Contents

Preface xvii
Acknowledgments xxi
List of Fundamental Constants xxiii

1 Ingredients
1.1 Introduction 1
1.2 Energy Levels and Bands in Solids 5
1.3 Spontaneous and Stimulated Transitions: The Creation of Light 7
1.4 Transverse Confinement of Carriers and Photons in Diode Lasers: The Double Heterostructure 10
1.5 Semiconductor Materials for Diode Lasers 13
1.6 Epitaxial Growth Technology 20
1.7 Lateral Confinement of Current, Carriers, and Photons for Practical Lasers 24
1.8 Practical Laser Examples 31
 References 39
 Reading List 40
 Problems 40

2 A Phenomenological Approach to Diode Lasers 45
2.1 Introduction 45
2.2 Carrier Generation and Recombination in Active Regions 46
3 Mirrors and Resonators for Diode Lasers

3.1 Introduction 91
3.2 Scattering Theory 92
3.3 S and T Matrices for Some Common Elements 95
 3.3.1 The Dielectric Interface 96
 3.3.2 Transmission Line with No Discontinuities 98
 3.3.3 Dielectric Segment and the Fabry–Perot Etalon 100
 3.3.4 S-Parameter Computation Using Mason’s Rule 104
 3.3.5 Fabry–Perot Laser 105
3.4 Three- and Four-Mirror Laser Cavities 107
 3.4.1 Three-Mirror Lasers 107
 3.4.2 Four-Mirror Lasers 111
3.5 Gratings 113
 3.5.1 Introduction 113
 3.5.2 Transmission Matrix Theory of Gratings 115
 3.5.3 Effective Mirror Model for Gratings 121
3.6 Lasers Based on DBR Mirrors
 3.6.1 Introduction
 3.6.2 Threshold Gain and Power Out
 3.6.3 Mode Selection in DBR-Based Lasers
 3.6.4 VCSEL Design
 3.6.5 In-Plane DBR Lasers and Tunability
 3.6.6 Mode Suppression Ratio in DBR Laser
3.7 DFB Lasers
 3.7.1 Introduction
 3.7.2 Calculation of the Threshold Gains and Wavelengths
 3.7.3 On Mode Suppression in DFB Lasers
References
Reading List
Problems

4 Gain and Current Relations
 4.1 Introduction
 4.2 Radiative Transitions
 4.2.1 Basic Definitions and Fundamental Relationships
 4.2.2 Fundamental Description of the Radiative Transition Rate
 4.2.3 Transition Matrix Element
 4.2.4 Reduced Density of States
 4.2.5 Correspondence with Einstein’s Stimulated Rate Constant
 4.3 Optical Gain
 4.3.1 General Expression for Gain
 4.3.2 Linshape Broadening
 4.3.3 General Features of the Gain Spectrum
 4.3.4 Many-Body Effects
 4.3.5 Polarization and Piezoelectricity
 4.4 Spontaneous Emission
 4.4.1 Single-Mode Spontaneous Emission Rate
 4.4.2 Total Spontaneous Emission Rate
 4.4.3 Spontaneous Emission Factor
 4.4.4 Purcell Effect
4.5 Nonradiative Transitions 199
 4.5.1 Defect and Impurity Recombination 199
 4.5.2 Surface and Interface Recombination 202
 4.5.3 Auger Recombination 211

4.6 Active Materials and Their Characteristics 218
 4.6.1 Strained Materials and Doped Materials 218
 4.6.2 Gain Spectra of Common Active Materials 220
 4.6.3 Gain versus Carrier Density 223
 4.6.4 Spontaneous Emission Spectra and Current versus Carrier Density 227
 4.6.5 Gain versus Current Density 229
 4.6.6 Experimental Gain Curves 233
 4.6.7 Dependence on Well Width, Doping, and Temperature 234

References 238
Reading List 240
Problems 240

5 Dynamic Effects 247
 5.1 Introduction 247
 5.2 Review of Chapter 2 248
 5.2.1 The Rate Equations 249
 5.2.2 Steady-State Solutions 250
 Case (i): Well Below Threshold 251
 Case (ii): Above Threshold 252
 Case (iii): Below and Above Threshold 253
 5.2.3 Steady-State Multimode Solutions 255
 5.3 Differential Analysis of the Rate Equations 257
 5.3.1 Small-Signal Frequency Response 261
 5.3.2 Small-Signal Transient Response 266
 5.3.3 Small-Signal FM Response or Frequency Chirping 270
 5.4 Large-Signal Analysis 276
 5.4.1 Large-Signal Modulation: Numerical Analysis of the Multimode Rate Equations 277
 5.4.2 Mode Locking 279
 5.4.3 Turn-On Delay 283
 5.4.4 Large-Signal Frequency Chirping 286
5.5 Relative Intensity Noise and Linewidth 288
 5.5.1 General Definition of RIN and the Spectral Density Function 288
 5.5.2 The Schawlow–Townes Linewidth 292
 5.5.3 The Langevin Approach 294
 5.5.4 Langevin Noise Spectral Densities and RIN 295
 5.5.5 Frequency Noise 301
 5.5.6 Linewidth 303

5.6 Carrier Transport Effects 308

5.7 Feedback Effects and Injection Locking 311
 5.7.1 Optical Feedback Effects—Static Characteristics 311
 5.7.2 Injection Locking—Static Characteristics 317
 5.7.3 Injection and Feedback Dynamic Characteristics and Stability 320
 5.7.4 Feedback Effects on Laser Linewidth 321

References 328
Reading List 329
Problems 329

6 Perturbation, Coupled-Mode Theory, Modal Excitations, and Applications 335

6.1 Introduction 335
6.2 Guided-Mode Power and Effective Width 336
6.3 Perturbation Theory 339
6.4 Coupled-Mode Theory: Two-Mode Coupling 342
 6.4.1 Contradirectional Coupling: Gratings 342
 6.4.2 DFB Lasers 353
 6.4.3 Codirectional Coupling: Directional Couplers 356
 6.4.4 Codirectional Coupler Filters and Electro-optic Switches 370
6.5 Modal Excitation 376
6.6 Two Mode Interference and Multimode Interference 378
6.7 Star Couplers 381
6.8 Photonic Multiplexers, Demultiplexers and Routers 382
 6.8.1 Arrayed Waveguide Grating De/Multiplexers and Routers 383
CONTENTS

6.8.2 Echelle Grating based De/Multiplexers and Routers 389

6.9 Conclusions 390

References 390

Reading List 391

Problems 391

7 Dielectric Waveguides 395

7.1 Introduction 395

7.2 Plane Waves Incident on a Planar Dielectric Boundary 396

7.3 Dielectric Waveguide Analysis Techniques 400

7.3.1 Standing Wave Technique 400

7.3.2 Transverse Resonance 403

7.3.3 WKB Method for Arbitrary Waveguide Profiles 410

7.3.4 2-D Effective Index Technique for Buried Rib Waveguides 418

7.3.5 Analysis of Curved Optical Waveguides using Conformal Mapping 421

7.3.6 Numerical Mode Solving Methods for Arbitrary Waveguide Profiles 424

7.4 Numerical Techniques for Analyzing PICs 427

7.4.1 Introduction 427

7.4.2 Implicit Finite-Difference Beam-Propagation Method 429

7.4.3 Calculation of Propagation Constants in a z-invariant Waveguide from a Beam Propagation Solution 432

7.4.4 Calculation of Eigenmode Profile from a Beam Propagation Solution 434

7.5 Goos–Hanchen Effect and Total Internal Reflection Components 434

7.5.1 Total Internal Reflection Mirrors 435

7.6 Losses in Dielectric Waveguides 437

7.6.1 Absorption Losses in Dielectric Waveguides 437

7.6.2 Scattering Losses in Dielectric Waveguides 438

7.6.3 Radiation Losses for Nominally Guided Modes 438

References 445

Reading List 446

Problems 446
8 Photonic Integrated Circuits 451

8.1 Introduction 451

8.2 Tunable, Widely Tunable, and Externally Modulated Lasers 452
8.2.1 Two- and Three-Section In-plane DBR Lasers 452
8.2.2 Widely Tunable Diode Lasers 458
8.2.3 Other Extended Tuning Range Diode Laser Implementations 463
8.2.4 Externally Modulated Lasers 474
8.2.5 Semiconductor Optical Amplifiers 481
8.2.6 Transmitter Arrays 484

8.3 Advanced PICs 484
8.3.1 Waveguide Photodetectors 485
8.3.2 Transceivers/Wavelength Converters and Triplexers 488

8.4 PICs for Coherent Optical Communications 491
8.4.1 Coherent Optical Communications Primer 492
8.4.2 Coherent Detection 495
8.4.3 Coherent Receiver Implementations 495
8.4.4 Vector Transmitters 498

References 499
Reading List 503
Problems 503

APPENDICES

1 Review of Elementary Solid-State Physics 509

A1.1 A Quantum Mechanics Primer 509
A1.1.1 Introduction 509
A1.1.2 Potential Wells and Bound Electrons 511

A1.2 Elements of Solid-State Physics 516
A1.2.1 Electrons in Crystals and Energy Bands 516
A1.2.2 Effective Mass 520
A1.2.3 Density of States Using a Free-Electron (Effective Mass) Theory 522

References 527
Reading List 527
2 Relationships between Fermi Energy and Carrier Density and Leakage

A2.1 General Relationships 529
A2.2 Approximations for Bulk Materials 532
A2.3 Carrier Leakage Over Heterobarsriers 537
A2.4 Internal Quantum Efficiency 542

References 544
Reading List 544

3 Introduction to Optical Waveguiding in Simple Double-Heterostructures

A3.1 Introduction 545
A3.2 Three-Layer Slab Dielectric Waveguide 546
 A3.2.1 Symmetric Slab Case 547
 A3.2.2 General Asymmetric Slab Case 548
 A3.2.3 Transverse Confinement Factor, Γ_x 550
A3.3 Effective Index Technique for Two-Dimensional Waveguides 551
A3.4 Far Fields 555

References 557
Reading List 557

4 Density of Optical Modes, Blackbody Radiation, and Spontaneous Emission Factor

A4.1 Optical Cavity Modes 559
A4.2 Blackbody Radiation 561
A4.3 Spontaneous Emission Factor, β_{sp} 562

Reading List 563

5 Modal Gain, Modal Loss, and Confinement Factors

A5.1 Introduction 565
A5.2 Classical Definition of Modal Gain 566
A5.3 Modal Gain and Confinement Factors 568
A5.4 Internal Modal Loss 570
A5.5 More Exact Analysis of the Active/Passive Section Cavity
A5.5.1 Axial Confinement Factor
A5.5.2 Threshold Condition and Differential Efficiency
A5.6 Effects of Dispersion on Modal Gain

6 Einstein’s Approach to Gain and Spontaneous Emission
A6.1 Introduction
A6.2 Einstein A and B Coefficients
A6.3 Thermal Equilibrium
A6.4 Calculation of Gain
A6.5 Calculation of Spontaneous Emission Rate
Reading List

7 Periodic Structures and the Transmission Matrix
A7.1 Introduction
A7.2 Eigenvalues and Eigenvectors
A7.3 Application to Dielectric Stacks at the Bragg Condition
A7.4 Application to Dielectric Stacks Away from the Bragg Condition
A7.5 Correspondence with Approximate Techniques
A7.5.1 Fourier Limit
A7.5.2 Coupled-Mode Limit
A7.6 Generalized Reflectivity at the Bragg Condition
Reading List
Problems

8 Electronic States in Semiconductors
A8.1 Introduction
A8.2 General Description of Electronic States
A8.3 Bloch Functions and the Momentum Matrix Element
A8.4 Band Structure in Quantum Wells
A8.4.1 Conduction Band
CONTENTS

A8.4.2 Valence Band 616
A8.4.3 Strained Quantum Wells 623
References 627
Reading List 628

9 Fermi’s Golden Rule 629
A9.1 Introduction 629
A9.2 Semiclassical Derivation of the Transition Rate 630
A9.2.1 Case I: The Matrix Element-Density of Final States Product is a Constant 632
A9.2.2 Case II: The Matrix Element-Density of Final States Product is a Delta Function 635
A9.2.3 Case III: The Matrix Element-Density of Final States Product is a Lorentzian 636
Reading List 637
Problems 638

10 Transition Matrix Element 639
A10.1 General Derivation 639
A10.2 Polarization-Dependent Effects 641
A10.3 Inclusion of Envelope Functions in Quantum Wells 645
Reading List 646

11 Strained Bandgaps 647
A11.1 General Definitions of Stress and Strain 647
A11.2 Relationship Between Strain and Bandgap 650
A11.3 Relationship Between Strain and Band Structure 655
References 656

12 Threshold Energy for Auger Processes 657
A12.1 CCCH Process 657
A12.2 CHHS and CHHL Processes 659
13 Langevin Noise

A13.1 Properties of Langevin Noise Sources
 A13.1.1 Correlation Functions and Spectral Densities
 A13.1.2 Evaluation of Langevin Noise Correlation Strengths

A13.2 Specific Langevin Noise Correlations
 A13.2.1 Photon Density and Carrier Density Langevin Noise Correlations
 A13.2.2 Photon Density and Output Power Langevin Noise Correlations
 A13.2.3 Photon Density and Phase Langevin Noise Correlations

A13.3 Evaluation of Noise Spectral Densities
 A13.3.1 Photon Noise Spectral Density
 A13.3.2 Output Power Noise Spectral Density
 A13.3.3 Carrier Noise Spectral Density

References
Problems

14 Derivation Details for Perturbation Formulas

Reading List

15 Multimode Interference

A15.1 Multimode Interference-Based Couplers
A15.2 Guided-Mode Propagation Analysis
 A15.2.1 General Interference
 A15.2.2 Restricted Multimode Interference

A15.3 MMI Physical Properties
 A15.3.1 Fabrication
 A15.3.2 Imaging Quality
 A15.3.3 Inherent Loss and Optical Bandwidth
 A15.3.4 Polarization Dependence
 A15.3.5 Reflection Properties

Reference