Index

2D FT see two-dimensional Fourier transform
3D see three-dimensional
4F see four focal length
6T see six transistor
absorption properties 110
abstraction layers 206–7
accelerated lifetime testing 177–82
acceptance angle geometry 96–7
acousto-optic deflectors (AOD) 86–7
ACR see amplitude contrast ratio
acrylate polymerization 125–6
adaptive homodyne detection 298–9
ADC see analog to digital converters
additive white Gaussian noise (AWGN) 225, 242, 253, 294
address space limitations 41
alignment measurement method 261–4, 292–3, 297–8
amorphous polyolefin substrates 142–4
amplification 122
amplitude contrast ratio (ACR) 223, 227–8
amplitude model 242–5
amplitude modulation 76–7
amplitude shift keying (ASK) 282–4, 294–6, 303
analog to digital converters (ADC) 79, 81
angle compensation 326–7
angle multiplexing 6
book overlap 35
Bragg effect 32–3
data channel 265
drive architectures 50–4, 56–7
drive components 96–7
holography principles 21, 23, 29–30, 32–3
servo systems 360
testing procedures 153–4
angle-polytopic geometries 45, 51–4, 58–9, 87
angular fractional page interleaving 318–20
angular scheduling of holograms 318
anthologies, definition 274
anti-reflection (AR) coatings
implementation 187, 196
life testing 73
manufacturing processes 133–4, 136, 143–4
optical system configuration 67–8
testing procedures 164–5, 170–1
AOD see acousto-optic deflectors
aperture effects 231–2
aperture multiplexing 38
API see application programming interface
application layers 206–8
application programming interface (API) 207
application-specific integrated circuits (ASIC)
data channel 267–70
research directions 404
Tapestry drive 202–3, 219
AR see anti-reflection
archive drives 403–4
archive testing 178–81
Arrhenius model 177
ASIC see application-specific integrated circuits
ASK see amplitude shift keying
asking servos 47
assembled media specifications 145–8
associative memories 407
asymmetric phase-conjugation 90–4, 396–7, 399
AWGN see additive white Gaussian noise
back-up applications 407
backwards compatibility 7, 10, 12, 219
bar codes 249–50
basic build process 209–14
Index

BD see Blu-ray disks
beam scanners 82–7
acousto-optic deflectors 86–7
galvanometer mirrors 83–4
liquid crystal 86
mechanical 84–5
microelectromechanical systems 85–6
beam waist 397
BER see bit error rate
biased linear channel models 238–41
bidirectional scattering distribution function (BSDF) 162–4, 175–6
bidirectional transmission distribution function (BTDF) 293
birefringence 111, 144, 147, 148
bit dispersal method 251–2
bit error rate (BER)
data channel 221, 223, 226–35, 247, 253–4, 267–72, 283, 295, 301
drive architectures 59–61
holographic read only memory 395
servo systems 340, 344
bitwise holographic storage 3
Blu-ray disks (BD) 1–2, 7, 10–13, 17–18
bonding materials and systems 135, 137–40
book overlap 35–7, 99–100
bookcases, definition 274–5
books, definition 274
border regions 250
Born approximation 28–9
Bragg-based multiplexing strategies 31, 32–4
Bragg diffraction 24–5, 28–31, 39
Bragg mismatch 343, 346–7, 349–51, 354–7, 361–2, 368, 377
Bragg selectivity 32–5, 38, 50, 318–19
BSDF see bidirectional scattering distribution function
BTDF see bidirectional transmission distribution function
bubble defects 147–8, 214–16
build process 209–14
bulk index measurements 162

cameras
data channel 232–3
fill factor 232–3
holographic read only memory 378, 380–1, 383, 392, 395
implementation 189, 194–5, 198, 201, 209
cartridging 141–2
cationic epoxide type polymerization 125
cationic ring-opening polymerization (CROP) 116
cavity stability 67–8
CD see compact disks
CDS see correlated double sampling
center plug sealing 140
centroid calculation 254
centroid shift errors 361–2
channel identification 237–41
channel signal to noise ratio (cSNR) 225–6
chapters, definition 274
CIRC see cross-interleaved Reed–Solomon code
circuit boards 202–5
circularly symmetric complex Gaussian noise 238, 242
CMOS see complementary metal-oxide semiconductor
c coaxial architecture 45–8
coefficient of thermal expansion (CTE) holographic read only memory 376–7, 399
research directions 404
servo system 349, 351
coherent addition 49
coherent detection techniques 281–4
see also homodyne detection
coherent noise linearization 293–4
collimating lenses 67–8
collinear architecture 45–6, 48–9
command translators 208
compact disks (CD) 1–2, 4, 7, 11–13
drive architectures 47
read only memory 373
testing procedures 178–9
complementary metal-oxide semiconductor (CMOS) sensors 79–81
holographic read only memory 378, 380–1, 383, 392, 395
polytopic filters 97
complexity 38–9
conical reference beams 390–1
conjugate data bands 30
conjugate read-out 375
consumer applications 11–14
content addressable storage 406–7
contrast ratio (CR) 19–20, 69–70, 73–4, 76, 386–7
cooling systems 200–1
correlated double sampling (CDS) 79
correlation multiplexing 31, 38–40, 48–9
covariance matrices 261–2
CR see contrast ratio
CRC see cyclic redundancy checks
CROP see cationic ring-opening polymerization
cross-correlation matrices 288–9, 292, 359
cross-correlations in k-space 27–8
cross-interleaved Reed–Solomon code (CIRC) 179
crosstalk noise
data channel 260
 drive components 75, 99–100
 holographic read only memory 398
 multiplexing strategies 31–3, 35–6
 servo systems 342, 345
writing data 322
cSNR see channel signal to noise ratio
CTE see coefficients of thermal expansion
cure neighbors 329–30, 332–5
cure systems 199–200
cyclic redundancy checks (CRC) 203–5, 249–50, 268
dark band phenomena 314
dark noise variance 233–4
data bands 30
data channel 247–79
 alignment measurement method 261–4, 292–3, 297–8
 amplitude model 242–5
 border regions 250
 centroid calculation 254
 channel identification 237–41
 comparison with real data 235
 data interleaving 250–2
 data page formatting 248–52
 fixed-point simulation 268–72
 headers/bar codes 249–50
 holographic read only memory 381–3
 homodyne detection 281–99
 implementation 227–37
 intensity metrics 255
 logical formats 272–6
 metrics 253–6
 modeling 221–45
 modulation 252
 oversampled detection 256–65, 288
 page level error correction 265–8
 parameter variations 227–37
 phase quadrature holographic multiplexing 300–4
 physical model 222–37
 quality metrics 225–7
 resampling process 257–63, 292–3
 research directions 281–305
 reserved blocks 250, 302–3
 signal to noise ratio 250–6, 259–60, 263–5, 267–72
 signal to scatter ratio 255–6
 simple channel models 241–5
 sync marks 249
 data interleaving 250–2, 318–20
 data page 248–52, 381, 385
 data paths 194–6
 data recovery
data channel 302
 drive architectures 52–4, 57–8, 60–1
 drive control 366–8
 holographic read only memory 381
 holography principles 23–4, 37
 implementation 196–9, 203–5, 214–19
 photopolymer recording materials 130–1
 research directions 407
 servo systems 355–6
 testing procedures 180–1
 data security 405
data-spot focus 212
DBR see distributed Bragg reflectors
defect detection 174, 214–16
defect functions 147–8
DEL see drive emulation layers
demodulation 262–3
design for manufacturing (DFM) 209
design verification test (DVT) 187–8, 201, 209
development life cycles 185–7
DFB see distributed feedback
DFM see design for manufacturing
DIC see differential interference contrast
dielectric constants 26–8
differential interference contrast (DIC) microscopy 165
diffraction efficiency
 holography principles 20, 25, 29
 recording materials 154–6
 servo systems 342, 355, 357
 writing data 317, 323–4
diffusive hologram formation 127
digital signal processors (DSP) 202
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>digital versatile disks (DVD)</td>
<td>1–2, 4, 7, 11–13</td>
</tr>
<tr>
<td>drive architectures</td>
<td>47</td>
</tr>
<tr>
<td>historical development</td>
<td>17–18</td>
</tr>
<tr>
<td>read only memory</td>
<td>373</td>
</tr>
<tr>
<td>testing procedures</td>
<td>178–9</td>
</tr>
<tr>
<td>dimensional stability</td>
<td>107–9</td>
</tr>
<tr>
<td>formatting media</td>
<td>330</td>
</tr>
<tr>
<td>photopolymer recording materials</td>
<td>116, 126</td>
</tr>
<tr>
<td>testing procedures</td>
<td>156–60, 176</td>
</tr>
<tr>
<td>writing data</td>
<td>317–18</td>
</tr>
<tr>
<td>diode arrays</td>
<td>82</td>
</tr>
<tr>
<td>disaster recovery</td>
<td>407</td>
</tr>
<tr>
<td>disk archive testing</td>
<td>178–81</td>
</tr>
<tr>
<td>disk structure</td>
<td>133–4</td>
</tr>
<tr>
<td>distortion</td>
<td>313–14</td>
</tr>
<tr>
<td>distributed Bragg reflectors (DBR)</td>
<td>404</td>
</tr>
<tr>
<td>distributed feedback (DFB)</td>
<td>404</td>
</tr>
<tr>
<td>dither align</td>
<td>358–9</td>
</tr>
<tr>
<td>drive architecture for interchange</td>
<td>212–14</td>
</tr>
<tr>
<td>drive architectures</td>
<td>45–63</td>
</tr>
<tr>
<td>angle-polytopic geometries</td>
<td>45, 51–4, 58–9</td>
</tr>
<tr>
<td>collinear/coaxial architecture</td>
<td>45–9</td>
</tr>
<tr>
<td>implementation</td>
<td>188–90</td>
</tr>
<tr>
<td>InPhase drive architecture</td>
<td>49–54</td>
</tr>
<tr>
<td>monocular architecture</td>
<td>54–61</td>
</tr>
<tr>
<td>phase-conjugate architecture</td>
<td>51–4, 58</td>
</tr>
<tr>
<td>technology roadmap</td>
<td>54–5</td>
</tr>
<tr>
<td>drive components</td>
<td>65–103</td>
</tr>
<tr>
<td>beam scanners</td>
<td>82–7</td>
</tr>
<tr>
<td>image sensors</td>
<td>79–82</td>
</tr>
<tr>
<td>isoplanatic lenses</td>
<td>87–94</td>
</tr>
<tr>
<td>laser systems</td>
<td>65–75</td>
</tr>
<tr>
<td>polytopic filters</td>
<td>65, 94–100</td>
</tr>
<tr>
<td>spatial light modulators</td>
<td>65, 75–8</td>
</tr>
<tr>
<td>drive control</td>
<td>363–70</td>
</tr>
<tr>
<td>data recovery</td>
<td>366–8</td>
</tr>
<tr>
<td>interchange operation</td>
<td>368–9</td>
</tr>
<tr>
<td>locating page zero</td>
<td>369–70</td>
</tr>
<tr>
<td>writing data</td>
<td>363–6</td>
</tr>
<tr>
<td>drive emulation layers (DEL)</td>
<td>275</td>
</tr>
<tr>
<td>drive managers</td>
<td>208</td>
</tr>
<tr>
<td>drive mechanisms</td>
<td>378–9</td>
</tr>
<tr>
<td>DSP see digital signal processors</td>
<td></td>
</tr>
<tr>
<td>DVD see digital versatile disks</td>
<td></td>
</tr>
<tr>
<td>DVT see design verification test</td>
<td></td>
</tr>
<tr>
<td>dynamic range</td>
<td>386–8, 398</td>
</tr>
<tr>
<td>dynamic spherical aberration compensation</td>
<td>1</td>
</tr>
<tr>
<td>ECC see error correction code</td>
<td></td>
</tr>
<tr>
<td>ECLD see external cavity laser diodes</td>
<td></td>
</tr>
<tr>
<td>edge sealing</td>
<td>140</td>
</tr>
<tr>
<td>edge wedge testers</td>
<td>172–3, 181–2</td>
</tr>
<tr>
<td>electronic components</td>
<td>69, 202–5, 380, 382</td>
</tr>
<tr>
<td>electronic noise variance</td>
<td>233–4, 236</td>
</tr>
<tr>
<td>encryption</td>
<td>40, 405</td>
</tr>
<tr>
<td>engineering verification test (EVT)</td>
<td>187, 201, 209</td>
</tr>
<tr>
<td>error correction codes (ECC)</td>
<td></td>
</tr>
<tr>
<td>data channel</td>
<td>221, 247, 265–8, 272–6</td>
</tr>
<tr>
<td>Tapestry drive</td>
<td>217–18</td>
</tr>
<tr>
<td>errors</td>
<td></td>
</tr>
<tr>
<td>data channel</td>
<td>221, 223–7, 259–60, 265–8, 293</td>
</tr>
<tr>
<td>disk archive testing</td>
<td>178–9</td>
</tr>
<tr>
<td>servo systems</td>
<td>360–1</td>
</tr>
<tr>
<td>see also bit error rate</td>
<td></td>
</tr>
<tr>
<td>EVT see engineering verification test</td>
<td></td>
</tr>
<tr>
<td>expansion see dimensional stability</td>
<td></td>
</tr>
<tr>
<td>exposure schedules</td>
<td>217</td>
</tr>
<tr>
<td>external cavity laser diodes (ECLD)</td>
<td>65–75</td>
</tr>
<tr>
<td>electronic components</td>
<td>69</td>
</tr>
<tr>
<td>future developments</td>
<td>73–5</td>
</tr>
<tr>
<td>holographic read only memory</td>
<td>394</td>
</tr>
<tr>
<td>implementation</td>
<td>189, 209</td>
</tr>
<tr>
<td>laser mode servo</td>
<td>73</td>
</tr>
<tr>
<td>lifetime testing</td>
<td>73, 75</td>
</tr>
<tr>
<td>mode sensors</td>
<td>69–70</td>
</tr>
<tr>
<td>optical power and tuning range</td>
<td>71–2</td>
</tr>
<tr>
<td>optical system configurations</td>
<td>67–8</td>
</tr>
<tr>
<td>power sensors</td>
<td>70</td>
</tr>
<tr>
<td>research directions</td>
<td>404</td>
</tr>
<tr>
<td>single/multi-mode operation</td>
<td>72–3</td>
</tr>
<tr>
<td>Tapestry drive specification</td>
<td>66–7</td>
</tr>
<tr>
<td>wavelength sensors</td>
<td>70–1</td>
</tr>
<tr>
<td>extremely isoplanatic lenses</td>
<td>88–90, 92–4</td>
</tr>
<tr>
<td>Eyring equation</td>
<td>177</td>
</tr>
<tr>
<td>Fabry–Perot narrowband filters</td>
<td>98–100</td>
</tr>
<tr>
<td>fast Fourier transform (FFT)</td>
<td>69–70</td>
</tr>
<tr>
<td>feedback systems</td>
<td>360</td>
</tr>
<tr>
<td>ferroelectric liquid crystal (FLC)</td>
<td>76, 285, 298</td>
</tr>
<tr>
<td>FFT see fast Fourier transform</td>
<td></td>
</tr>
<tr>
<td>field programmable gate arrays (FPGA)</td>
<td></td>
</tr>
<tr>
<td>data channel</td>
<td>267, 269–70</td>
</tr>
<tr>
<td>drive components</td>
<td>67, 69–70</td>
</tr>
<tr>
<td>Tapestry drive</td>
<td>202, 204–7, 209</td>
</tr>
<tr>
<td>field replaceable units (FRU)</td>
<td>67, 69, 190–2, 209–12</td>
</tr>
<tr>
<td>fill factor</td>
<td>230–3</td>
</tr>
<tr>
<td>firmware</td>
<td>205–9</td>
</tr>
</tbody>
</table>
fixed disk applications 407
fixed pattern noise (FPN) 79, 80, 204
fixed-point simulation 268–72
flash drives 13
FLASH memory slots 404
FLC see ferroelectric liquid crystal
flow dynamics 135–6
format files 335
format generations 276
formatting media 307, 329–35
four focal length (4F) imaging systems 53, 94–5
Fourier plane recording geometries 21
drive architectures 47, 58
multiplexing strategies 34–5, 37–8
volume holograms 28–31
Fourier transform (FT) lenses 309–11, 339, 354, 375
FPGA see field programmable gate array
FPN see fixed pattern noise
fractal multiplexing 37–8
frequency plane aperture 231–2
frequency shift keying (FSK) 282–3
fringe visibility 189–90
FRU see field replaceable units
FSK see frequency shift keying
gallium nitride laser diodes 7
galvanometers 83–4
implementation 191–2, 196–9, 213
monocular architecture 52–4, 58–9
writing data 326–7
golden galvo tool 213
gratings 19–20
drive architectures 57–8
implementation 189–90
testing procedures 153, 156
gray scale encoding 252, 292, 298–9
hard-decision codes 179
hard disks 10, 13, 407
hardware application layers 206–7
hardware description languages (HDL) 269
hardware implementation 264
hardware tasks 208–9
HD see high definition
HDL see hardware description languages
HDS see holographic data storage
headers/bar codes 249–50
high definition (HD) formats 9
histogram signal to noise ratio (hSNR) 225–6
HMT see holographic material testers
hologram formation through diffusion 127
holographic data recording scales 18
holographic material testers (HMT) 153, 157–8
holographic read only memory
(HROM) 373–401
asymmetric phase conjugation 396–7, 399
cameras 380–1, 383, 392, 395
cost estimates 398
data channel 235, 381–3
drive architectures 45, 54, 58
drive components 78–9, 81–2, 84–5, 87
drive mechanisms 378–9
electronic components 380, 382
experimental results 395–6
historical development 7, 12, 373–5
margin tester system 394–5
mirror actuators 378–80
optics and optomechanics 377–8, 400
polytopic filters 397–8
power consumption 381, 384
product roadmap 399
reader design 377–83
recording materials 383–5
replicating disk media 390–2
research directions 399–400, 404, 407–8
solid state memory 373–4, 399–400, 404, 407–8
sub-mastering systems 387, 392–3
system design 375–7
Tapestry drive 220
two-step mastering 385–90, 393–4
holographic storage densities 41
holographic system tolerances
algorithms 353–63
dither align 358–9
experimental and modeled
tolerances 343–50
servo systems 339–63
thermal and pitch compensation 354–7
tolerance analysis 351–3
wobble servos 344, 360–3
holography 17–43
address space limitations 41
data storage 22–4
historical development 18–19
k-space formalism 26–31
holography (Continued)
Kogelnik’s coupled wave equations 25–6
multiplexing strategies 21, 23, 29–41
principles 19–22
recording geometries 21–2, 25–6, 28–9
volume holograms 24–31
home servers 407
homodyne detection 1, 281–99
adaptive 298–9
architecture 298–9
cohort noise linearization 293–4
hologram alignment 297–8
local oscillators 282, 284–5, 287, 297–8
phase difference estimation 287–90
phase sensitivity 296–7
quadrature images 284, 285–93
research directions 405, 407
simulation results 294–6
host matrix systems 123–4
HROM see holographic read only memory
hSNR see histogram signal to noise ratio
HUB boards 203
hubs 136–9
humidity changes
drive control 366
laser components 65–6
photopolymer recording materials 130, 132
recording materials 109
testing procedures 160, 177–8, 181–2
image plane recording geometries 21, 34–5
image sensors 79–82
implementation 6
basic build process 209–14
cooling systems 200–1
cure system and toaster 199–200
data channel 227–37, 264
data paths 194–6
defect detection 214–16
drive alignment for interchange 212–14
drive architectures 188–90
electronics 202–5
field replaceable units 190–2
firmware 205–9
galvanometer shutters 191–2
integrated vibration isolation/sway
space 201–2
loaders 200, 213–14
mechanical 200–2
monocular architecture 56–8
optical 188–200
optical dividers 192–3
product development life cycles 185–7
reference paths 196–9
Tapestry drive 185–220
transfer rate models 216–19
in situ grating dynamics testing 153
index change 26–7, 105–7
holographic read only memory 389–90, 398
photopolymer recording materials 130, 132
research directions 404
testing procedures 155–8, 160, 162, 168–71,
176, 179
writing data 306, 315–16, 327–9
infrared (IR) spectrometry 164–5
inner seals 136–9
InPhase drive architecture 4–7, 49–54
integrated vibration isolation 201–2
intensity metrics 255
inter-symbol interference (ISI) 201–2, 259, 282, 285, 293, 304
interchange operation 368–9
interface processors (IOP) 203, 208–9
interface tasks 208
interference filters 97–8
interferometry 170–1, 180
interleaved data 250–2, 318–20
IOP see interface processors
IR see infrared
ISI see inter-symbol interference
isoplanatic lenses 87–94
characteristics 88
design considerations 92–4
extreme 88–90, 92–4
holographic read only memory 375, 378
phase-conjugation 90–4
Tapestry drive 196
k-space centroid shift errors 361–2
k-space formalism 26–31
Kogelnik’s coupled wave equations 25–6, 155
laser beam recorders (LBR) 136
laser mode servo 73
laser systems see external cavity laser diodes
LBA see logical block addresses
LBR see laser beam recorders
LC see liquid crystal
LDPC see low density parity checks
LED see light emitting diodes
LFSR see linear feedback shift register
library maps (LM) 275
life testing 107, 177–82
lifetime testing 73, 75
light drop 228–9
light emitting diodes (LED) 70
linear channel models 237–41
linear feedback shift register (LFSR) 252
liquid crystal (LC) beam scanners 86
liquid crystal (LC) doped polymers 116
liquid crystal (LC) half wave-plates 193
lithium niobate 111–13
LLR see log likelihood ratio
LM see library maps
loaders 200, 213–14
local oscillators 282, 284–5, 287, 297–8
locating page zero 369–70
log likelihood ratio (LLR) 265–7
logical block addresses (LBA) 275–6
logical formats 272–6
long term storage see professional archival storage
low density parity checks (LDPC)
data channel 247–8, 250–1, 265–8
holographic read only memory 383
life testing 179
monocular architecture 59–61
magnetic tape 9, 11
magneto-optical drives 9–10
magneto-optical modulators 76
manufacturability 111
manufacturing processes
anti-reflection coatings 133–4, 136, 143–4
assembled media specifications 145–8
bonding materials and systems 135, 137–40
cartridging 141–2
disk structure 133–4
edge and center plug sealing 140
flow dynamics 135–6
hubs and inner seals 136–9
molding of substrates 136, 142–4
performance characteristics 147–8
recording layer 145
recording materials 133–49
Tapestry media specification 133–4, 142–8
margin tester system 394–5
mass transport 121–2
mastering
replicating disk media 390–2
sub-mastering systems 387, 392–3
system architecture 393–4
two-step 385–90, 393–4
material testers 152–3
mechanical beam scanners 84–5
mechanical filtering 96–7
mechanical implementation 200–2
media see recording materials
media consumption 308–20
angular fractional page interleaving 318–20
angular scheduling of holograms 318
Fourier transform lens design 309–11
minimizing hologram size 308–9
phase masks 311–14
short stacking 314–16
skip sorting 306, 316–18
media dynamic range 386–8, 398
media positioning tolerances 344
media scatter testers (MST) 162–4, 175–6
media termination tests 176
media timing tests 176
media usage model 127–30
microelectromechanical systems (MEM) 76–7, 85–6
micro-holographic storage see bitwise holographic storage
minimum mean-squared error (MMSE) 259, 293, 295
mirror actuators 378–80
MMSE see minimum mean-squared error
mode sensors 69–70
modulation depth see contrast ratio
modulation technologies 76–7, 252
molding of substrates 136, 142–4
momentum-based multiplexing strategies 31, 34–8
monocular architecture 12, 54–61, 404
monomer photoreactive systems 124–6
MST see media scatter testers
multi-layer disk recording 1–2, 17–18
multi-mode operation 72–3
multiplexing strategies 6
Bragg-based techniques 31, 32–4
combination techniques 40–1
correlation-based techniques 31, 38–40
data channel 300–4
drive architectures 50–4, 56–7
drive components 65
holography principles 21, 23, 29–41
momentum-based techniques 31, 34–8
multiplexing strategies (Continued)
research directions 405
servo systems 339, 355–7, 360
see also angle multiplexing; polytopic
multiplexing
multi-session recording 330–1

NA see numerical aperture
nano-imprint lithography 57
narrowband filters 98–100
near field recording 2
near online storage 405–6
network technologies 13–14
noise
data channel 225, 232–4, 237–8, 242–5, 253, 260, 262, 282, 293–4
drive components 75, 99–100
formatting media 330
holographic read only memory 398
holography principles 31–3
implementation 204
multi-layer disk recording 1
servo systems 342, 345, 351–3
writing data 322
see also signal to noise ratio
nonlinear channel models 238–41
nonpolarizing beam splitters (NPBS) 284
nonvolatility 121–2
normalized root mean square error
(NRMSE) 223–7, 230, 235–41
NPBS see nonpolarizing beam splitters
NRMSE see normalized root mean square error
numerical aperture (NA) lenses
data channel 256, 284
drive architectures 45–9, 53, 56, 58
drive components 65, 68
holographic read only memory 375, 388
implementation 194–5
servo systems 339
signal beams 29–30, 36
writing data 308–9
Nyquist area 95–6, 224, 231, 243, 342–3
Nyquist factor 308–9
Nyquist frequency 257–8, 260, 296–7
obliquity correction 83
OMA see optical mechanical assemblies
optical data encryption 40
optical data storage 1–3, 4, 9–13, 17–18
optical dividers 192–3
optical implementation 188–200
optical mechanical assemblies (OMA) 187, 188–9, 191–2, 200–1, 209–11
optical noise variance 232, 236
optical power 71–2
optical quality 111
optical scrambling 405
optical system configurations 67–8
organic photorefractive materials 113
orthogonal codes 33
oversampled detection 256–65, 288
page level error correction 265–8
page-wise holographic storage 3, 22
page zero location 369–70
pages, definition 274
partial response maximum likelihood
(PRML) 304
particle defects 147–8, 214
partition descriptors (PD) 275
partitions, definition 275
PBS see polarizing beam splitters
PD see partition descriptors
performance characteristics 147–8
peristrophic multiplexing 34
phase-code multiplexing 33
phase-conjugate architecture 51–4, 58
drive components 87
isoplanatic lenses 90–4
read-out 37
phase contrast microscopy 165
phase masks 311–14
phase modulation 76–7
phase quadrature holographic
multiplexing 300–4, 405
phase sensitivity 296–7
phase shift keying (PSK) 282–3, 286, 292, 294–6, 301, 303–4
photoaddressable systems 113–14
photochromic systems 114–15
photoinitiators 126–7, 322–3
photopolymer recording materials 115–16, 121–32
characteristics and properties 121–2
design 123–7
historical development 4, 6, 105–6
hologram formation through diffusion 127
holographic recording 127–30
host matrix systems 123–4
media usage model 127–30
recording materials (Continued)
 media consumption 308–20
 optical quality 111
 photoaddressable systems 113–14
 photochromic systems 114–15
 photorefractive materials 111–13
 photosensitivity 106, 110, 113
 properties and characteristics 106–8
 requirements for HDS 107–11
 research directions 403–4
 scatter 110
 scheduling 320–9
 testing procedures 151–83
 see also data recovery; photopolymer
 recording materials; writing data
 recursive least squares (RLS) filters 360–1
 redundant array of independent disks
 (RAID) 10, 405, 407
 Reed–Solomon product codes (RS-PC) 179, 248–50, 274–2
 reference 3D pupils 30
 reference beam angle tolerances 344, 349–50
 reference data storage 406
 reference paths 196–9
 reflection geometries 376–7
 reflective recording geometries 21–2, 25–6
 refractive index modulations see index change
 regulatory compliance 8–9
 relative permittivity 26–8
 relay lenses 95, 195, 388
 replicating disk media 390–2
 replication from master 385–90, 394
 resampling process 257–63, 292–3
 research edge wedge testers 172–3, 181–2
 reserved blocks 250, 302–3
 rewritable applications 113, 130–2
 RF see radio-frequency
 RFID see radio-frequency identification
 RLS see recursive least squares
 ROM see read only memory
 root mean square (RMS) wavefront
 error 88–90, 92, 94
 root square sum (RSS) method 351, 353
 RS-PC see Reed–Solomon product code
 RTOS see real time operating systems
 scanning index microscopy 165–70
 scanning transmission microscopy 166–7
 scatter 110
 implementation 190–1, 214–16
 servo systems 341, 344–5
 testers 162–4, 175–6
 scheduling 320–9
 angle compensation 326–7
 pre-compensation process 325–7
 pre-cure calibration 322–5
 principles 320–2
 temperature changes 327–9
 wavelength compensation 325–6
 scratches 147–8
 seal testing 181–2
 sealing processes 136–40
 sensitivity
 data channel 283
 drive components 81
 optical data storage 2
 photopolymer recording materials 130, 132
 testing procedures 176, 178
 servo marks 47
 servo patterns 57
 servo systems 339–63
 algorithms 353–63
 dither align 358–9
 experimental and modeled
 tolerances 343–50
 holographic system tolerances 339–63
 thermal and pitch compensation 354–7
 tolerance analysis 351–3
 wobble servos 344, 360–3
 Shannon–Hartley theorem 304
 shelf life testing 177–8
 shift multiplexing 33–4, 38, 47
 shift selectivity curves 39–40
 short stacking 314–16
 shrinkage see dimensional stability
 signal 3D pupils 30
 signal to noise ratio (SNR) 6, 12
 drive architectures 49–51, 59–61
 drive components 66, 81, 89, 95–6
 drive control 368–9
 holographic read only memory 381, 395–6
 holography principles 32, 37, 39
 implementation 190–1, 194, 196, 201–2, 219
 photopolymer recording materials 129, 131
 recording materials 111
 research directions 404
 servo systems 340–53
testing procedures 163–4, 176, 180–1
signal to scatter ratio (SSR) 190–1, 255–6, 320–2, 341–2
simple channel models 241–5
single-mode operation 72–3
six transistor (6T) cells 79
ski jump deviations 144, 146–8
skip sorting 306, 316–18
SLM see spatial light modulators
SNR see signal to noise ratio
soft-decision codes 179
solid state memory (SSM)
 historical development 7, 12
 holographic read only memory 373–4, 399–400
 research directions 404–5, 407–8
spatial light modulators (SLM) 21–2, 36–7
available technologies 76–7
consumer SLM specification 78
drive architectures 46–8, 52–3, 58, 61
drive components 65, 75–8, 98
fill factor 230–3
holographic read only memory 375, 392–3
implementation 189, 194–5, 198, 201, 203–4, 209
nonuniformity 229–30
research directions 403–4, 406–7
servo systems 342–3, 354–6
Tapestry drive specification 77–8
writing data 306, 311
spectrophotometry/spectrometry 164–5
spot diagrams 60
SSM see solid state memory
SSR see signal to scatter ratio
storage densities 41, 106
storage lenses 195–6, 212–13, 310
sub-mastering systems 387, 392–3
substrate molding 136, 142–4
super resolution recording 2
sway space 201–2
switchable retarders 285
symmetric phase-conjugation 90–3
sync marks 249
system abstraction layers 206–7
tangential shifts 343, 346–8
temperature changes 65–6
drive control 366
implementation 197–8
photopolymer recording materials 130, 132
recording materials 109
scheduling 327–9
servo systems 342, 349–50, 354–7
testing procedures 160, 177–8
writing data 327–9
termination tests 176
testing procedures
bulk index measurements 162
defect detection 174
digital testing of media properties 175–6
interferometry 170–1, 180
measurements and analysis 154–7
parameters and properties 151–2
plane wave material testing 151–61
recording materials 151–83
research edge wedge testers 172–3, 181–2
scanning index microscopy 165–70
scatter testers 162–4, 175–6
spectrophotometry/spectrometry 164–5
thermal and pitch compensation 354–7
thin film coatings 98–100
three-dimensional (3D) recording 17–18
tilt tolerances 348–9
timing tests 176
toaster cure systems 199–200
tolerances see holographic system tolerances
TPMT see two plane wave material testers
transfer rates 23
drive components 75
formatting media 334
implementation 216–19
manufacturing processes 148
optical data storage 2
recording materials 106–7
transmission geometries 376–7
transmissive recording geometries 21–2
tuning range 71–2
Turbo codes 265–6
two-chemistry approach 116, 123
two-dimensional Fourier transform (2D FT) 222, 224
two-photon recording 2
two plane wave material testers (TPMT) 157–61
two-step mastering 385–90
unrecoverable errors 178–9

VCO see voltage controlled oscillators

vibration isolation 201–2

vignetting 344–6

Viterbi detection 304

voltage controlled oscillators (VCO) 86–7

volume holograms 24–31

Walsh–Hadamard code 33

wave format 332–3

wave holographic cycles 130–1

wavelength compensation 325–6

wavelength multiplexing 33

wavelength sensors 70–1

wedge angle 172–3, 181–2

Wiener–Khinchin theorem 27

wobble servos 299, 344, 360–3

write once read many (WORM) media 8–9, 10, 404

write process tasks 208–9

write speeds 331, 363, 366

write transfer rate models 217–18

writing data 307–29

angular fractional page interleaving 318–20

angular scheduling of holograms 318

drive architectures 52–3

drive control 363–6

Fourier transform lens design 309–11

holography principles 23

implementation 196, 199–200, 203–4, 216–19

media consumption 308–20

minimizing hologram size 308–9

phase masks 311–14

pre-compensation process 325–7

pre-cure calibration 322–5

scheduling 320–9

short stacking 314–16

skip sorting 306, 316–18

temperature changes 327–9

Zernike polynomial coefficients 88–9, 94

ZeroWave process 111, 135, 137–40