution of Pathogenic Microbes, 163
Philip Awadalla, Xin-zhuan Su, and Kate McGee

10.1. Introduction, 163
10.2. The Evolutionary Costs and Benefits of Recombination, 163
10.3. Evolutionary Significance of Recombination in Pathogenic Microbes, 164

10.4. Recombination and Its Effects on Evolutionary Inferences within a Species, 166

10.5. Detecting and Estimating Recombination, 167
10.5.1. Nonparametric Analyses, 167
10.5.2. Parametric Methods, 168

10.6. Conclusions, 170

References, 171

11. Evolutionary History of the Malaria Parasites, 175
Francisco J. Ayala

11.1. Malaria's Human Toll, 175
11.2. Evolutionary Origins of Plasmodium, 175
11.3. Human to Monkey or Monkey to Human? 178
11.4. Population Structure of P. falciparum, 180
11.5. Malaria's Eve Hypothesis, 181
11.6. The Neolithic Revolution, Agriculture, and Climate Change, 183
11.7. Concluding Remarks, 184
Acknowledgments, 185
Glossary, 185
References, 185

12. Ecology Of Infectious Diseases: An Example with Two Vaccine-Preventable Infectious Diseases, 189
H. Broutin, N. Mantilla-Beniers, and P. Rohani

12.1. Introduction, 189
12.2. Concepts and Methods, 190
12.2.1. Mathematics—Modeling, 190
12.2.2. Population Ecology, 190
12.2.3. Comparative Approach—The Search for Emerging Themes? 192
12.3. An Example with Two Directly Transmitted Diseases: Measles and Pertussis Dynamics, 192
12.3.1. Pertussis and Measles: Two Vaccine Preventable Diseases, 192
12.3.2. Persistence—CCS and Impact of Vaccination, 193
12.3.3. “City–Village” Spread, 195
12.4. Conclusion, 196
Acknowledgments, 196
References, 196

13. Influenza Evolution, 199
Robin M. Bush

13.1. Introduction, 199
13.2. The Influenza Virus, 199
13.2.1. Influenza Genome, 200
13.2.2. The Diversity of Influenza A Subtypes, 200
13.3. Antigenic Shift and Antigenic Drift, 200
13.4. Host Specificity, 200
13.5. Avian Influenza, 201
13.6. Swine and Equine Influenza, 202
13.7. Human Influenza, 202
13.7.1. Epidemic Influenza, 202
13.7.2. Pandemic Influenza, 206
13.8. The Current Avian H5N1 Outbreak, 208
13.9. Evolution and Intervention, 208
References, 209

14. Experimental Evolution of Pathogens, 215
Vaughn S. Cooper

14.1. Experimental Design, 216
14.2. Measuring Adaptation, 216
14.3. Experimental Evolution of Vesicular Stomatitis Virus (VSV), 218
14.4. In Vivo Evolution of Salmonella Typhimurium, 219
14.5. Experimental Evolution of Candida Albicans Antibiotic Resistance, 220
14.6. Future Prospects, 222
Acknowledgments, 223
Glossary, 223
References, 223

15. Evolution of Antigenic Variation, 225
Steven A. Frank

15.1. Introduction, 225
15.2. Why Do Parasites Vary? 226
15.2.1. Extend Length of Infection, 226
15.2.2. Infect Hosts with Prior Exposure, 226
15.2.3. Infect Hosts with Genetically Variable Resistance, 226
15.2.4. Vary Attachment Characters, 226
15.3. Mechanisms that Generate Variation, 227
15.3.1. Mutation and Hypermutation, 227
15.3.2. Stochastic Switching Between Archival Copies, 228
15.3.3. Intragenomic Recombination, 229
15.3.4. Mixing Between Genomes, 229
References, 230

Acknowledgments, 223
Glossary, 223
References, 223
21.2.1. Molecular Epidemiology and Infectious Diseases, 358
21.2.2. Population Genetics of Hosts and/or Infectious Agents, 359
21.2.3. Pre-Genomic Era and “Bioterrorism”, 360

21.3. Genomic Era, 360
21.3.1. Genome Projects, 360
21.3.2. New Scientific Fields Emerged During the Genomic Era, 360
21.3.3. Genomic Era and Bioterrorism, 362

21.4. Post-Genomic Era, 362
21.4.1. Proteomics, 362
21.4.2. Bioinformatics, 368
21.4.3. Post-Genomic Era and Bioterrorism, 371

21.5. Conclusion, 371
Abbreviations, 372
Glossary, 372
References, 374

22. Mathematical Modeling of Infectious Diseases Dynamics, 379
M. Choisy, J.-F. Guégan, and P. Rohani

22.1. Introduction, 379
22.2. The Philosophy of Mathematical Modeling, 380
22.2.1. Model Complexity, 380
22.2.2. Model Formulation and Hypothesis Testing, 381
22.2.3. Stochastic Versus Deterministic Models, 382

22.3. The Nature of Epidemiological Data, 382
22.4. Childhood Micro-Parasitic Infections, 382

22.5. A Simple Epidemic Model, 383
22.5.1. Transmission Process, 383
22.5.2. Between-Compartment Flux of Individuals, 383
22.5.3. Basic Reproduction Number and Threshold Effects, 383
22.5.4. Deterministic Setup and Dynamics Analysis, 383
22.5.5. Stochastic Dynamics and Probability of an Epidemic in a Small Population, 387

22.6. A Simple Endemic Model, 388
22.6.1. Deterministic Dynamics, 388
22.6.2. Statics and the Average Age at Infection, 389
22.6.3. Stochastic Dynamics and Disease Persistence, 390

22.7. Endemo-Epidemic Models, 391
22.7.1. Varying Contact Rate, 392
22.7.2. Age-Structured Models, 392
22.7.3. Spatially Structured Models, 393
22.7.4. Stochastic Endemic Models, 393

22.8. Data Analysis, 394
22.8.1. Parameter Estimation, 394
22.8.2. Tools for Time Series Analysis, 396

22.9. Applications to Vaccination Policies, 399
22.9.1. Mass Vaccination Strategy, 399
22.9.2. Pulse Vaccination Strategy, 400

22.10. Conclusion, 401
22.10.1. What we Have Seen, 401
22.10.2. What We Have Not Seen, 402

22.11. Summary, 402
Acknowledgments, 403
References, 403

23. Using a Geographic Information System to Spatially Investigate Infectious Disease, 405
A. Curtis, J.K. Blackburn, and Y. Sansyzbayev

23.1. Introduction, 405
23.1.1. What Is a GIS? 406
23.1.2. Why Geography Is Important, 408

23.2. The Basic GIS: Individual Components, 410
23.2.1. Spatial Data Input, 410
23.2.2. Spatial Precision in the Data, 412
23.2.3. Data Entry into the GIS: Geocoding, Entering Coordinates, Heads-up Digitizing, 412

23.3. Data Manipulation, 415
23.3.1. Querying Data, 416
23.3.2. Spatial R0: Spatial Querying, 416
23.3.3. Caution with Aggregation and Disaggregation, 416

23.4. Spatial Analysis, 417
23.4.1. Kernel Density Analysis, 417
23.4.2. Measures of Spatial Autocorrelation and Spatial Forms of Regression, 417
23.4.3. Spatial Analysis Software, 418

23.5. Spatial Visualization, 419
23.5.1. Map Production, 419
23.5.2. Protecting Confidentiality While Preserving Spatial Relationships, 419
23.5.3. Choropleth Maps, 419
23.5.4. The Importance of Basic Cartographic Rules, 420
23.5.5. Cartographic Animation, 420

23.6. The Future of GIS, 421
Acknowledgments, 421
24. Vector Control by Surveillance Networks: The ECLAT Program and Chagas, 425
J.-P. Dujardin and C.J. Schofield

24.1. Introduction, 425
24.2. Origin and Spread of Human Chagas Disease, 426
24.3. The Dispersal of the Main Vectors, 427
24.4. From Disease to Public Health Problem, 428
24.4.1. The Nature of the Disease, 428
24.4.2. The Disease of Poverty, 428
24.4.3. Socioeconomic Impact, 429
24.5. Control and Surveillance, 430
24.5.1. Control Strategies, 430
24.5.2. Vigilance Strategies, 430
24.6. Vigilance and Research, 431
24.6.1. Research and Vigilance, 431
24.6.2. Endangered Continuity, 431
24.6.3. The Role of Research, 431
24.6.4. The ECLAT Network, 431
24.6.5. The ECLAT Lesson, 432
24.7. Conclusion, 432
References, 433

25. Contributions of Morphometrics to Medical Entomology, 435
J.-P. Dujardin and D.E. Slice

25.1. Introduction, 435
25.1.1. From Dimensions to Biology, 435
25.1.2. Tradition and Modernity, 435
25.2. Causes of Metric Variation, 436
25.2.1. Physiological Causes, 436
25.2.2. Pathological Causes, 437
25.2.3. Adaptive Causes, 437
25.2.4. Genetic Causes, 437
25.3. Size and Shape, 437
25.3.1. The Search for a Global Estimator of Size, 438
25.3.2. Shape as Size-Free Variation, 438
25.3.3. Shape as Geometry, 439
25.3.4. Which Shape?, 441
25.4. Morphometrics and Medical Entomology, 441
25.4.1. Systematics, 441
25.4.2. Geographic Variation, 442
25.4.3. Comparisons of Morphometric with Genetic Variation, 442
25.4.4. Topics Specific to Triatominae, 443

25.5. Authors Contribution to Morphometrics Software, 444
25.5.1. Software for Multivariate Analyses, 444
25.5.2. Software for Landmark-Based Data Analyses, 444
25.5.3. Comprehensive Software, 444

25.6. Conclusion, 445
References, 445

26. Surveillance of Vector-Borne Diseases Using Remotely Sensed Data, 449
D.E. Gorla

26.1. Vector-Borne Disease Surveillance, 449
26.2. Remote Sensing and Vector-Borne Diseases, 450
26.3. Identification of Vector Habitats, 453
26.4. Monitoring Environmental Changes for Disease Surveillance, 454
26.4.1. The Case of Chagas Disease in the Amazon, 454
26.5. Early Warning Systems for Vector-Borne Disease Outbreaks, 455
Acknowledgment 456
References, 456

27. Archaeological Epidemiology of Infectious Diseases: Fossil DNA, 459
Felipe Gahl and Arthur Aufderheide

27.1. Introduction, 459
27.2. Techniques and Procedures for Detecting Infectious Agents in Archaeology, 460
27.2.1. Mummies, 460
27.2.2. Coprolites, 462
27.2.3. Histological Methods, 463
27.2.4. Immunological Methods, 463
27.2.5. Fossil DNA, 464
27.2.6. Molecular Biology Methods, 464
27.2.7. Paleoparasitology, 466
27.2.8. Paleopharmacology and Ethnography, 466

27.3. Epidemiology of Ancient Infectious Diseases, 466
27.3.1. Smallpox, 466
27.3.2. Chagas Disease, 467
27.3.3. Malaria, 467
27.3.4. Influenza Virus, 467
27.3.5. Tuberculosis, 467
27.3.6. Leprosy, 467
27.3.7. Plague, 467
27.3.8. Treponematosis, 468

27.4. Clues Regarding American Humans, 468
27.4.1. The First Inhabitants, 469
27.4.2. The First Parasites, 470
27.4.3. The First Infectious Diseases, 470

27.5. New Perspectives, 470
Acknowledgments, 471
Abbreviations, 471
Glossary, 471
References, 472

28. Insights Into Structure and Evolution of Bacterial Species That Are Revealed by Molecular Methods, 475
P. Roumagnac, L. Gagnevin, O. Pruvost, and M. Achtman

28.1. Introduction, 475
28.2. Methods that Index DNA Polymorphism, 476
28.2.1. DNA Fingerprinting, 477
28.2.2. Sequence Comparisons, 482
28.3. Applications of Molecular Methods, 484
28.3.1. Clock Rates of Different Markers, 484
28.3.2. Geographical Considerations, 485
28.3.3. Hierarchical and Nested Approach, 486
28.3.4. Population Genetics, 486
28.4. Conclusions, 486
Acknowledgments, 487
References, 487

29. Exploring Genetic Relatedness, Patterns of Evolutionary Descent, and the Population Genetics of Bacterial Pathogens Using Multilocus Sequence Typing, 495
Brian G. Spratt, William P. Hanage, and Christophe Fraser

29.1. Introduction, 495
29.2. Bacterial Population Structure and MLST, 496
29.2.1. Displaying Relationships Between Isolates, 497
29.2.2. Defining Clonal Complexes, Clonal Ancestry and Patterns of Descent, 498

29.2.3. Comparing Split Decomposition, Minimum Spanning Trees and eBURST, 502
29.2.4. Displaying the Overall Structure of a Population, 504

29.3. MLST Data As a Resource for Bacterial Population Genetics, 504
29.4. Measuring Rates of Recombination from MLST Data, 505
29.5. Concluding Remarks, 506
Glossary, 506
References, 507

30. Topical Debates
Evaluation of Risks and Benefits of Consumption of Antibiotics: From Individual to Public Health, 509
Fernando Baquero

30.1. Antibiotics and Human Health, 509
30.2. The Determinants of Health: Conservation Medicine, 509
30.3. From Fears to Possibilities, 510
30.4. How Important Is Antibiotic Resistance As a Risk for Public Health? 510
30.5. Health Versus Resistance, 510
30.6. Changes in Antibiotic Consumer’s Behavior: Egoism Versus Altruism, 511
30.7. The Role of Worry in Individual Patient’s Behavior, 511
30.8. The Role of Worry in the Prescriber’s Behavior, 511
30.9. Individual Versus Society Components in Shaping Individual Risks, 511
30.10. Appropriate Demand of Antibiotics and the Individual Risk, 512
30.11. “MY” Utilization of Antibiotics: A Personal Decision, 512
30.12. The Individual Health Risks of Antibiotic Use, 512
30.13. The Individual Health Benefits of Antibiotic Use, 513
30.15. The Problem of Presumed Minimal Benefits that Might Become Significant Ones, 513
30.16. The Design of Observational–Ecological Experiments to Determine Attributable Risks and Benefits of the Use of Antibiotics, 514
30.16.1. Facing Individual Variability: Blocking Strategies, 514
30.16. Facing the Heterogeneity of Antimicrobial Agents, 514
30.16.3. Assumptions to be Tested and Possible Outcomes, 515
30.16.4. Experiences in Other Fields, 515
30.17. Conclusion, 515
References, 515

31. Epidemic Diseases in the Past: History, Philosophy, and Religious Thought, 517

D. Buchillet
31.1. Plague, 517
31.2. Smallpox, 519
31.3. Cholera, 521
31.4. Conclusion, 523
References, 523

32. Fundamentals, Domains, and Diffusion of Disease Emergence: Tools and Strategies for a New Paradigm, 525

Jean-Paul J. Gonzalez, Philippe Barbazan, François Baiillon, Julien Capelle, Damien Chevallier, Jean-Paul Cornet, Florence Fournet, Vincent Herbreteau, Jean-Pierre Hugot, Meriadeg Le Gouilh, Eric Leroy, Bernard Mondet, Narong Nitapatpattana, Stéphane Rican, Gérard Salem, Wailarut Tintinapasarat, and Marc Souris

Foreword, 525
32.1. From Nosology to Concept, 526
32.1.1. Emerging Diseases, 526
32.1.2. Understanding the Fundamentals of Emergence, 527
32.2. Tools and Strategies: An Integrative Approach, 532
32.2.1. Choosing the Appropriate Strategies and Identifying Corresponding Tools, 532
32.2.2. The Emergence Play: Actors and Decors of a Drama, 533
32.2.3. Requiring and Acquiring Data: From Who, to Where and How? 533
32.2.4. Model and Simulation, 534
32.3. Emergence of Exemplary Diseases or Systems, 534
32.3.1. Assessing the Risk of Disease Emergence in a Changing World, 535
32.3.2. Comprehension of Mechanisms of Emergence and Their Control, 538
32.3.3. Climate-Dependent Arboviroses, 542
32.3.4. Rain, Rodent, and Rice: Leptospirosis Epidemics in Thailand, 546
32.3.5. New Pathogens, New Diseases: A Faunistic Approach to Reservoirs and Their Hosts, 549
32.4. Concluding Remarks, 565
32.4.1. To Favor Prevention not Treatment, 565
32.4.2. The Emerging Viral Diseases Are Also a Growing Concern for the Northern Countries, 565
32.4.3. Development and the Economy of Prevention, 566
32.4.4. Diseases Will Emerge, 566
Acknowledgments, 566
References, 566

33. Epidemiology in a Changing World: The Need for a Bigger Picture!, 569

J.-F. Guégan and G. Constantin de Magny
33.1. Introduction, 569
33.2. The Interactions Between Human Populations and Natural Systems, 570
33.2.1. Human Psychology and Our Mental Perception of the Environment, 570
33.2.2. A Changing World, Changing Human Mentalities, and the Role of Science, 571
33.2.3. Global Environmental Changes: New Health Threats for the foreseeable Future, 573
33.3. Dynamic Properties of Microbes, Their Hosts and the Environment, 574
33.3.1. The Ecological Context of Infectious Diseases: The Three-Piece Puzzle 574
33.3.2. Ecosystem Dynamics and Health, or the Snowball Syndrome, 576
33.3.3. The Emergence of Conservation Medicine, 577
33.4. The Ecology of Infectious Diseases in Practice, 577
33.4.1. What Came First: Biology or Socioeconomy? 578
33.4.2. Enhanced Global Warming and the Spread of Infectious Diseases, 579
33.4.3. Ecosystem Changes and Health, 581
33.4.4. Land Use, Agricultural Development, Intensified Farming, and Health, 581
33.4.5. Human Population Growth and Behavioral Practices, 583
33.4.6. International Travel and Trade, 583
33.5. Conclusion and Suggested Research Perspectives, 585
33.6. Summary, 586
Acknowledgments, 587
References, 587

34. Contributions of Social Anthropology to Malaria Control, 591
 Jaffré Yannick
34.1. Introduction, 591
 34.1.1 A Poverty-Related Disease? 591
34.2. Six Proposals of Research and Control, 593
34.3. Anthropology for Improving the Offer of Health Care, 599
34.4. Three Operational Approaches, 599
 References, 600

35. The Neglected Diseases and Their Economic Determinants, 603
 Alvaro Moncayo and Mario Ortiz Yamine
35.1. The “Neglected” Diseases, Criteria for Classification, 603
35.2. The Diseases, 604
 35.2.1. African Trypanosomiasis, 604
 35.2.2. Malaria, 604
 35.2.3. Leishmaniasis, 606
 35.2.4. American Trypanosomiasis (Chagas Disease), 607
 35.2.5. Dengue, 608
 35.2.6. Tuberculosis, 609
 35.2.7. Schistosomiasis, 610
35.3. The “Neglected” Diseases Burden, 611
35.4. The Economic Situation and Trends in the Affected Countries and Regions, 612
 35.4.1. Latin America, 1990–2003, 612
 35.4.2. Africa, 1985–2003, 612
 35.4.3. Southeast Asia, 1990–2001, 613
35.5. Economic Barriers for Development of Drugs, Vaccines and Vector Control Tools against the “Neglected Diseases”, 613
35.6. Future Perspectives, 615
 Abbreviations and Acronyms, 616
 References, 616

36. The Challenge of Bioterrorism, 619
 Stephen A. Morse
36.1. Introduction, 619
 36.2. Definitions, 619
 36.3. Threat Agents, 619
 36.4. Impact of Biotechnology, 626
 36.4.1. Modification of Threat Agents, 626
 36.4.2. Modified Low Virulence or Nonpathogenic Organisms, 626
 36.4.3. Recreation or In Vitro Synthesis of Viral Pathogens, 627
 36.4.4. Unintended Consequences of Biotechnology, 628
 36.5. Scenarios, 628
 36.6. Responses to Bioterrorism: Laboratory, 628
 36.7. Responses to Bioterrorism: Epidemiology and Surveillance, 630
 36.8. Molecular Epidemiology and Microbial Forensics, 632
 36.9. Basic and Applied Research, 632
 36.10. Limiting Access to Dangerous Pathogens, 633
 36.11. Summary, 634
 Glossary, 634
 References, 634

37. Needs for an Integrative Approach of Epidemics: The Example of Cholera, 639
 R. Piarroux and D. Bompangue
37.1. Introduction, 639
37.2. Vibrio Cholerae and Its Natural Environment, 640
 37.2.1. Vibrio Cholerae, 640
 37.2.2. Biotope of Vibrio Cholerae, 640
 37.2.3. VPIΦ, CTXΦ Bacteriophages and Pathogenic Strains of V cholerae, 641
37.3. Cholera, 641
 37.3.1. Clinical Manifestations, 641
 37.3.2. Guidelines for Collective Management of a Cholera Epidemic, 642
37.4. Man and Cholera Epidemics in the Nineteenth and Twentieth Centuries, 643
37.5. Man, Society, and Cholera at the Beginning of the Twenty-First Century: Our Personal Experience of Cholera Management, 646
 37.5.1. The Cholera Epidemic in Grand Comoro, 646
 37.5.2. Cholera Epidemic in Kasai, 648
 37.5.3. Cholera, Media, and Humanitarian Agencies, 650
37.6. Conclusion, 651
 References, 652