CONTENTS

Preface ix
Contributors xiii
Abbreviations xv

1 Environmentally Benign Oxidants

Giorgio Strukul and Alessandro Scarso

1.1 Introduction 1
1.2 Oxygen (Air) 3
1.3 Alkylhydroperoxides 5
1.4 Hydrogen Peroxide 9
1.5 Conclusions 16
References 17

2 Oxidation Reactions Catalyzed by Transition-Metal-Substituted Zeolites

Mario G. Clerici and Marcelo E. Domine

2.1 Introduction 21
2.2 Synthesis and Characterization of Zeolites 22
2.2.1 Isomorphous Metal Substitution 23
2.2.2 Synthesis of Titanium Silicalite-1 (TS-1) 24
2.2.3 Characterization of Titanium Silicalite-1 (TS-1) 26
2.2.4 Ti-Beta, Synthesis and Characterization 30
2.2.5 Other Ti Zeolites 32
2.2.6 Other Metal Zeolites 33

2.3 Catalytic Properties 34
2.3.1 Hydroxylation of Alkanes 34
2.3.2 Hydroxylation of Aromatic Compounds 40
2.3.3 Oxidation of Olefinic Compounds 47
2.3.4 Oxidation of Alcohol and Ether Compounds 59
2.3.5 Reactions of Carbonyl Compounds 60
2.3.6 Oxidation of N-Compounds 63
2.3.7 Oxidation of S-Compounds 65

2.4 Mechanistic Aspects 66
2.4.1 The Nature of Active Species 66
2.4.2 Hydroxylation 69
2.4.3 Epoxidation 71
2.4.4 Oxidation of Alcohols 72
2.4.5 Ammoximation 73
2.4.6 Decomposition of Hydrogen Peroxide 74
2.4.7 Active Species, Adsorption and Catalytic Activity 74

2.5 Stability of Metal-Substituted Zeolites to Reaction Conditions 77

2.6 Conclusions 78
References 80

3 Selective Catalytic Oxidation over Ordered Nanoporous Metallo-Aluminophosphates 95
Parasuraman Selvam and Ayyamperumal Sakthivel

3.1 Introduction 95
3.2 Synthesis 100
3.2.1 Microporous Aluminophosphates 100
3.2.2 Mesoporous Aluminophosphates 102
3.3 Characterization 103
3.4 Catalytic Properties 106
3.4.1 Oxidation of Hydrocarbons 106
3.4.2 Oxidation of Olefins 110
3.4.3 Oxidation of Alcohols 111
3.4.4 Oxidation of Phenols 113
3.4.5 Ammoximation and Ammoxidation 114
3.4.6 Baeyer–Villiger Oxidation 116
3.4.7 Oxidation of Heterocycles 116
3.5 Mechanistic Aspects 116
3.6 Catalysts Stability 118
3.7 Conclusion 119
References 120
4 Selective Oxidations Catalyzed by Mesoporous Metal Silicates

Oxana A. Kholdeeva

4.1 Introduction

4.2 Synthesis and Characterization
 4.2.1 General Synthetic Approaches
 4.2.2 Characterization Techniques
 4.2.3 Sol-Gel Synthesis of Amorphous Mixed Oxides
 4.2.4 Thermolytic Molecular Precursor Method
 4.2.5 Templated Synthesis of Ordered Metal Silicates
 4.2.6 Postsynthesis Modifications
 4.2.7 Organic–Inorganic Hybrid Materials

4.3 Catalytic Properties
 4.3.1 Oxidation of Alkanes
 4.3.2 Oxidation of Aromatic Compounds
 4.3.3 Oxidation of Olefins
 4.3.4 Oxidation of Alcohols
 4.3.5 Oxidation of Ketones and Aldehydes
 4.3.6 Oxidation of S-compounds
 4.3.7 Oxidation of Amines

4.4 Mechanistic Aspects

4.5 Stability
 4.5.1 Mechanisms of Deactivation
 4.5.2 Solving Problem of Hydrothermal Stability
 4.5.3 Hydrothermally Stable Catalysts: Scope and Limitations

4.6 Conclusions and Outlook

References

5 Liquid Phase Oxidation of Organic Compounds by Supported Metal-Based Catalysts with a Focus on Gold

Cristina Della Pina, Ermelinda Falletta, and Michele Rossi

5.1 Introduction

5.2 Catalyst Preparation and Characterization

5.3 Catalytic Properties
 5.3.1 Oxidation of Hydrocarbons
 5.3.2 Oxidation of Alcohols and Phenols
 5.3.3 Oxidation of Carbohydrates: The Case of Glucose
 5.3.4 Oxidation of Amines and Aminoalcohols
 5.3.5 Oxidative Polymerization of Aniline and Pyrrole

5.4 Reaction Mechanisms

5.5 Catalyst Stability

5.6 Conclusions

References
6 Selective Liquid Phase Oxidations in the Presence of Supported Polyoxometalates
Craig L. Hill and Oxana A. Kholdeeva

6.1 Introduction 263
6.2 Synthesis and Characterization 266
 6.2.1 Choice of POM 266
 6.2.2 Embedding POM into Silica and Other Matrixes 267
 6.2.3 Adsorption on Active Carbon 271
 6.2.4 Electrostatic Attachment 273
 6.2.5 Dative and Covalent Binding 283
6.3 Catalytic Properties 287
 6.3.1 Oxidation of Alkanes 287
 6.3.2 Oxidation of Aromatic Compounds 288
 6.3.3 Oxidation of Olefins 288
 6.3.4 Oxidation of Alcohols 297
 6.3.5 Oxidation of Aldehydes 298
 6.3.6 Co-Oxidation of Alkenes and Aldehydes 299
 6.3.7 Oxidation of S-containing Compounds 301
6.4 Mechanistic Aspects 304
6.5 Stability 307
6.6 Conclusions 309
References 311

7 Selective Oxidations Catalyzed by Supported Metal Complexes
Alexander B. Sorokin

7.1 Introduction 321
7.2 Synthesis and Characterization 323
 7.2.1 General Synthetic Strategies 324
 7.2.2 Metal Porphyrins 329
 7.2.3 Metal Phthalocyanines 331
 7.2.4 Complexes with Other Macrocyclic Ligands 336
 7.2.5 Chiral Complexes 337
7.3 Catalytic Properties and Stability 338
 7.3.1 Oxidation of Alkanes 339
 7.3.2 Oxidation of Olefins 344
 7.3.3 Oxidation of Aromatic Hydrocarbons 352
 7.3.4 Oxidation of Substituted Phenols 353
 7.3.5 Oxidation of Alcohols 356
 7.3.6 Miscellaneous Oxidations 359
7.4 General Remarks on Stability 362
7.5 Conclusion and Perspectives 364
References 365
8 Liquid Phase Oxidation of Organic Compounds by Metal-Organic Frameworks

Young Kyu Hwang, Gérard Férey, U-Hwang Lee, and Jong-San Chang

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Introduction</td>
<td>371</td>
</tr>
<tr>
<td>8.2 Characteristics and Structures</td>
<td>372</td>
</tr>
<tr>
<td>8.2.1 Characteristics</td>
<td>372</td>
</tr>
<tr>
<td>8.2.2 Structures</td>
<td>374</td>
</tr>
<tr>
<td>8.2.3 Syntheses</td>
<td>378</td>
</tr>
<tr>
<td>8.2.4 Active Sites</td>
<td>380</td>
</tr>
<tr>
<td>8.3 Catalytic Properties</td>
<td>388</td>
</tr>
<tr>
<td>8.3.1 Oxidation of Cycloalkanes</td>
<td>388</td>
</tr>
<tr>
<td>8.3.2 Oxidation of Aromatic Compounds</td>
<td>389</td>
</tr>
<tr>
<td>8.3.3 Oxidation of Olefins</td>
<td>393</td>
</tr>
<tr>
<td>8.3.4 Oxidation of Alcohols and Phenols</td>
<td>398</td>
</tr>
<tr>
<td>8.3.5 Oxidation of Sulfides</td>
<td>399</td>
</tr>
<tr>
<td>8.4 Mechanistic Aspects</td>
<td>400</td>
</tr>
<tr>
<td>8.5 Stability</td>
<td>402</td>
</tr>
<tr>
<td>8.5.1 Thermal and Chemical Stability</td>
<td>402</td>
</tr>
<tr>
<td>8.5.2 Leaching of Active Metal Components</td>
<td>404</td>
</tr>
<tr>
<td>8.6 Conclusion</td>
<td>405</td>
</tr>
</tbody>
</table>

9 Heterogeneous Photocatalysis for Selective Oxidations with Molecular Oxygen

Andrea Maldotti, Rossano Amadelli, and Alessandra Molinari

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Introduction</td>
<td>411</td>
</tr>
<tr>
<td>9.2 Catalysts Preparation and Mechanistic Aspects</td>
<td>413</td>
</tr>
<tr>
<td>9.2.1 Titanium Dioxide</td>
<td>413</td>
</tr>
<tr>
<td>9.2.2 Highly Dispersed Oxides</td>
<td>416</td>
</tr>
<tr>
<td>9.2.3 Polyoxotungstates</td>
<td>418</td>
</tr>
<tr>
<td>9.3 Catalytic Properties</td>
<td>422</td>
</tr>
<tr>
<td>9.3.1 Oxidation of Alkanes</td>
<td>422</td>
</tr>
<tr>
<td>9.3.2 Oxidation of Aromatic Compounds</td>
<td>427</td>
</tr>
<tr>
<td>9.3.3 Oxidation of Alcohols</td>
<td>430</td>
</tr>
<tr>
<td>9.3.4 Oxidation of Olefins</td>
<td>436</td>
</tr>
<tr>
<td>9.4 Stability</td>
<td>438</td>
</tr>
<tr>
<td>9.5 Conclusions</td>
<td>443</td>
</tr>
</tbody>
</table>

10 Industrial Applications

Ugo Romano and Marco Ricci

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 The Hydroxylation of Phenol to Hydroquinone and Catechol</td>
<td>451</td>
</tr>
<tr>
<td>10.1.1 The Discovery of TS-1</td>
<td>451</td>
</tr>
</tbody>
</table>