Index

Figures are denoted by italic page numbers, **Tables** by bold numbers.

Abbreviations: EC = electron crystallography; ED = electron diffraction; EM = electron microscopy; ET = electron tomography; HRTEM = high-resolution transmission electron microscopy; PDF = pair distribution function; SAED = selected-area electron diffraction; SANS = small-angle neutron scattering; SAS = small-angle scattering; SAXS = small-angle X-ray scattering; SEM = scanning electron microscopy; STEM = scanning transmission electron microscopy; TEM = transmission electron microscopy; XRD = X-ray diffraction

Ab initio structure determination, powder XDR data 13

Absolute structure determination 119, 147–8

Absorption
 - neutron diffraction affected by 116
 - XRD affected by 115–16

Absorption edges 24, 118, 313

Al₂(C₃H₅PO₃)₃ 62–3, 64

Al(8-hydroxyquinolinate)₃, acetic acid solvate 53, 54

m-Aminobenzoic acid
 - ‘fingerprinting’ of polymorphs 7
 - powder XRD structure refinement 21

Ammonium cyanate, crystal structure 58–60

Angular-dispersive powder XRD 48, 49

Anisotropic colloidal systems 277

Anisotropic property, atomic
 - displacement/vibration as 98

Anisotropic thermal expansion, in
 - powder XRD structure determination 68–9

Anomalous scattering see Resonant scattering

Anomalous small-angle X-ray scattering (ASAXS) 309–13

Advantages 313

Applications 311, 312

Area detector systems 126, 169–70

Autocorrelation 204

Autocorrelation function, of scattering density 162

Babinet’s principle 206–8

Backscattered electrons (BSEs) 209, 211

Benzene-1,2,3-tricarboxylic acid (BTCA) 64–5

Benzoic acid–pentafluorobenzoic acid co-crystal 35–6

Bis-β-naphthol/benzoquinone/anthracene (BN/BQ/AN) co-crystal 50–1

3,5-Bis(3,4,5-trimethoxybenzyl) benzyl alcohol (BTBA) 37, 38

Bonse and Hart USAS instrument 303–4
INDEX

Borosilicate zeolite(s) 47
Bragg condition 109
Bragg equation 4, 27, 108–9, 217
Bragg reflections 109, 158, 159
Bragg rods 277
‘Bravais lattices’ 96, 206
Bright-field electron tomography 250–1
Calcium carbonate, precipitation from supersaturated solutions 296–7, 298
Cambridge Structural Database (CSD) 96, 152
CaTiO$_3$, in situ powder XRD study of solid-state formation 58, 59
CdSe/CdS nanorods 317
Cement (calcium silicate), hydration of 307
Centre of symmetry 92
Charge density studies 150
Charge-coupled devices (CCDs) 85, 126, 283–4
Charge-flipping methods [for structure solution] 17, 47, 133–4 computer programs 142
Chiral molecules, determination of absolute configuration 119, 145, 147
Chloroquine bis-(dihydrogen phosphate) 65 [Co$_3$(acetate)$_4$(salen)$_2$] 146
Cobalt nanodots, growth on Au(111) surface 315
Cobalt nanoparticle, reduced-PDF calculations 180–1
Cis-[CoBr(NH$_3$)(en)$_2$]Br$_2$ 60–1
Coherent scattering 3, 32, 103
Colloidal aggregation, thermally induced 306, 307
Colloidal crystals, structure determination by SANS 275–7
Colloidal nanorods, self-organisation of 317
Compton scattering 170–1, 216
Constructive interference [of scattered radiation] 101, 107–8 conditions for 108, 217
Conventional transmission electron microscopy (CTEM) 208, 214
Convergent beam electron diffraction (CBED) 208, 215, 221, 227–9
Convolution 203
Correlation operation 203
[Cr(NH$_3$)$_6$][HgCl$_5$] 132–3, 137–8
Crystal, definition 203, 219
Crystal electrostatic potential, Fourier synthesis of 232–5
Crystal monochromators [X-rays] 121–2, 281
Crystal morphology equilibrium form 211 example [silica mesoporous crystals] 211–12 growth form 211
Crystal structure 205 and electron diffraction 219–21 relationship to diffraction pattern 8–10 and TEM images 229
Crystal structure factors (CSFs) 202, 205, 232
Crystal structure model, finite size effects 177
Crystal systems 94, 95
Crystallisation, in situ powder XRD study 48, 49
Crystallography symmetry, fundamental principles 86–101
Crystallography texts, listed 84–6
Cubic close-packed (CCP) structure 246 ‘Currant bun’ model of particle growth 301
Cyclopentadienylrubidium 71
INDEX

de Broglie relationship 101–2, 123, 217
Debye–Bueche function 272, 291, 292
Debye equation 162
Debye–Scherrer rings 221
Defects [in crystal structure] 155–6
distribution 156
local deviations 156
Density functional theory (DFT)
calculations, as powder XRD validation tool 40
Destructive interference [of scattered radiation] 101, 107
Deuterated material, neutron diffraction data for 32, 33
Difference Fourier map 136, 137
Differential scattering cross-section [in SAS] 262–4
asymptotic forms 268–9
dependence on particle shape and size 264–5
polydisperse systems 266–8
power law variation 269
Diffraction
meaning of term 101
see also Electron diffraction; Neutron diffraction; X-ray diffraction
Diffraction-based 3D microscopy 240–9, 255
Diffuse scattering 160
Direct lattice 90
Direct space 8
Direct-space strategy [for powder XRD structure solution] 9–10, 17–22
structure validation prior to 34–6
DISCUS program, PDF data modelling using 184
Disorder in crystal structures 98–100, 142–3
detected by solid-state NMR 37, 39–40
Displacement parameters [for atomic vibration] 98, 105–6
2,5-Distyrylpyrazine,
photopolymerisation of 67–8
DNA–silica complex 240
Domains [in single crystal] 144
Double-diamond structures, formation of 248–9
DPP-Boc, β polymorph 36, 74
Dynamical diffraction 227–8
Elastic scattering 3, 103, 170
Electron beam tilting method [for 3D electron diffraction] 253, 254
Electron crystallography (EC) 201–58
meaning of term 202, 255
structure solution 235–49
1D structures 236–8
2D structures 239–40
3D structures 240–9
Electron density distributions 105, 112, 113
as collection of multipoles 150
Electron density maps 136, 137
after charge flipping 47, 133
Electron diffraction (ED) 216–29
compared with XRD 216–17
and crystal structure 219–21
phase restriction 224
three-dimensional (3D-ED) 252–4
see also Convergent beam electron diffraction
Electron diffraction (ED) patterns
determination of unit cell parameters 226, 227
systematic extinctions 223, 226
tilting series 226, 227
types 221, 222
zones 224–6
first-order Laue zone (FOLZ) 225, 226
higher-order Laue zone (HOLZ) 225
second-order Laue zone (SOLZ) 225, 226
zeroth-order Laue zone (ZOLZ) 225
Electron energy-loss spectroscopy (EELS) 209
Electron microscope, resolution 230
Electron microscopy (EM) 208–15
advantages 209, 214, 255
matter–electrons interaction 208–9
see also Scanning electron microscopy;
Transmission electron microscopy
Electron tomography (ET) 241, 249–52
bright-field ET 250–1
Electrons 208
interactions with matter 208–9, 216–17
wavelengths 217
X-rays scattered by 31, 111, 262
Electrostatic potential map [electron diffraction] 233, 234
Energy-dispersive powder XRD 28, 48, 49
Energy-dispersive X-ray spectroscopy (EDS) 209
Envelope function 178
Estimated standard deviation 128
9-Ethylbicyclo[3.3.1]nona-9-ol, crystal structure 68–9
Evaporation-induced self-assembly process 307, 316, 317
Ewald sphere
for electron diffraction 217, 218, 228, 252
for X-ray diffraction 110, 217, 218
Extended X-ray absorption fine structure [EXAFS] spectroscopy
advantage(s) 198
combined with powder XRD 30 and PDF analysis 198
Extinction effects 116–17
Face-centred cubic (FCC) mesoporous crystals 244–6
HRTEM images 244, 245
morphology types 244, 245
Face-centred cubic (FCC) structure 246
α-Fe₂PO₅, resonant powder XRD studies 24
FeNi₂(BO₃)O₂, resonant powder XRD studies 24
Ferrofluids, study of 309, 310
‘Fingerprinting’ of crystalline phases, powder XRD used 6–8, 40–5
p-Formyl-trans-cinnamic acid, β polymorph 39–40
Fourfold rotation symmetry, consequences for lattice geometry 93, 94
Fourier diffractograms (FDs) 219, 229, 232
Fourier recycling procedure 134, 137
Fourier transform 129, 203
see also Inverse Fourier transform;
Reverse Fourier transform; Sine Fourier transform
Fractal systems, combined SAS and USAS used in study 305–6
Framework materials, structure determination by powder XRD 46–7, 48
Friedel opposites 119
Friedel pairs 119, 224
Friedel’s law 119, 223–4
GaAs crystal, CBED pattern 228–9
Gallium phosphonate polymer 93
General positions 97
Generalised indirect Fourier transformation (GIFT) method 274
Germanosilicate zeolite(s) 46, 47
Gibbs–Thomson equation 301
Glide 92
Glide plane(s) 92, 93
Gold nanoparticles
crystalline nature 300
formation at liquid–liquid interface 316–17
nucleation and growth of 298–300
Gold surface, growth of cobalt nanodots 315
Grain boundaries 144
Grazing-incidence diffraction (GID), combined with GISAXS 316
Grazing-incidence reflection X-ray optics 122
Grazing-incidence small-angle scattering (GISAS) 314–17
Grazing-incidence small-angle X-ray scattering (GISAXS) 281, 314–17
application examples 315–17
combined with grazing-incidence diffraction 316
scattering geometry 314–15
Guinier law 268
Guinier plot 267, 268
Guinier–Porod model 271
β-Haematin 71–2
Hard-sphere silica colloids 276, 277
Hierarchically organised materials, combined SAS/USAS techniques in study 303
High-angle annular dark field (HAADF) imaging [in STEM] 209, 249, 250
High-pressure diffraction experiments 151
High-resolution SAXS 276–7
High-resolution scanning electron microscopy (HRSEM) 213
High-resolution transmission electron microscopy (HRTEM)
Fourier diffractograms obtained 219, 229, 232
image simulation of crystals 235
mesoporous crystal hollow spheres 247–8, 248
and PDF analysis 198–9
structural resolution 231–2
with powder XRD 46
High-temperature diffraction experiments 151
Highly ordered structures, SANS and SAXS studies 275–9
Hollow mesoporous crystals 246–9
see also Mesoporous crystal hollow spheres
Hydrogen atom positions, neutron diffraction compared with XRD 32, 113
Hydrogen bonding studies 32, 37, 113
rac-Ibuprofen, polymorphic transformations 57–8
Ideally imperfect single crystal 144
Image resolution [of microscope] 201, 230–1
Improper rotations 91, 92
In situ studies
small-angle scattering 260, 295–303
X-ray diffraction 28–30, 48, 49–50, 53–8, 255
Incoherent scattering 32, 33, 103, 113, 114, 171
Incommensurate structures 101, 146–7
Indices [for set of lattice planes] 89
Indirect Fourier transformation (IFT) method 268, 274
Inelastic Fourier transformation (IFT) method 268, 274
Magnetic scattering 31, 113–14
Mathematical group theory, applied to molecular symmetry 91
MCM-41 [mesoporous silica] 240
MCM-48 [mesoporous silica] 242–4, 251
HRTEM images 242–3
simulated images 243–4
(Me₂AlNH₂)₃ 62, 63
Inorganic–organic frameworks, formation of 300–1
Inverse Fourier transform(s) 203
Inversion twins 148
Ion- and liquid-assisted grinding (ILAG) 55
Inorganic colloids, ordering in 277
Inorganic Crystal Structure Database (ICSD) 97, 152
Indices [for set of lattice planes] 89
Indirect Fourier transformation (IFT) method 268, 274
Inelastic Fourier transformation (IFT) method 268, 274
Magnetic scattering 31, 113–14
Mathematical group theory, applied to molecular symmetry 91
MCM-41 [mesoporous silica] 240
MCM-48 [mesoporous silica] 242–4, 251
HRTEM images 242–3
simulated images 243–4
(Me₂AlNH₂)₃ 62, 63
Mechanochemical processes, *in situ* powder XRD studies 53–5
Mechanochemically produced materials compared with solvothermally synthesised materials 42–3, 50–1, 52–3
structure determination by powder XRD 50–3
Merohedral twinning 145
Mesoporous crystal hollow spheres 246–9
formation mechanism 248–9
HRTEM images 247–8, 248
inner morphologies 246–7
Mesoporous silica(s)

crystal morphology 211–12
HRSEM images 213
HRTEM images 232–4, 239
SEM images 212
surfactant-templated growth of nanoparticles 301
self-assembly of films 316, 317
Metal diazolate based polymeric complexes 72–3
Metal–organic framework (MOF) materials
formation of 300–1
mechanochemical preparation of 52, 53, 55
MFI zeolite nanosheets 236, 237
Miller indices 4
determination from powder XRD patterns 14
Mirror plane(s) 91, 92, 93
Mirror symmetry, consequences for lattice geometry 93, 94
Modulated incommensurate structures 101, 146
Momentum transfer, in SAS 261–2
Monochromatic X-rays, diffraction of 3, 103–10
Mosaic structure 100, 144
Multiple twinning 244
Multiply-twinned particles (MTPs) 246, 247
Multipoles 150
Multi-wire proportional chambers (MWPCs) 288–9

Nanomaterials, structure determination by powder XRD 236
Nanoparticles
crystal structure model for 177–8
nucleation and growth of 298–300, 301
PDF analysis 169, 189–97
pyrolytic growth of 301–3
Nanosheets 236, 237, 238
Nanostructures in metallic alloys, analysis of 311
Neutron detectors 288–9
Neutron diffraction 111–14
access to large-scale facilities required 30, 33
compared with XRD 31–2, 111–14, 148–9
effect of absorption 116
and magnetic moments due to unpaired electron spins 113, 149
in PDF data collection 168, 169
scattering cross-sections 112, 113
scattering lengths 112, 113
sources of neutrons 30, 123–4
see also Powder neutron diffraction;
Single-crystal neutron diffraction
Neutron optics 287–8
Neutron scattering density map 129–30
Neutron sources 30, 123–4, 260, 286–7
Neutrons, wavelengths 286
Niobium, vortex lattice in 278
Nobel Prize winners 84, 202
Non-ideal behaviour [of crystalline solids] 98–101
atomic displacements 98
disorder 98–100, 143
modulated incommensurate structures 101
pseudosymmetry 100
twinning 100, 143–5
Non-interacting systems, small-angle scattering in 264–5
Non-merohedral twinning 144
Non-particulate systems, small-angle scattering in 272–3
Non-translation symmetry, consequences for lattice geometry 93–7
Normalised scattering intensity $S(Q)$ determination from experimental diffraction data 163
sine Fourier transform of 163
Nuclear [fission] reactor, as neutron source 30, 123, 260, 285, 286
Nuclear magnetic resonance (NMR), and PDF analysis 199
Nuclear scattering 31, 111, 112, 113

Optical microscope
characteristics 201, 230
ray diagram 202
resolution 201, 230
Organometallic complexes, structure determination by powder XRD 71–2
Ornstein–Zernike structure factor 272
Ostwald ripening 300
Ostwald rule 297

Pair distribution function (PDF) 155, 158, 160–7
experimental factors influencing 164, 166, 167, 168
properties determined from 164
radiation type influencing 164, 168–9
relationship to structure 164, 165
see also PDF analysis; reduced PDF
Palladium nanoparticles, formation on MgO 315
Particles in solution, nucleation and growth of 296–303
Patterson function 131, 162
Patterson map 132, 242
Patterson methods [for structure solution] 17, 131–2
PDF analysis 158
complementary techniques 197–9
data-collection strategies 168–70
neutron vs X-ray diffraction 168
study of domains 169
data modelling 183–4
DISCUS approach 184
‘large-box refinement’ strategy 183–4
‘small-box refinement’ strategy 183, 188–9
data treatment 170–84
calculation of reduced PDF from structural model 175–83
ensemble average approach 181–3
examples 184–97
decorated ZnO nanoparticle 194–7
local disorder vs long-range average order 185–9
ZnSe nanoparticle 189–94
instrument choice in data collection 168–70
see also Pair distribution function
PDFGui program, PDF data modelling using 183
Penetration depth [of electrons] 209
Perovskite-type structural model 185, 186
experimental PDF for disordered crystal 187, 188
local disorder in 186
long-range average order 186–9
Pharmaceutics, in situ powder XRD studies of polymorphic/structural transformations 29–30, 55–8
Phase object approximation (POA) 220, 235
Phase problem [in crystallography] 9, 129, 241
Phase restriction 224
Phase transitions, in situ studies using powder XRD 29
Phonons 98
Photocrystallography 123
Photopolymerisation reactions, structure determination of product 66–8
Pigments, structure determination by powder XRD 73–4
Pinhole collimation [of beams] 260, 279, 287–8
Pixel-array detectors 126–7, 283
PLATON computer program
 SQUEEZE option 143
 structure validation by 151–2
Point-group symmetries 92, 206
Polar axes, crystal structures containing 119, 147–8
Polychromatic X-rays, diffraction of 110–11
Polycrystalline material(s), electron
diffraction pattern for 221, 222
Polydispersity, in SAS 266–8
Polydispersity index (PDI) 270
Poly(ethylene oxide)-based polymeric complexes 73
Polymorphic transformations, in situ
 powder XRD studies 55–8
Polymorphism 55
Polyoxometalate clusters, modelling of
 SAXS data 270, 271
Porod behaviour 269, 273
Porod invariant 272–3
Porous materials, characterisation of 307
Potassium titanyl phosphate 148
Powder diffraction data
 PDF analysis based on 162
 see also Powder neutron diffraction;
 Powder X-ray diffraction
Powder neutron diffraction
 compared with powder XRD 30–3
 deuterated material used 32
 hydrogen bonding studies 32, 58–60
Powder X-ray diffraction
 combined techniques 30, 46
 comparison with powder neutron
 diffraction 30–3
 comparison with single-crystal XRD
 2–6
 data collection 6
 experimental considerations 22–30
 ‘fingerprint’ of crystalline phases
 6–8, 40–5
 factors affecting 41–5
 limitations 216
 qualitative applications 6–8, 40–5
 sample preparation 6, 45–6
Powder X-ray diffraction applications
 in situ studies
 materials synthesis 48, 49–50
 mechanochemical processes
 53–5
 polymorphic transformations
 55–8
 solid-state reactions 58, 59
 structural changes and chemical
 processes 28–30, 48, 49–50, 255
structure determination
 aluminium methylphosphonate
 62–3
 anisotropic thermal expansion in
 68–9
 materials prepared by
 dehydration/desolvation
 processes 63–6
 materials prepared by
 photopolymerisation
 reaction 66–8
 mechanochemically prepared
 materials 50–3
 organometallic complexes
 71–2
 pigment materials 73–4
 polymeric materials 72–3
 rapidly precipitated materials
 60–1
 rationalisation of solid-state
 reaction 69–71
 solid-state reaction intermediates
 62
 zeolites and other framework
 materials 46–7, 48
Powder X-ray diffraction data
 CeO₂, PDF determined from 163,
 165–6
 experimental considerations
 phase purity of sample 25–6,
 44–5
 preferred orientation 24–5,
 43–4
 synchrotron vs laboratory powder
 XRD data 22–4, 26–7
 one-dimensional 4
 peak width analysis 26–8
 profile refinement stage 13
recording in angular-dispersive mode 48, 49
recording in energy-dispersive mode 28, 48, 49
solid-state NMR data for validation 34
structure determination 6
applications 46–7, 50–3, 60–8, 71–4
charge-flipping method used 47
nanomaterials 236
preliminary considerations 8–12, 45
techniques 12–22
validation 33–40
structure refinement 13, 21–2
structure solution 16–20
aim of 13
direct-space strategy 13, 16, 17–20
traditional strategy 13, 15–16, 17
unit-cell determination 14–15
validation of procedures and results 33–40
after structure refinement 36–40
before direct-space structure solution 16, 34–6
Powder X-ray diffraction patterns
comparison of experimental and calculated patterns 10–12
indexing of 14
peak intensities 10–12
extracting data for structure solution 12, 15–16, 17
preferred-orientation effect 24–5, 43–4
peak overlap 4–5, 14, 41
peak positions, factors influencing 44
peak shapes 10
peak widths 10
instrumental factors influencing 23, 26–7
sample-dependent factors influencing 27–8, 41
profile-fitting procedures 15–16

Precession electron diffraction (PED) method 252, 253
combined with STEM 252–4
Preferred orientation, in powder XRD sample 24–5, 43–4
Proper rotations 91, 92
Pseudomerohedral twinning 144
Pseudosymmetry 100, 145–6
Pseudo-Voigt function 10
Pyrolysis, nanomaterials produced by 301–3
Rayleigh criterion 201
Real-time studies, SAS techniques used 295–303
Reciprocal lattice 90, 108, 159, 204, 205
Reciprocal lattice vectors 8, 204
Reciprocal space 3, 8
relationship to real space 204, 205, 221–3
Reduced PDF [G(r)] 163
determination from experimental diffraction data 163
Reduced structure factor 170, 171
Reflection plane(s) 91
Reflection symmetry elements, with translational components 92–3
Renninger effect 114
[ReOCl₄][ReO₃Cl] 87, 88–9
Resolution [of microscope] 201, 230–1
Resonant scattering 117–19
applications 24, 118–19, 148
powder XRD 24
Reverse Fourier transform 129, 136
Reverse Monte Carlo algorithm 183–4
Reverse multiply-twinned particles 248–9
Rhombohedral unit cell 96
Rietveld refinement technique 13, 21–2
difference profile 21, 36
validation following 36–40
RMCprofile program, PDF data modelling using 183–4
Rocking/convoluted reflectivity curves [for USAS studies] 304–5
Rotation symmetry elements, with translational components 92–3
Ruthenium/selenium catalyst, ASAXS measurements 312, 313

SANS see Small-angle neutron scattering
SANSPOL 309, 310
Satellite peaks 101
SAXS/WAXS measurements 285, 290–2
see also Small-angle X-ray scattering; Wide-angle X-ray scattering
SBA-1 [mesoporous silica] 211, 212
SBA-6 [mesoporous silica] 232–4
SBA-15 [mesoporous silica] 239
SBA-16 [mesoporous silica] 213
Scanning electron microscope
ray diagram 210
signals produced by 210–11
Scanning electron microscopy (SEM) 209–14
atomic number-dependent contrast 213–14
compared with TEM 211
crystal morphology 211–13
Scanning transmission electron microscopy (STEM) 208
high-angle annular dark field (HAADF) imaging 209, 249, 250
see also STEM HAADF tomography
Scattered electrons 208, 209
Scattering
definitions 104
of neutrons 31–2, 111–14
of X-rays 3, 31–2, 103–11
by crystal structure 107–10
by group of atoms 106–7
by single atom 105–6
by single electron 103–4
by two or more electrons 104–5
Scattering efficiency, single crystals 125
Scattering form factor(s) 265
listed for various shapes 266
Scattering length(s)
listed [for neutrons and X-rays, for various elements] 263
ranges covered in SAS 262
Scattering power of atom
for electrons 219
for neutrons 32, 112–13
for X-rays 31–2, 105–6, 217–18
Scherrer equation 27, 189, 291
Schrödinger equation 216
Schultz size distribution 267
Secondary electrons (SEs) 209, 210, 211
Sedimentary rocks, combined SANS and USANS used in study 305–6
Selected-area electron diffraction (SAED) 208, 214–15
ray diagram 215
with powder XRD 46
Self-assembled structures 235–6, 240, 270, 271, 316
Self-assembly process, evaporation-induced 307, 316, 317
Serial diffractometers 126
compared with area detectors 127, 137
Short-range order 156
Silica mesoporous crystals see Mesoporous silica
Silicon phthalocyanine dichloride (SiPcCl$_2$) 71
Sine Fourier transform 163
Single-crystal diffraction
experimental methods 119–28
non-ambient conditions 150–1
structure determination, factors affecting 142–53
structure refinement 138–42
structure solution 128–38
structure validation 151–3
Single-crystal neutron diffraction
experimental methods 119–28
neutron sources 123–4
non-ambient conditions 151
single crystals 125
structure solution 129–30
Single-crystal X-ray diffraction 1
comparison with powder XRD 2–6
experimental methods 119–28
non-ambient conditions 150–1
single crystals 124–5
X-ray sources 119–23
INDEX

limitations 1
radiation sources 119–23
structure determination, factors affecting 142–53
structure refinement 138–42
structure solution 128–38
Single-crystal X-ray diffraction data, three-dimensional 3
Single-crystal X-ray diffraction pattern, measurement methods 85, 110, 126–7
Single crystals
electron diffraction patterns for 221, 222
quality and size requirements 124–5
representativeness 152–3
Small-angle neutron scattering (SANS)
access to large-scale facilities required 260, 285
applications
study of soft matter and biological macromolecules 308
time-of-flight (ToF) measurements 285, 287
time-resolved studies 260
vortex lattices in superconductors 277–9
combined with wide-angle scattering 290
contrast variation 308–9
historical background and literature 260–1
instrument resolution 287, 292
instrumental set-up 285–94
combined SAXS/WAXS set-up 290–2
instrumental smearing effects 292
layout of instrument line 289
neutron detectors 288–9
neutron optics 287–8
neutron sources 260, 286–7
pinhole collimation 287–8
sample environments 293–4
scattered intensity standard 264
ultra SANS 303, 305–6, 307
with polarised neutrons (SANSPOL) 309, 310
Small-angle scattering (SAS) 259–324
applications 294–317
contrast variation in SAS 273, 308–13
grazing-incidence SAS 314–17
real-time and in situ studies 295–303
ultra SAS 303–8
contrast variation 273, 308–13
grazing-incidence SAS 314–17
ignored in PDF experiments 180
principles 261–79
asymptotic forms of $I(q)$ 268–9
differential scattering cross-section 262–4
highly ordered structures 275–9
momentum transfer 261–2
multilevel structures 269–71
non-interacting systems 264–5
non-particulate systems 272–3
polydispersity 266–8
structure factor of interactions 273–5
unified scattering functions 269–71
ultra SAS 303–8
see also Differential scattering cross-section; Small-angle neutron scattering; Small-angle X-ray scattering; Ultra small-angle scattering
Small-angle X-ray scattering (SAXS)
applications
anomalous SAXS 309–13
grazing-incidence SAXS 281, 314–17
ordering in inorganic colloids 277
time-resolved studies 260, 281
combined with wide-angle scattering 285, 290–2, 303
grazing-incidence SAXS 281, 314–17
Small-angle X-ray scattering (SAXS)
(continued)
high-resolution SAXS 276–7
historical background and literature 260–1
instrumental set-up 279–85
 layout of instrument line 284–5
 pinhole collimation 260, 279
 sample environments 293
 synchrotron sources 260, 280–1
X-ray detectors 283–4
X-ray optics 281–2
modelling of multilevel polydisperse systems by unified scattering function 270, 271
scattered intensity standard 264
scattering contrast 259
time-resolved studies 260, 281
Sodium chloroacetate, polymerisation of 70–1
Solid-state grinding 50, 51
 see also Ion- and liquid-assisted grinding; Liquid-assisted grinding; Mechanochemically produced materials
Solid-state mechanochemistry, in situ
 powder XRD studies 53–5
Solid-state NMR data
 disorder detected in crystal structure 37, 39–40
 powder XRD structural model validated by 34–6
Solid-state reactions
 in situ
 powder XRD studies 58
 rationalisation of 69–71
Space groups 96, 206
Spallation facility, as neutron source 30, 123–4, 169, 285, 286
Special positions 97
Spray flames, nanomaterials produced using 301, 302
Sr$_2$RuO$_4$, vortex lattice in 278
SSZ-48 [zeolite] 242
SSZ-82 [zeolite] 47, 48
Stacking faults
 in cobalt nanoparticle 180
 in colloidal crystal 277
 in ZnSe nanoparticle 193, 194
Standard uncertainty 128
STEM HAADF tomography 251
Stopped-flow rapid-mixing technique 294, 296
ε-Strontium oxotellurate (ε-SrTeO$_3$) 66
Structural changes, in situ studies,
 powder XRD used 28–30
Structural resolution limitations 231–2
Structure determination techniques
 powder neutron diffraction 31
 powder XRD 6, 12–22, 31
Structure factor 8–9, 128
 in SAS 273–5
 see also Reduced structure factor
Structure refinement
 computer programs 142
 constraints 139–40
 convergence of refinement 138
 functions to be minimised 139
 parameters to be refined 139
 powder XRD 13, 21–2
 refinement results 140–1
 restraints 140
 single-crystal XRD 138–42
 weighting schemes 139
Structure solution
 charge flipping 17, 133–4
 completion of partial structure model 134–8
 residual indices used 134–5
 computer programs 17, 141–2
 direct methods 17, 130–1
 dual space methods 133
 computer programs 142
 electron crystallography method 235–49
 1D structures 236–8
 2D structures 239–40
 3D structures 240–9
 electron diffraction pattern-based analysis 241–2
 HRTEM images 242–9
 Patterson synthesis 131–2
 powder XRD 16–20
single-crystal neutron diffraction 129–30
single-crystal XRD 128–38
symmetry arguments 132–3
Structure validation
powder XRD 33–40
single-crystal diffraction 151–3
Supercell 144
Superconductors, type II, vortex lattices in 277–9
Superstructures 146
Synchrotron radiation sources 22–4, 122–3, 280–1
advantages 23–4, 122–3
beam collimation 23, 27, 279
brightness/spectral brilliance of beam 260, 280, 281, 302
compared with laboratory X-ray sources 22–4, 71, 122–3
insertion devices [to tune output] 122, 280
intensity of X-rays 23–4, 122
PDF beam lines at 168, 169
powder XRD in situ studies using 28, 54–5
third-generation sources 281
tunability 24, 118–19
undulators 122, 280
Synchrotron SAXS 260, 275, 281, 292
Thermal diffuse scattering (TDS) 114, 304
Thomson scattering length 218, 262
Three-dimensional electron diffraction 252–4
electron beam tilting method 253, 254
PED method 252, 253
STEM combined with PED 252–4
Time-resolved studies
and PDF data collection 170
SANS 260, 295–6
SAXS 299
SAXS/WAXS combined technique 296, 297, 298, 299–300, 303
Titania, hydrothermal crystallisation of 297
Titania matrix, air spheres in 276
Tomography see Electron tomography; STEM HAADF tomography
Translation symmetry 87–91, 96, 203
Transmission electron microscope, ray diagram 215, 231
Transmission electron microscopy (TEM) 214–15
compared with SEM 211
first developed 202
see also High-resolution transmission electron microscopy
Twin law 145
Twin ratio 145, 148
Twining 100, 143–5
ULM-3, in situ powder XRD study of crystallisation 48, 50
Ultra small-angle neutron scattering (USANS) 303
applications 307
combined with SANS 305–6, 307
Ultra small-angle scattering (USAS) 303–8
Ultra small-angle X-ray scattering (USAXS) 303
applications 304–5, 306, 307
Undulators [in synchrotron] 122, 280
Unit cell 88–9
axes 97
cell types 95, 96
centred cells 95–6
characteristic shapes 94–5
determination from powder XRD patterns 14–15
electron density 9
lattice parameters 8
primitive cells 95
scattering-matter distribution 8
Valence effects, neutron and X-ray diffraction 149–50
Vortex lattices [in superconductors] 277–9
Weak phase object approximation (WPOA) 220, 229
Weissenberg camera 126
White [X-ray] radiation 111, 120, 123
Wide-angle X-ray scattering (WAXS) 281, 290
combined with SANS 290
combined with SAXS 285, 290–2
sample cells 293
Wulff polyhedron 245, 246, 247

X-ray absorption edges 24, 118
X-ray absorption techniques 198
X-ray detectors 85, 126–7, 283–4

X-ray diffraction
compared with electron diffraction 216–17
compared with neutron diffraction 31–2, 111–14, 148–9
effect of absorption 115–16
history 83–4
monochromatic X-rays 3, 103–10
in PDF data collection 163, 168, 169
polychromatic X-rays 110–11
radiation sources
laboratory X-ray sources 119–22
synchrotron radiation sources 22–4, 122–3, 168–9
technological developments 84
see also Powder X-ray diffraction;
Single-crystal X-ray diffraction

X-ray diffraction data, correcting for systematic errors 127–8

X-ray diffraction maxima
positions 8
relative intensities 8

X-ray diffraction pattern
and crystal structure 8–10
measurement methods 85, 110, 126–7
redundancy/multiplicity of observations 127

X-ray lenses 282
X-ray mirrors 282
X-ray optics 121–2, 169, 281–2
X-ray scattering factors 105, 112
X-ray tubes 119–22
grazing-incidence reflection optics used 122

microfocus tubes 121
rotating-anode system 121, 279

X-rays
energy 216
scattering by atoms 31, 111, 216
wavelengths 102, 216, 217

YNi$_2$B$_2$C, vortex lattice in 278

Zeolite nanosheets 236, 237, 238
Zeolites, structure determination by powder XRD 46–7, 48
Zerolite imidazolate framework (ZIF) materials 55, 300
ZIF-8 300, 301
Zinc oxide/ethylimidazole
mechanochemical reaction 55, 56
Zirconia nanoparticles, pyrolytic synthesis 302–3
Zirconia, yttria-stabilised, sintering of 312

ZnO nanoparticle
neutron diffraction PDF 195–7
organic [citric acid] layer on ZnO core structure 197
PDF analysis 194–7
X-ray diffraction PDF 195, 196

ZnSe nanoparticle
calculated PDFs
influence of particle shape 193–4
refinement based on zincblende model 191–2
stacking faults between wurtzite and zincblende structures 193, 194, 195
experimental PDF data, nanoparticle compared with bulk 189–90, 192–3
local structure 191
PDF analysis 189–94
zincblende structure 190

ZnO nanoparticle

Zone axis [for electron diffraction pattern] 224