Index

2D seismic surveys 3
acquisition 19
interpretation 53–78
3D seismic surveys 3
acquisition 19, 22, 23
usage, growth, impact 94–95
interpretation 93–94, 96, 97
4D surveys 143–144
4C surveys 143–144

AC (alternating current) 8
A/D convertor 12
AGC (automatic gain control) 127
AI (acoustic impedance) 29, 54
inversion 128–130
examples 31, 62, 73, 128, 130
airgun 17, 23
alias signal 12–13
amplifier 17
amplitude 7, 14, 15, 108, 127
spectrum 8, 11, 15–16
analogue 12
angular frequency 7
anisotropy 89
ant-tracking 119–120
anti-alias filter 12
antithetic fault 64
array 21, 22, 106
AVA (amplitude variation with angle) 131
AVO (amplitude variation with offset) 130–132
and Poisson’s ratio 132
and elastic impedance 140
angle stacks 133–134
examples 144–145
fluid factor 136–137
intercept and gradient 134–136
inversion to impedance 138

lambda-rho, mu-rho 137–138
methodology 132
ACF (auto-correlation function) 101, 107, 108
auto-picking, -tracking 55, 94, 117, 119, 122

bandwidth 11, 12, 27, 103, 128
fragility 106
binary numbers 12
bins, binning 23, 106
bow-tie 36
bright spot 125, 127, 141, 143
buried focus 35
bubble pulse 17
bulk modulus 24

C (converted) waves 143
channel 6, 19, 118
character 55
Cheops pyramid 82–84
class 1, 2, 3, 4 sands 132, 136
class 1, class 3 sands 144–145
CMP (common mid-point) 19–20
CMP stacking 20, 22, 40, 42–45, 50, 106
colour displays 18, 19, 111
coloured inversion 130
corridor stack 114, 115
common offset section 82–83
correlation 55
corridor stack 114, 115
CRP (common reflection point) 20, 56, 84, 87
CCF (cross-correlation function) 101, 118
cross-line data 23
cross-plotting 135
cycle-skipping 53
data quality 116
DC (direct current) 8
decibel scale 12
deconvolution 38, 103–105, 106, 130
depositional sequence 109–111
depth map 77
depth ties 78
DHI (direct hydrocarbon indicator) 127–128, 136
diagenesis 58
diffraction 27
 and reflections 30, 36–37
 and faults 34–35, 56
 hyperbola 34–37, 39, 47, 49, 83
diffraction curve 83, 87
digitization 12
digital recording 12
dim-out (dim spot) 128, 143
direct wave 28, 30, 113
diversity stack 46
DMO (dip move-out) 81–82
downward continuation 47–48
DT log 53, 54
dynamite 17
earth filter 98, 103
EI (elastic impedance) 139–140
EI well-log 140
EI synthetic seismogram 140
EI inversion 140
far-offset stack 132, 133
fault 55, 57
 pattern 57
 connection 57, 94
 shadow 125, 126
 auto-tracking 119
filter 98
 digital 98, 99, 102, 107
 electronic 99
 inverse 104
 operator 100, 107
 spectrum 102
 structure-oriented 122, 123
finite difference 48
first arrival 113
f-k processing 13, 106
f-k migration 48
flat spot 127, 128
fluid indicators 140
fold 20
Fourier analysis 9
Fourier series 8
Fourier synthesis 9
Fourier transform 9
fracture zones 120, 122
frequency 6, 7, 10, 14
frequency domain 8, 10, 99, 102, 103, 105
frequency filtering 21, 102
frequency response 98, 99
Fresnel zone 33
 and faults 34
fundamental 8, 15
Gardner’s Law 25, 31, 60, 129
gas sand 135, 138, 139, 144
gas column 143
gathers 19
geophone 17
geophone spread 19
ghosting 38, 100
GPS (global positioning system) 19
growth fault 63, 64
harmonics 8, 15
head wave 28
Hertz 7
Hilbert transform 140
horizon slice 93
Huyghen’s principle 27, 28, 30
hydrophone 17
hydrophone streamer, cable 19
hyperboloid 92
IFT (inverse Fourier transform) 9
IFZ (inner Fresnel zone) 33, 34
image gather 83–85, 87
image ray 85, 86, 128
image ray tracing 87, 96
image source 31, 95
impedance
 acoustic (see AI)
 elastic (see EI)
 S-wave 137
 inversion from AVO 137–139
impulse response 98, 99
incompressibility 24
inline data 23
instantaneous attributes 140, 141
instantaneous frequency 140, 141
instantaneous phase 140, 141
inversion 123, 128–130, 138
 simultaneous 140
isochrons 57
key reflections 63
Kirchhoff 33
Lame’s constant 137
lambda-rho, mu-rho 137–138, 139
layered earth model 41
low frequencies 27, 106, 128, 129, 141
LVL (low velocity layer) 18

map migration 46
maximum curvature 121
migration 37, 46–49, 106
3D 57, 91–93
and Fresnel zone 33
aperture 47
example 48–49
future 91
Kirchhoff 47, 81, 83–84, 91
pre-stack time (PSTM) 82–85, 96
pre-stack depth (PSDM) 85–89
ray-tracing 46, 52, 96
smiles 47
wave equation 47–48, 81, 91
mirror image 31
mode conversion 29, 131, 143
modelling
forward 29, 122–125
inverse 123
model-based inversion 130
monocline 63
most-positive curvature 121
most-negative curvature 121
mudrock line 137
multiples 29, 37–40, 113–114
suppression of 45, 51, 106
sea-bed 72
multiplexing 12
muting 46, 50
near-offset stack 132, 133
neural network 112, 140
NMO (normal move-out) 43, 44, 50
NMO stretch 45–46, 50, 106
noise 17, 20, 44, 98
normal faults 64
normal-incidence reflection 3, 20, 28, 29,
45, 135
Nyquist frequency 12

OBC (ocean bottom cable) 143
offset 43
offset VSP 116
opacity 111
over-pressure 26
OWT (one-way time) 41, 61, 72

P-wave 24
waveform 26
attenuation 27
transmission 28
paravane 23
particle displacement 26, 30
particle velocity 26
peg-leg multiple 38
period 6
phase angle 6
phase lag 7
phase lead 7
phase shift 7
zero 11
linear 11
phase spectrum 8, 11, 15–16
pixel 19
Poisson’s ratio 132, 135
Poisson reflectivity 135
polarity 140, 141
polarization 26
polar anisotropy 89
porosity 128, 130, 138
power spectrum 8, 12
predictive deconvolution 104
proprietary survey 4

Radon transform 106
Rayleigh wave 26–27
ray path 28, 29
curvature 81, 82
zero-offset, far-offset 83
ray tracing 29, 47, 85–87
RC (reflection coefficient) 29, 31, 54, 131
RC series, sequence 54, 62, 73
recording instruments 17
recursion 128
reflected wave 28, 31
reflection point dispersal 81, 82, 95
reflection strength 140
reflectivity (RC) 131, 138
refracted wave 28
refraction survey 3, 18, 28
reservoir model 109
reverberation 101, 102, 106
ripple 15–16
RMO (residual move-out) 87

S (shear) wave 26, 130, 131, 143, 144–145
S-wave section 144
sampling frequency 12
sampling interval 15
sand distribution 138
secondary source 27, 28, 31, 33
seed lines 94
SEG-Y file 51
seismic attributes 109, 116–122, 127, 128, 141
prediction of well-logs 142–143
coherence 118
curvature 120–122
dip magnitude, azimuth 116
horizon-based 117
instantaneous 140–141
usage 141
volumetric 118
seismic data acquisition 4, 17–23
seismic facies 110
analysis 111–113
seismic geomorphology 110
seismic modelling
forward 29, 122, 124–125
inverse modelling to AI 128–130
seismic receivers 17
seismic reflection 33
and diffraction 36
continuity 55
facies 110–113
history 5
industry 4
picking 54–55, 62–69
polarity 12, 29, 31, 54, 72
primary 38, 39, 114
principle 1
resolution 36
sequence 64
terminations 110, 111
water-bottom 124
seismic resolution 36–37
seismic sequences 110, 111
seismic sources 17
seismic stratigraphy 109
seismogram 3, 8, 18
semblance 44, 51, 118
sequence boundary 109–110
shear modulus 24
sideswipe 55–57
signals 6
S/N (signal/noise ratio) 17, 20, 22, 44, 50, 51
Snell’s Law 29, 46, 52, 96
sonic log 31, 53–54, 60, 72
digitization 61
space frequency 13
sparse-spike inversion 130
spectrum 8
speculative survey 4
spherical spreading 27
spike waveform, spikogram 10, 98, 99
static corrections 17–18
stratigraphic markers 62
streamer 23
super gather 133, 138
surface waves 17, 21, 22, 26
surface multiple 38, 64, 113–114
survey datum 18
synthetic seismogram 54, 60–62, 73, 103, 108, 123–124
TWT (two-way time) 3
TWT maps 57–58, 73–75
telemetry 19
thin beds 37, 141
time contouring 75
time-depth conversion 58–60
examples 59, 70–78
time domain 8, 10, 99, 102
time section 3, 71
time series 8
time shift, lag 101, 106
time slice 93, 97
tomography 87, 89
trace shape 112
trace integration 128
transit time 31, 53, 54, 61
tuning thickness 37, 128
uphole time 18
variance 118
velocity (P-wave) 41, 50
analysis 41, 44, 50, 75, 76
and density 24
and depth conversion 59
and lithology 24, 72
and porosity 25
and pore pressure 25
anisotropy 89–90, 91
average 41–42, 50, 59, 60, 75–77
Faustian 25
from well data 41
interval (layer) 41–42, 50, 60
linear function of depth 59
spectrum 44, 51
V_{rms} (root-mean-square) 42
V_{stack} (stacking) 42, 44, 50, 51
V_{nmo} (normal move-out) 44, 50
variation 58, 86
velocity-depth models 48, 58, 87
velocity pull-up, push-down 58
vertical stacking 22
velocity survey 41–42, 49–50, 53
vibrator 17, 18, 101
vibroseis 17, 101, 102, 107–108
volumetric dip 118
voxel 110–111
VSP (vertical seismic profiling) 54, 113–116
VSP-CMP transform 116
VTI (vertical transverse isotropy) 89
water gun 17
water multiples 38, 39–40
water saturation 139
waveform 6
amplitude 6–7, 15
cosine 6
frequency 7
periodic 6, 8, 14–15
phase 6, 7
scanning 100, 101, 104
truncation 15
wakeaway VSP 115, 126
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>wave equation</td>
<td>48</td>
</tr>
<tr>
<td>wavefront</td>
<td>6, 27, 28, 30, 31, 33</td>
</tr>
<tr>
<td>wavelet</td>
<td>9, 10, 15, 26, 60, 61, 124</td>
</tr>
<tr>
<td>extraction</td>
<td>105</td>
</tr>
<tr>
<td>processing</td>
<td>105–106</td>
</tr>
<tr>
<td>Ricker</td>
<td>10, 15, 73</td>
</tr>
<tr>
<td>zero phase</td>
<td>11, 15, 72, 128</td>
</tr>
<tr>
<td>wavenumber</td>
<td>13, 106</td>
</tr>
<tr>
<td>weathered layer</td>
<td>17</td>
</tr>
<tr>
<td>weighted stacking</td>
<td>46</td>
</tr>
<tr>
<td>West Sole Field</td>
<td>57, 70–78</td>
</tr>
<tr>
<td>Wiener filter</td>
<td>105</td>
</tr>
<tr>
<td>wiggle-trace</td>
<td>18</td>
</tr>
<tr>
<td>workstation</td>
<td>6, 19</td>
</tr>
<tr>
<td>Wyllie equation</td>
<td>25</td>
</tr>
<tr>
<td>Zoeppritz</td>
<td>131</td>
</tr>
<tr>
<td>z-transform</td>
<td>104</td>
</tr>
</tbody>
</table>