Contents

About the Companion Website xvii
Foreword xix
Acknowledgment xxi
Introduction xxiii
Abbreviations xxvii

Part I Metal–Organic Frameworks 1

1 Emergence of Metal–Organic Frameworks 3
1.1 Introduction 3
1.2 Early Examples of Coordination Solids 3
1.3 Werner Complexes 4
1.4 Hofmann Clathrates 6
1.5 Coordination Networks 8
1.6 Coordination Networks with Charged Linkers 15
1.7 Introduction of Secondary Building Units and Permanent Porosity 16
1.8 Extending MOF Chemistry to 3D Structures 17
1.8.1 Targeted Synthesis of MOF-5 18
1.8.2 Structure of MOF-5 19
1.8.3 Stability of Framework Structures 20
1.8.4 Activation of MOF-5 20
1.8.5 Permanent Porosity of MOF-5 21
1.8.6 Architectural Stability of MOF-5 22
1.9 Summary 23
References 24

2 Determination and Design of Porosity 29
2.1 Introduction 29
2.2 Porosity in Crystalline Solids 29
2.3 Theory of Gas Adsorption 31
2.3.1 Terms and Definitions 31
2.3.2 Physisorption and Chemisorption 31
2.3.3 Gas Adsorption Isotherms 33
2.3.4 Models Describing Gas Adsorption in Porous Solids 35
2.3.4.1 Langmuir Model 37
2.3.4.2 Brunauer–Emmett–Teller (BET) Model 38
Contents

2.3.5 Gravimetric Versus Volumetric Uptake 40
2.4 Porosity in Metal-Organic Frameworks 40
2.4.1 Deliberate Design of Pore Metrics 40
2.4.2 Ultrahigh Surface Area 46
2.5 Summary 52
References 52

3 Building Units of MOFs 57
3.1 Introduction 57
3.2 Organic Linkers 57
3.2.1 Synthetic Methods for Linker Design 59
3.2.2 Linker Geometries 62
3.2.2.1 Two Points of Extension 62
3.2.2.2 Three Points of Extension 64
3.2.2.3 Four Points of Extension 64
3.2.2.4 Five Points of Extension 69
3.2.2.5 Six Points of Extension 69
3.2.2.6 Eight Points of Extension 69
3.3 Secondary Building Units 71
3.4 Synthetic Routes to Crystalline MOFs 74
3.4.1 Synthesis of MOFs from Divalent Metals 74
3.4.2 Synthesis of MOFs from Trivalent Metals 76
3.4.2.1 Trivalent Group 3 Elements 76
3.4.2.2 Trivalent Transition Metals 76
3.4.3 Synthesis of MOFs from Tetravalent Metals 77
3.5 Activation of MOFs 77
3.6 Summary 79
References 80

4 Binary Metal-Organic Frameworks 83
4.1 Introduction 83
4.2 MOFs Built from 3-, 4-, and 6-Connected SBUs 83
4.2.1 3-Connected (3-c) SBUs 83
4.2.2 4-Connected (4-c) SBUs 84
4.2.3 6-Connected (6-c) SBUs 90
4.3 MOFs Built from 7-, 8-, 10-, and 12-Connected SBUs 97
4.3.1 7-Connected (7-c) SBUs 97
4.3.2 8-Connected (8-c) SBUs 98
4.3.3 10-Connected (10-c) SBUs 103
4.3.4 12-Connected (12-c) SBUs 105
4.4 MOFs Built from Infinite Rod SBUs 112
4.5 Summary 114
References 114
5 Complexity and Heterogeneity in MOFs 121
5.1 Introduction 121
5.2 Complexity in Frameworks 123
5.2.1 Mixed-Metal MOFs 123
5.2.1.1 Linker De-symmetrization 123
5.2.1.2 Linkers with Chemically Distinct Binding Groups 123
5.2.2 Mixed-Linker MOFs 126
5.2.3 The TBU Approach 132
5.2.3.1 Linking TBUs Through Additional SBUs 133
5.2.3.2 Linking TBUs Through Organic Linkers 134
5.3 Heterogeneity in Frameworks 135
5.3.1 Multi-Linker MTV-MOFs 136
5.3.2 Multi-Metal MTV-MOFs 136
5.3.3 Disordered Vacancies 139
5.4 Summary 141
References 141

6 Functionalization of MOFs 145
6.1 Introduction 145
6.2 In situ Functionalization 146
6.2.1 Trapping of Molecules 146
6.2.2 Embedding of Nanoparticles in MOF Matrices 147
6.3 Pre-Synthetic Functionalization 149
6.4 Post-Synthetic Modification 149
6.4.1 Functionalization Involving Weak Interactions 150
6.4.1.1 Encapsulation of Guests 150
6.4.1.2 Coordinative Functionalization of Open Metal Site 151
6.4.1.3 Coordinative Functionalization of the Linker 151
6.4.2 PSM Involving Strong Interactions 153
6.4.2.1 Coordinative Functionalization of the SBUs by AIM 154
6.4.2.2 Post-Synthetic Ligand Exchange 154
6.4.2.3 Coordinative Alignment 156
6.4.2.4 Post-Synthetic Linker Exchange 156
6.4.2.5 Post-Synthetic Linker Installation 160
6.4.2.6 Introduction of Ordered Defects 163
6.4.2.7 Post-Synthetic Metal Ion Exchange 164
6.4.3 PSM Involving Covalent Interactions 165
6.4.3.1 Covalent PSM of Amino-Functionalized MOFs 166
6.4.3.2 Click Chemistry and Other Cycloadditions 168
6.4.4 Covalent PSM on Bridging Hydroxyl Groups 171
6.5 Analytical Methods 171
6.6 Summary 172
References 173
9.3.4 Formation of hxl Topology COFs 235
9.3.5 kgd Topology COFs 236
9.4 3D COFs 238
9.4.1 dia Topology COFs 238
9.4.2 ctn and bor Topology COFs 239
9.4.3 COFs with pts Topology 240
9.5 Summary 241
References 242

10 Functionalization of COFs 245
10.1 Introduction 245
10.2 In situ Modification 245
10.2.1 Embedding Nanoparticles in COFs 246
10.3 Pre-Synthetic Modification 247
10.3.1 Pre-Synthetic Metalation 248
10.3.2 Pre-Synthetic Covalent Functionalization 249
10.4 Post-Synthetic Modification 250
10.4.1 Post-Synthetic Trapping of Guests 250
10.4.1.1 Trapping of Functional Small Molecules 250
10.4.1.2 Post-Synthetic Trapping of Biomacromolecules and Drug Molecules 251
10.4.1.3 Post-Synthetic Trapping of Metal Nanoparticles 251
10.4.1.4 Post-Synthetic Trapping of Fullerenes 253
10.4.2 Post-Synthetic Metalation 253
10.4.2.1 Post-Synthetic Metalation of the Linkage 253
10.4.2.2 Post-Synthetic Metalation of the Linker 255
10.4.3 Post-Synthetic Covalent Functionalization 256
10.4.3.1 Post-Synthetic Click Reactions 256
10.4.3.2 Post-Synthetic Succinic Anhydride Ring Opening 259
10.4.3.3 Post-Synthetic Nitro Reduction and Aminolysis 260
10.4.3.4 Post-Synthetic Linker Exchange 261
10.4.3.5 Post-Synthetic Linkage Conversion 262
10.5 Summary 263
References 264

11 Nanoscopic and Macroscopic Structuring of Covalent Organic Frameworks 267
11.1 Introduction 267
11.2 Top–Down Approach 268
11.2.1 Sonication 268
11.2.2 Grinding 269
11.2.3 Chemical Exfoliation 269
11.3 Bottom–Up Approach 271
11.3.1 Mechanism of Crystallization of Boronate Ester COFs 271
11.3.1.1 Solution Growth on Substrates 273
11.3.1.2 Seeded Growth of Colloidal Nanocrystals 274
11.3.1.3 Thin Film Growth in Flow 276
11.3.1.4 Thin Film Formation by Vapor-Assisted Conversion 277
11.3.2 Mechanism of Imine COF Formation 277
11.3.2.1 Nanoparticles of Imine COFs 278
11.3.2.2 Thin Films of Imine COFs at the Liquid–Liquid Interface 280
11.4 Monolayer Formation of Boroxine and Imine COFs Under Ultrahigh Vacuum 281
11.5 Summary 281
References 282

Part III Applications of Metal-Organic Frameworks 285

12 The Applications of Reticular Framework Materials 287
References 288

13 The Basics of Gas Sorption and Separation in MOFs 295
13.1 Gas Adsorption 295
13.1.1 Excess and Total Uptake 295
13.1.2 Volumetric Versus Gravimetric Uptake 297
13.1.3 Working Capacity 297
13.1.4 System-Based Capacity 298
13.2 Gas Separation 299
13.2.1 Thermodynamic Separation 299
13.2.1.1 Calculation of Q_{st} Using a Virial-Type Equation 300
13.2.1.2 Calculation of Q_{st} Using the Langmuir–Freundlich Equation 300
13.2.2 Kinetic Separation 301
13.2.2.1 Diffusion Mechanisms 301
13.2.2.2 Influence of the Pore Shape 303
13.2.2.3 Separation by Size Exclusion 304
13.2.2.4 Separation Based on the Gate-Opening Effect 304
13.2.3 Selectivity 305
13.2.3.1 Calculation of the Selectivity from Single-Component Isotherms 306
13.2.3.2 Calculation of the Selectivity by Ideal Adsorbed Solution Theory 307
13.2.3.3 Experimental Methods 308
13.3 Stability of Porous Frameworks Under Application Conditions 309
13.4 Summary 310
References 310

14 CO₂ Capture and Sequestration 313
14.1 Introduction 313
14.2 In Situ Characterization 315
14.2.1 X-ray and Neutron Diffraction 315
14.2.1.1 Characterization of Breathing MOFs 316
14.2.1.2 Characterization of Interactions with Lewis Bases 317
14.2.1.3 Characterization of Interactions with Open Metal Sites 317
14.2.2 Infrared Spectroscopy 318
14.2.3 Solid-State NMR Spectroscopy 320
14.3 MOFs for Post-combustion CO₂ Capture 321
14.3.1 Influence of Open Metal Sites 321
14.3.2 Influence of Heteroatoms 322
14.3.2.1 Organic Diamines Appended to Open Metal Sites 322
14.3.2.2 Covalently Bound Amines 323
14.3.3 Interactions Originating from the SBU 323
14.3.4 Influence of Hydrophobicity 325
14.4 MOFs for Pre-combustion CO₂ Capture 326
14.5 Regeneration and CO₂ Release 327
14.5.1 Temperature Swing Adsorption 328
14.5.2 Vacuum and Pressure Swing Adsorption 328
14.6 Important MOFs for CO₂ Capture 329
14.7 Summary 332
References 332

15 Hydrogen and Methane Storage in MOFs 339
15.1 Introduction 339
15.2 Hydrogen Storage in MOFs 340
15.2.1 Design of MOFs for Hydrogen Storage 341
15.2.1.1 Increasing the Accessible Surface Area 342
15.2.1.2 Increasing the Isosteric Heat of Adsorption 344
15.2.1.3 Use of Lightweight Elements 348
15.2.2 Important MOFs for Hydrogen Storage 349
15.3 Methane Storage in MOFs 349
15.3.1 Optimizing MOFs for Methane Storage 352
15.3.1.1 Optimization of the Pore Shape and Metrics 353
15.3.1.2 Introduction of Polar Adsorption Sites 357
15.3.2 Important MOFs for Methane Storage 359
15.4 Summary 359
References 359

16 Liquid- and Gas-Phase Separation in MOFs 365
16.1 Introduction 365
16.2 Separation of Hydrocarbons 366
16.2.1 C₁–C₅ Separation 367
16.2.2 Separation of Light Olefins and Paraffins 370
16.2.2.1 Thermodynamic Separation of Olefin/Paraffin Mixtures 371
16.2.2.2 Kinetic Separation of Olefin/Paraffin Mixtures 372
16.2.2.3 Separation of Olefin/Paraffin Mixtures Utilizing the Gate-Opening Effect 375
16.2.2.4 Separation of Olefin/Paraffin Mixtures by Molecular Sieving 375
16.2.3 Separation of Aromatic C₃ Isomers 376
16.2.4 Mixed-Matrix Membranes 379
16.3 Separation in Liquids 382
16.3.1 Adsorption of Bioactive Molecules from Water 382
16.3.1.1 Toxicity of MOFs 382
16.3.1.2 Selective Adsorption of Drug Molecules from Water 383
16.3.1.3 Selective Adsorption of Biomolecules from Water 385
16.3.2 Adsorptive Purification of Fuels 385
16.3.2.1 Aromatic N-Heterocyclic Compounds 385
16.3.2.2 Adsorptive Removal of Aromatic N-Heterocycles 385
16.4 Summary 386

References 387

17 Water Sorption Applications of MOFs 395
17.1 Introduction 395
17.2 Hydrolytic Stability of MOFs 395
17.2.1 Experimental Assessment of the Hydrolytic Stability 396
17.2.2 Degradation Mechanisms 396
17.2.3 Thermodynamic Stability 398
17.2.3.1 Strength of the Metal–Linker Bond 398
17.2.3.2 Reactivity of Metals Toward Water 399
17.2.4 Kinetic Inertness 400
17.2.4.1 Steric Shielding 401
17.2.4.2 Hydrophobicity 403
17.2.4.3 Electronic Configuration of the Metal Center 403
17.3 Water Adsorption in MOFs 404
17.3.1 Water Adsorption Isotherms 404
17.3.2 Mechanisms of Water Adsorption in MOFs 405
17.3.2.1 Chemisorption on Open Metal Sites 405
17.3.2.2 Reversible Cluster Formation 407
17.3.2.3 Capillary Condensation 409
17.4 Tuning the Adsorption Properties of MOFs by Introduction of Functional Groups 411
17.5 Adsorption-Driven Heat Pumps 412
17.5.1 Working Principles of Adsorption-Driven Heat Pumps 412
17.5.2 Thermodynamics of Adsorption-Driven Heat Pumps 413
17.6 Water Harvesting from Air 415
17.6.1 Physical Background on Water Harvesting 416
17.6.2 Down-selection of MOFs for Water Harvesting 418
17.7 Design of MOFs with Tailored Water Adsorption Properties 420
17.7.1 Influence of the Linker Design 420
17.7.2 Influence of the SBU 420
17.7.3 Influence of the Pore Size and Dimensionality of the Pore System 421
17.7.4 Influence of Defects 421
17.8 Summary 422

References 423

Part IV Special Topics 429

18 Topology 431
18.1 Introduction 431
Contents

18.2 Graphs, Symmetry, and Topology 431

18.2.1 Graphs and Nets 431

18.2.2 Deconstruction of Crystal Structures into Their Underlying Nets 433

18.2.3 Embeddings of Net Topologies 435

18.2.4 The Influence of Local Symmetry 435

18.2.5 Vertex Symbols 436

18.2.6 Tilings and Face Symbols 437

18.3 Nomenclature 439

18.3.1 Augmented Nets 439

18.3.2 Binary Nets 440

18.3.3 Dual Nets 441

18.3.4 Interpenetrated/Catenated Nets 441

18.3.5 Cross-Linked Nets 442

18.3.6 Weaving and Interlocking Nets 443

18.4 The Reticular Chemistry Structure Resource (RCSR) Database 444

18.5 Important 3-Periodic Nets 445

18.6 Important 2-Periodic Nets 447

18.7 Important 0-Periodic Nets/Polyhedra 449

18.8 Summary 451

References 451

19 Metal-Organic Polyhedra and Covalent Organic Polyhedra 453

19.1 Introduction 453

19.2 General Considerations for the Design of MOPs and COPs 453

19.3 MOPs and COPs Based on the Tetrahedron 454

19.4 MOPs and COPs Based on the Octahedron 456

19.5 MOPs and COPs Based on Cubes and Heterocubes 457

19.6 MOPs Based on the Cuboctahedron 459

19.7 Summary 461

References 461

20 Zeolitic Imidazolate Frameworks 463

20.1 Introduction 463

20.2 Zeolitic Framework Structures 465

20.2.1 Zeolite-Like Metal-Organic Frameworks (Z-MOFs) 465

20.2.2 Zeolitic Imidazolate Frameworks (ZIFs) 467

20.3 Synthesis of ZIFs 468

20.4 Prominent ZIF Structures 469

20.5 Design of ZIFs 471

20.5.1 The Steric Index δ as a Design Tool 472

20.5.1.1 Principle I: Control over the Maximum Pore Opening 473

20.5.1.2 Principle II: Control over the Maximum Cage Size 473

20.5.1.3 Principle III: Control over the Structural Tunability 474

20.5.2 Functionalization of ZIFs 475