Index

acceleration life models
Arrhenius type, 185
Arrhenius–Weibull, 185
inverse power law type, 185
Eyring-type, 185
Eyring–Weibull, 186
IPL–Weibull, 185
acceleration stress, 184–6
additivity rule, 144
AND-gates, 386
automotive suspension springs, 264–5
availability
network, 290–291
on demand, 70
production, 71–2, 290–291
requirements to guarantee specified, 320–322

bathtub curve, 68, 82–4, 143, 265
Bayesian
transform, 43
updating, 44–5, 284
bet, 346–348
good, 351–352
opportunity, 347–352
risk-reward, 346–348
benefit-cost ratio, 358–359
Bernoulli distribution, 347, 356
binomial
cumulative distribution function, 51
experiment, 48

capability index, 95

cavitation, 195
Cayley–Menger determinant, 100
Cayley–Menger matrix, 99
central limit theorem, 74, 149
certain event, 374
Charpy
ductile-to-brittle transition region, 108, 247
impact energy/toughness, 247
V-notch impact test, 108
Chebyshev’s inequality, 148
cleavage fracture, 236, 241, 246, 287
clustering of random demands, probability of, 310–312
cold expansion, 203
common cause, 188, 202, 213, 221–2
 failures, 184–6
 faults, 84
comparative method for improving reliability,
 283–89
comparative reliability models, 197–8, 283–291
complementary events, 374
compressive residual stresses, 261–2
condition monitoring, 219
conditional
distribution, 164
 loss from failure, 333–6
 probability, 33–4
 technique for bivariate sampling, 164
confidence interval for MTTF, 65–6
constant hazard rate, 59–61, 65, 67, 83, 197, 318
continuity of a working state, 211
continuous distribution function, 21–2, 153
correlation coefficient, 394
corrosion, 195
 allowance, 216
 inhibitors, 195
cost-benefit analysis, 357–358
cost of failure, 327–343
 reliability requirements based on, 330–2
covariance, 394
 properties of, 394–395
covariance matrix, 395
coverage of space by random objects, 323–324
crack arrestors, 250
critical load, 142
cumulative
distribution of time to failure, 22
 hazard rate, 59
 stress hazard density, 274–5
cut set, 181–2
 minimal, 181–2
damage escalation, 226
damage factorisation law, 143–145
data
 analysis rules, 103
 industry-specific, 103
 record, 103
decomposition method, 37–41
De Morgan’s laws, 388–389
decreasing failure rate (DFR), 83–4
demand–capacity see load–strength interference model
derating, 224–5
detrimental factor, 278–9
disjoint events, 374 see also mutually exclusive events
distribution mixture, 87–8, 97
 sampling from, 166
 upper bound of variance of, 91–2
 variance of, 89–90
diversity in design, 221–2
dual principles, 217–29
ductile fracture, 245–6
ductile-to-brittle transition region, 247
dynamic programming, 357–361, 365
 algorithm for solving the optimal safety budget allocation problem, 365–369
early-life failures, 200, 207, 265–7
empirical cumulative distribution, 107–8
environmental stress screening, 207
estimating model parameters, 105, 107, 109, 113–14, 116
 event, 373–385
expected fraction of unsatisfied demand, 323–326
expected loss from failure, 332–333, 336
expected profit criterion, 345–347
expected value, 67, 76–7, 125, 396
 of the benefit, 347–349
 of the demand times, 316–317
 of a function of random variable, 396
 of the loss given failure, 332–333, 352
 of the net profit, 352
 of the potential loss, 336–340, 352
 of the total profit, 353–354
 properties of the, 396
exploratory data analysis, 103
extreme value distribution
 maximum, 81
 minimum, 82
 testing for consistency, 111
fail-safe designs, 247–8
failure
density function, 3, 21–2
 density and hazard rate, 60–61
 mechanism, 1
 mode, 1, 2, 4
 region, 121
 surface, 119
failure-free operating interval, 69–70
failure mode and effect analysis (FMEA), 2
failure modes, effects and criticality analysis (FMECA), 2
failure probability
 components with complex shape, 276–279, 285–288
conditional individual, 276–277
initiated by flaws, 269, 285–288
fast fracture, 235–43
consequences, 247
driving forces, 235–7
likelihood, 242–3
fatigue
 crack growth model, 251–2
 crack growth rate, 251–2
 crack propagation, 251–2
 fracture, 251–264
 life, 251–6
flaw number density, 276–281
 upper bound, 280–281
flaw size distribution, 280
flaws
 fracture triggered by, 269
 probability of failure initiated by, 269
 fracture controlled by size of flaws, 280
fracture toughness, 236–242
 increasing, 242
 plane-strain, 236
 mode I, 238
 mode II, 238
gamma
density function, 64
distribution, 63–4
Gaussian
 (normal) model, 73–6
 random variable, simulation, 162–3
generic comparator, 10–11
general framework for reliability and risk analysis, 47
generic principles for reducing technical risk, 189–33
hazard potential, 227–8
hazard rate, 58–61, 80, 83
 and failure density, 60–61
 function, 60, 61
highly accelerated life testing, 207
highly accelerated stress screens (HASS), 207
homogeneous Poisson process, 53–5
 random arrivals, 55
 random demands following, 55, 307–8
 random failures following, 55, 308–309
 random variable following, 54
human errors, 85, 202, 265
impossible event, 374
increasing failure rate (IFR), 83
industry-specific data, 103
infant mortality region, 83
interlocks
 failure prevention, 205
 logic, 206
 physical, 206
 time, 206
intersection of events, 380–2
 probability of, 380
inverse states, 203–5
inverse transformation method, 153–4
joint distribution, 164, 167, 174–5, 393–394
k-fold standby system, 63
knapsack dynamic programming, 358–9
 algorithm, 365–67
 weaknesses, 359–60
Kolmogorov’s axioms, 379
Lagrange
 interpolation formula, 106
 multipliers, 99
latent faults, 206–7
leak-before-break, 247–9
likelihood function, 113
load, 57, 76, 81–2, 84
load–strength interference, 120–127
 applications, 127–30
 evaluating reliability, 170–172
 Monte Carlo simulation, 171
 reliability and risk analysis based on, 130–134
load–strength reliability integral, 122–4
loading roughness, 135
 critical weakness, 135
log-likelihood function, 114
log-normal
 distribution, 77
 model, 77–9
 probability density function, 78
 reproductive property, 79
log-normal random variable,
 simulation, 163
logical AND, 386
logical arrangement of components, 6–10
logically arranged
 in parallel, 29
 in series, 27
logical NOT, 387
logical OR, 387
marginal distribution functions, 394
marginal probability density functions, 394
materials, 191, 200, 209–10, 216, 225, 236, 241, 243, 245
maximum acceptable risk of premature failure, 330
maximum extreme value distribution, 81
mean, 397–398
mean time between failures see MTBF
mean time to failure see MTTF
memoryless property of negative exponential distribution, 57
method of maximum likelihood, 113–14
algorithms, 169–79
and the central limit theorem, 149
and the weak law of large numbers, 147
minimal path, 181
minimum critical distances
 before locations of random variables, 307
 between locations of random variables, 307–20
minimum extreme value distribution, 82
minimum failure-free operating periods see MFFOP
minimum separation intervals (MSI)
 between adjacent random variables, 309–319
 reliability measures based on, 309–310
mixed-mode fracture criterion, 238–40
mixture distributions, 87–8
random sampling from, 166
model
 overparameterised, 106
 robustness, 106
 statistical, 105
MFFOP, 69–70, 310–320
MTBF, 67
MTTF, 61–2, 67–8, 70–71, 184, 310, 313–314, 330
 confidence interval, 65–6
 problems with MTTF and MTBF, 67–9
 uncertainty associated with, 65–6
multi-run welds, 108
multiple sources
 property distribution from, 89–90
 variance of property from, 89–91
mutually exclusive events, 25, 379
 probability of a union and intersection of, 379
negative exponential distribution, 56–7, 141–2
 memoryless property of, 57–8
 and Poisson distribution, 56
 probability density function, 57
negative-state components, 17–19
non-disjoint events, 383
non-homogeneous Poisson process, 276–7
normal distribution, 73–5
 standard, 74–5
 testing for consistency, 111–12
null event (impossible event), 374
 number density upper bound, 280–281
optimal
 allocation of resources, 357–359
 replacement, 177–9
 safety budget allocation, 360–372
 optimization, 176, 179, 190, 197, 199, 256, 365
OR-gate, 387
overstress failures, 139
 mechanisms, 139
overstress reliability integral, 139–43, 220
Palmgren–Miner rule, 144
parallel arrangement, 6–7
parallel-series, arrangement, 199, 362–364
parameter estimation, 109–17
 three-parameter power law, 114–15
parasitic flow loops, 204–5
Paris–Erdogan power law, 145
parts count method, 61
permutations of interchangeable components, 199
physical arrangement of components, 6–10
physics-of-failure models, 198, 235–67
plastic deformation, 236, 241, 245
Poisson distribution, 53–6, 139, 271, 276, 304, 315, 340
Poisson process; non-homogeneous, 139, 276–277
 see also homogeneous Poisson process
Poka–Yoke, 202, 206
potential
 loss, 333–335, 345–350
 profit, 353–356
Power law, 114–17
 applications, 116
 parameter estimation, 114–15
preventive principles, 191–217
probability
 axiomatic approach, 379
 classical approach to defining, 378
 complementary events, 379–1
density function of the times to failure, 21, 393
empirical definition, 378–380
failure see failure probability
fracture, 269–83
plotting, 107
safe/failure configuration, 294
probability density
 cost of failure, 333–336
 time to failure, 21–3
probability distribution
 cost of failure, 333–336
 load, 121–5
 of property from multiple sources, 87–8
 strength, 121–5
 time to failure, 21–3
probability plotting, 107–13
protective principles, 229–33
quality control to prevent early-life failures, 265

random
direction in space, 159
locations following homogeneous Poisson process, 158, 304
point selection in n-dimensional space region, 157–61
points on a disc and in a sphere, 160
sampling from mixture distribution, 166
subset, 152–3
random demands
probability of clustering, 298
probability of unsatisfied, 302–3, 314–317
random events, 23, 373
probability of clustering, 298–303
random shocks
evaluation of reliability associated with, 171–2
generation, 172
random variables
basic properties, 391–396
configurations of, 293–296
continuous, 392
controlling, 47
correlated, 394–395
discrete, 391–2
probability of safe/failure configuration of, 294
properties of expectations and variances, 396–397
relative locations, 293–306
reliability governed by relative locations of, 293–306
risk-critical, 199
statistically independent, 395
unfavourable combinations, 218
recursive backtracking, 369–2
redundancy, 195–7
active, 196
k-out-of-n, 196
standby, 196
rejection method, 165–6
reliability
assurance, 312–314
basic concepts, 21–2
bathtub curve, 83
block diagram, 6–19
complex systems, 181
data analysis see data analysis
data record, basic components, 103
dependent on minimum critical distances, 307–323
governed by relative locations of random variables, 293–305
index, 126
index critical weaknesses, 134
series arrangement, 27
series and parallel, 31–2
parallel arrangement, 30
reliability analysis based on cost of failure, 327–343
reliability function, 21
reliability measures, based on minimum separation intervals (MSI) and minimum failure-free operating periods (MFFOP), 307–25
reliability network, 1, 6–19
reliability requirements
based on cost of failure, 327–343
multiple, 342–343
to guarantee availability target, 320–322
to guarantee minimum failure-free operating period before failures followed by downtime, 317–320
residual stress, 261–2
from cold expansion, 203
from shot peening, 261–2
measurement, 262
risk
associated with multiple failure modes, 336–338
of failure, 328–329
fast fracture, 242–3
fatigue fracture, 257–66
management, 228–9
models, 336–342
of a net loss, 348–356
of premature failure, 336–338
reduction, 228–9
reduction options, 361–362
of system failure, 338
risk-based design, 191
risk reduction principles, 189–233
risk-reward bet, 345–348
risk-reward gamble, 347
risk-reward opportunity, 347
robust design, 93, 97, 212–14
rolling warranty periods, 308–314
root cause analysis, 193
safe
region, 119, 121–2, 125
zone, 238
safety margin, 126
critical weaknesses, 134
sample mean
expected value and variance, 397
theoretical results, 397
sample space, 373–374
partition of, 36, 39–40
scatter plot, 104
segmentation, 225–7
self-reinforcement, 223
self-stability, 211
sensitivity to variation of design parameters, 176, 265
separation, 217–18, 222
series and parallel arrangement, 5, 10–12
shot peening, 204, 261–2
residual stress distributions after, 261
simulation of random variable following a continuous distribution, 154
a discrete distribution, 156
the Gamma distribution, 155
a homogeneous Poisson process, 155
a log-normal distribution, 163
a normal distribution, 162–3
a three-parameter Weibull distribution, 162
a uniform distribution, 151
the maximum extreme value distribution, 162
the negative exponential distribution, 154
six-sigma products and processes, 97–8
quality philosophy, 85
software errors, 84
space of exposure, 220–221
spring wire, 262, 264
standard deviation, 74–7, 87–90, 111–13
standard normal distribution, 125, 149
cumulative distribution function, 126
simulating, 163
statistical models, 47, 106
robustness, 106
statistically dependent events, 33, 384
statistically independent events, 384–385
statistically independent random variables, 122, 169, 395
strength, 47, 56, 79, 88, 113, 120–121, 123–5
degradation, 132
normally distributed and statistically independent, 122, 125–6
stress intensity factor, 236–7
stress intensity factor range, 145, 251
stress–life relationship
Arrhenius, 185
inverse power law, 185
Eyring, 185
stress hazard density, 274–6
stress limiter, 133–4
stress raiser, 244–5, 263
stress range, 251, 257–8
supply-demand formulae, 127
survival function, 21
system reliability, 32, 61, 181–3
thermal design, 209–211
expansion coefficient, 209
stresses, 259–61
three-parameter power law, 114
applications, 116–17
parameter estimation, 114–15
time of exposure, 219–20
time to failure distribution, 21, 62, 181
total probability theorem, 36–7
applications, 37–44, 67, 122–4, 139–40, 166, 277
triaxial tensile stress, 244
truth table, 386
type I extreme value model, 81
testing for consistency, 111
ultrasonic inspection technique, 266
unavailability, 71
uncertainty associated with
conditional losses, 232
design parameters, 173–7, 283–4
the ductile-to-brittle transition region, 108
exposure to losses, 333
locus of stress intensity factors determining fracture, 238
MTTF, 65–6
parameters, 72
parameters of load distributions, 284
reliability, reliability parameters, 283–5
undirected edges, 13–15
uniaxial stress, 278, 280
uniform distribution model, 72–3
cumulative distribution function, 72–3
probability density, 72
simulation of random variable following, 151–2
testing for consistency, 109
union of events, 25, 375
probability, 375
unreliability and variability, 267
unsatisfied demand
expected fraction, 323–326
probability of, 302, 314
upper bound of variance of distribution mixture, 91
of properties from sampling from multiple sources, 91–2
useful life region, 83
variability, 199
strength, 130
variance
distribution mixture, 89–90
property of, 398
of a random variable, 396
variance upper bound
algorithm, 101
applications, 93–8
theorem, 91–2
Venn diagram, 36, 374
vibration control, 216
virtual accelerated life testing, 181–8
virtual testing, 173–7
Von Neumann’s rejection method, 165
voting system, 52
vulnerability, 222

weak links, 190
weakest-link concept, 201, 269
 mathematical formulation, 270
wear-out failures, 84, 224, 235, 251
wear-out region, 83

Weibull analysis, 110
Weibull distribution, 79–80, 269–276
 testing for consistency, 110
Weibull hazard rate function, 80
Weibull model, 79, 116, 269–276
Weibull probability density function, 79
well-ordered parallel series system, 291,
 362–365

yield strength, 243, 247, 254, 264
yielding, 236, 246
 plastic, 253–4