INDEX

A
Acceleration factor (AF), 468–469, 557–559, 568, 569
Access time, 7, 23, 24, 26–27, 39, 41–43, 45, 387, 398–400
Activation energy, 135–136, 137, 467–469, 480, 489–490, 557
Active volume, 712, 714, 717, 724
Address bus, 43, 73
Address fuses, 78, 79, 81
Address path configuration, 91, 98–99
Address word, 6
Advanced technology attachment (ATA) interface, 47, 48, 51, 52, 53, 551
AF (acceleration factor), 468–469, 557–559, 568, 569
A-GST. See GST (germanium antimony tellurium)
AHI (anode hole injection) model, 160, 161, 167, 168, 571, 572
Algorithm skips, 91, 97, 98, 105
Algorithms. See Erase algorithm; Program algorithm
Alternative floating nodes, 195–196
Amorphous metal-oxide films, 698
Amorphous state, 709, 710–711, 715, 724, 727
AMR (anisotropic magnetoresistance) effect, 679
Analog blocks, 67, 71–73
AND-type Flash, 69, 71
Anisotropic magnetoresistance (AMR) effect, 679
Anode hole injection (AHI) model, 160, 161, 167, 168, 571, 572
Antenna ratios, 531, 532, 533
APC (augmented product code), 87
Array blocking, 25, 27–28, 55, 186
Array direct access, 91, 103–104
Array operation, 71, 110, 118, 119, 186–187
Arrays. See Cell arrays
Arrhenius model, 135, 136, 468, 472, 473, 557, 559, 567
Asperities, 148, 149, 150, 474, 512, 513
Asymmetrical blocking, 25, 29, 56
Asynchronous Flash, 39, 40, 41, 42, 43
ATA (advanced technology attachment) interface, 47, 48, 51, 52, 53, 551
Augmented product code (APC), 87
Autoclave test, 556
B
B4-Flash (back-bias-assisted band-to-band tunneling-induced hot-electron injection), 363
Back-bias-assisted band-to-band tunneling-induced hot-electron injection (B4-Flash), 363
Background operation (BGO): and DINOR circuits, 314, 326, 327–328
emulating EEPROM, 327–328
emulating static RAM, 327–328
in Flash memory architecture, 67–68
Background pattern discrepancy (BPD), 283–284
Ball grid array (BGA) packages, 36, 37, 38
Band structure, 9, 10, 145
Bandgap reference, 118–119, 120, 121
Band-to-band hot-electron (BBHE) injection cell operation, 332–333
Band-to-band tunneling: back-bias-assisted band-to-band tunneling-induced hot-electron injection (B4-Flash), 363
current-induced degradation and charge trapping, 460–462
hot-electron injection
Chung research studies, 353, 357
and DINOR programmed cells, 332–333, 334
Ohnakado research studies, 349–353, 354, 355
and P-channel cells, 329–332, 334
as P-channel Flash operation, 338, 339, 340–341, 342
Shen research studies, 353, 355, 356
physics overview, 158–159
in tunnel-erase-induced oxide degradation, 459–460
Barrier engineering. See Tunnel barrier engineering
Bathtub curve, 539, 541, 553, 564
Battery life, 25, 29, 36, 45, 46, 403
BBHE (band-to-band hot-electron) injection cell operation, 332–333
BBT. See Band-to-band tunneling
BGA (ball grid array) packages, 36, 37, 38
BIOS, 24, 29, 37, 39, 44, 466, 543
Bipolar Transistor Selected (BIST) P-channel cells, 359, 360, 361–362
BIST (Bipolar Transistor Selected) P-channel cells, 359, 360, 361–362
Bit-by-bit verify circuits:
DINOR, 314, 315, 321, 333
NAND EEPROM, 237–247, 248, 265, 266, 286
Bitline pitch, 16, 225–226, 255, 265, 270, 272
Bitlines. See also DINOR (divided bitline NOR)
capacitive coupling, 265–266, 270, 288, 292
defined, 5
main bitline, 69, 70, 316, 321
in NROM arrays, 15–16
shielded, 265, 270–272, 273, 286, 288
sub-bitlines, 69, 70, 316, 321, 339, 352
Block erase, 30, 34, 57, 226, 233–235
Block locking, 26, 31–32, 50, 57
Block reclamation, 35
Blocking:
array, 25, 27–28, 55, 186
block locking, 26, 31–32, 50, 57
virtual, 34
Block-oriented memory, 7, 8, 224
Block-to-block disturb, 495–496
Blue-ray disks, 708
Boltzmann constant, 119, 135, 141, 468, 490, 557, 633
Boot block, 28, 29, 32, 66
Boot code, 28, 29, 36, 44, 59–60
Boot sector, 98–99
Bootstrapstrapping techniques, 110, 111, 118
Bottom boot, 59, 99
Breakdown model, 164, 168–169
BTBT. See Band-to-band tunneling
Buffer circuits, 122–123
Bulk erase, 28, 30, 189, 392, 393
Bulk-limited conduction, 143–144
Burn-in:
and process defects, 539–543
and reliability monitoring, 564–565
Burst mode, 27, 41–43
Burst read, 40, 68, 272–273, 274, 285, 657
Bus cycles, 27, 57, 74
Bus widths, 25, 27, 40
By 8 mode, 100–101
By 16 mode, 89, 100–101
Byte programming, 30, 32, 297, 338

C
Cache, 8, 398, 399
Calling sequence, 33
CAM (content-addressable memory), 547–548
Capacitance model, 10, 140–143
CBC (channel boost capacitance) cell, 258–263
CD (critical dimension) control, 189, 698
Cell arrays. See also Flash memories; Multilevel cell (MLC) technology
asymmetrical vs. symmetrical, 28–29
differential sensing, 202–203
DINOR, 316–320
disturb concept, 186–187
dividing into blocks, 28–29, 166
P-channel, 343–345
SuperFlash architecture and design, 212–214
timing, 203–204
Cell density, 698, 718
Cell erase, 64, 209, 214, 456, 463, 493, 524, 602
Cell phones, 19–20, 37
C-GST. See GST (germanium antimony tellurium)
Chalcogenides, 12, 708, 709
Channel boost capacitance (CBC) cell, 258–263
Channel erase, 184–185, 188, 191, 206, 456, 457, 502, 561, 572, 602
Channel hot carrier (CHC) mechanism, 423–425
Channel hot-electron (CHE) injection:
for compacting Flash cells, 65
effect of silicon nitride as tunnel dielectric, 422–423
vs. FN tunneling, 10
as method of programming Flash memory, 447
overview, 150–153
for programming Flash cells, 64
Channel hot-electron (CHE) programming-induced oxide degradation:
degradation mechanism of Flash EEPROM memory programming, 452–454
gate current, 449–450
overerase correction programming, 450–452
trap reduction through nitridation, 454–455
Channel hot-hole-induced hot-electron (CHHIHE) injection:
Chung research study, 353, 357
Hsu research study, 345–349
as P-channel Flash operation, 338, 339–340
Charge balance equation, 140, 141
Charge loss:
and accelerated data retention bake tests, 467–473
and activation energy, 467–469
due to charge detrapping, 477
due to contamination, 474, 475, 478
due to cycling-induced oxide damage, 477
due to oxide defect, 473, 474, 478
intrinsic, 135–136, 467, 473, 478, 483, 607
minimization as goal, 446
new extrapolation law, 472–473
overview, 135–138
through ONO, 474–477, 478
voltage-accelerated data retention test,
469–472
Charge loss/gain mechanisms, 473–477
Charge placement, 596, 597, 603–606, 608,
609–610, 614
Charge pumps:
and DINOR circuits, 321–326
heap, 117–118, 326, 327
Charge storage ability, 595–596
Charge-based memory devices, 2–3, 12
CHE. See Channel hot-electron (CHE)
injection; Channel hot-electron (CHE)
programming-induced oxide degradation
Chemical corrosion failure mechanisms, 556
Chemical mechanical polishing (CMP), 200,
253, 318
Chemical vapor deposition (CVD):
impacts of intermetal dielectric and
passivation films on Flash memory
reliability, 533–536
in silicon nitride tunnel dielectrics, 409, 410
CHHIHE. See Channel hot-hole-induced
hot-electron (CHHIHE) injection
Chip controller, 72–73
Chip scale packages (CSPs), 37–38
CMOL (CMOS molecular circuits), 700–701
CMOS devices, 354, 356, 358, 530–533, 696,
700–701, 702, 703
CMOS molecular circuits (CMOL), 700–701
CMP (chemical mechanical polishing), 200, 253, 318
Code + data usage model, 23, 24, 49, 50, 54–62
Code and data, 20, 21, 22, 23–24, 26, 31, 54,
55–57, 62
Code and data storage, 13, 22, 23, 24.28
Code integrity, 39, 40, 45
Code security, 40
Code storage:
execute-in-place (XIP) usage model, 38, 39–
43, 45, 51
socket Flash for, 543
store and download (SnD) usage model, 38,
40, 43, 44–45
Code usage model, 23–24, 49, 50
Coercive voltage, 663, 670
Coffin-Manson equation, 559
Cold electrons, 10
Column decoder, 67, 397, 399
Column defects, 75
Column failures, 75
Column programming path, 67, 202
Column redundancy, 75, 80–81
Command user interface (CUI), 73, 91, 92
CompactFlash, 51, 52, 53, 543
Compaction, 63, 65, 74, 97–98, 105, 392–393
Complementary metal-oxide-semiconductor
(CMOS), 354, 356, 358, 530–533, 696,
700–701, 702, 703
Compression, 48, 91, 106–108
Conduction band, 9, 144, 145, 146, 147, 148, 349,
437, 449, 450, 459, 460, 633, 703, 704
Conduction mechanisms, 10, 131, 414, 416, 436,
471, 499, 636
Contactless cell arrays, 316–317
Content-addressable memory (CAM), 547–548
Control algorithms, 33, 90
Control bus, 73
Control circuitry, 6
Control logic, 67, 73–75, 597
Controller block, 73
Counters block, 74
Coupling coefficients, 11
Coupling noise, 270–272
CPU (central processing unit), 8
Crested barrier, tunnel barrier engineering:
and FN tunneling, 194
NOVORAM/FGRAM memories, 703–706
silicon nitride as dielectric, 437–439
Critical dimension (CD) control, 189, 698
Crystal growth, 196, 714
Crystalline state, 12, 709, 711, 724
Crystallization temperature, 710, 712, 714
CSPs (chip scale packages), 37–38
CUI (command user interface), 73, 91, 92
CVD (chemical vapor deposition):
impacts of intermetal dielectric and
passivation films on Flash memory
reliability, 533–536
in silicon nitride tunnel dielectrics, 409, 410
Cycling:
erase overview, 29–30
evaluations, 541
life test, 539–543
stress, 13
Cycling-induced data retention issues, 477–481
Cycling-induced degradations, 447–486
D
DAHC (drain avalanche hot-carrier), 450
Data bus, 22, 51, 73, 74, 100, 101, 399
Data compression, 91, 106–108
Data flow parameter, 7
Data logging, 23
Data organization, 7
Data output width, 7
Data path configuration, 91, 99–101
Data refresh operation, 3
Data retention:
activation energy, 467–468
bake tests, 467–473
characteristics related to tunnel oxide and
floating-gate poly texture, 481–484
and charge-loss, 467–477
defined, 466
duration, 467
effects, 571–572
ferroelectric memories, 672–673
Flash EEPROM cycling-induced issues, 477–481
impact of soft errors, 484–486
magnetic memories, 387
multilevel cell (MLC) technology, 607
new extrapolation law, 472–473
nonvolatile memory (NVM) overview, 2, 9, 12–13
NROM (nitrided ROM) memories, 636–640, 641
overview, 135–138, 466
reliability issues, 466–486
SuperFlash, 217–218
temperature-accelerated test, 467–469
temperature-accelerated test, 469–472
voltage-accelerated test, 469–472
Data retention storage life (DRSL) test, 554–555
Data storage, 46–53
Data usage model, 24, 49, 50
DC erase disturb, 187
DDR (double data rate), 43
Defective cells, 81, 88, 104, 548, 549
Defectivity model, 75
Defects:
categories, 547
density, 475, 484, 512, 525, 538, 542–543
mapping, 547–548, 549
reason for failure rate, 539, 541
Defects per million (DPM), 493
Degradation:
cycling induced, 447
induced by band-to-band tunneling, 460
induced by charge trapping, 461
induced by tunnel erase, 456
during programming, 452
Density, Flash memory, 27
Depletion check, 74, 93, 94, 97
Depletion mode, 5, 6, 11, 158, 230, 272, 429, 516
Design for testability. See DFT (design for testability)
Destructive readout (DRO), 4, 666, 695, 696
Detrapping-related retention effects, 572
Device technology generations, 16–18
DFT (design for testability):
address path configuration, 98–99
array direct access and stresses, 103–104
data compression, 106–108
data path configuration and trimming, 99–101
external control, 97
fuse cell implementation, 92–93
high voltages external forcing and monitor, 101–103
high voltages trimming, 94–96
internal pattern write and verify, 105–106
internal state machine algorithm skips, 97–98
overview, 89–91
sense amplifier reference trimming, 93–94
test entries, 91–92
test organization, 91–92
timings trimming, 96–97
DIBL (drain-induced barrier lowering), 626, 654
Dielectric requirements, 191–192
Dielectric scaling:
alternative floating nodes, 195–197
interpoly dielectric (IPD), 195
overview, 191
requirements, 191–192
tunnel oxide, 192–195
Dielectrics for tunneling. See Tunnel dielectrics
Differential to single-ended converter, 112, 113
Digital cameras, 47, 48, 50, 53, 134, 224–225
Digital versatile disks:
random access memory (DVD-RAM), 708
rewritable (DVD-RW), 708
DINOR (divided bitline NOR):
array architecture, 316–320
and background operation (BGO), 326, 327–328
band-to-band hot-electron (BBHE) injection
cell operation, 333
endurance, 315, 333
erasing, 313–314
and gate-protected polysilicon diodes
(GPPDs), 323–324, 325
heap pump circuit, 326, 327
high-voltage generation, 321–326
low-voltage read, 320–321
operation, 313–314
and P-channel cells, 328–334, 350
programming, 313–314
read access speed, 321
technology features, 320–321
as type of Flash memory array, 64, 69
virtual ground array (VGA) cell structure,
317–318
voltage detect circuit, 324–326
wordline boost scheme, 326–327
Disks, strengths and weaknesses, 21, 24, 46
Disturb effects, 138–139
Disturb immunity, 138
Disturbs:
block-to-block, 495–496
defined, 186, 487
effect of cycling, 490, 494–495
erase, 139, 187, 206, 210, 495
gate, 139, 338, 389, 390, 391, 393–394, 492–494, 630
interblock, 186
intrablock, 186–187
NAND array, 229–230
NROM array, 630–632
overview, 186
program, 211, 229–239, 280–281, 283, 339, 491–495, 575–576
read, 339, 487–490
SST cells, 219–220
SuperFlash, 210, 211–212
Divided bitline NOR. See DINOR (divided bitline NOR)
Double data rate (DDR), 43
Double partitioned memory arrays, 67. See also Background operation (BGO)
DPM (defects per million), 493
Drain avalanche hot-carrier (DAHC), 450
Drain disturb, 138, 187, 338, 389, 390, 391, 393, 491, 571, 572
Drain-induced barrier lowering (DIBL), 626, 654
Driver information systems, 45–46
DRO (destructive readout), 4, 666, 695, 696
DRSL (data retention storage life) test, 554–555
Dual in-line (DIP) packages, 36
Dual partition Flash devices, 31
Dynamic random-access memory. See DRAM (dynamic random-access memory)
E
ECC (error correction coding), 87–89, 548–552
EEPROM (electrically erasable read-only memory). See also Flash memory 64-bit NAND example, 225–226
comparison of NAND and NOR types, 223, 224–225, 227
defined, 2
emulating, 327–328
vs. EPROM, 179
history, 14, 23–24, 223, 224
NAND technology overview, 223–226
relationship to Flash memory, 2, 54, 55, 594 strengths and weaknesses, 21
Effective electron temperature model, 151
Effective yield, 76, 78
Eitan, B., 15, 16
Electric charge quantization, 689–691
Electric field energy model, 166, 168
Electrode-limited conduction, 144
Electron discreteness impedance restriction, 689–690
Electron trap generation, 163–164, 166–168, 454, 477, 510
Electrostatic discharge (ESD), 67, 122, 555
Electrostatic potential, 140, 141
Embedded Flash:
advantages over stand-alone Flash memory, 375–376
applications, 377–383
by device type, 377–379
by end product, 380–382
by function, 379–380
by usage, 382–383
cells
1.5T cell, 374
2T cell, 374
2TS cell for low-voltage operation, 389–391
examples, 386
MoneT cell for high density and high speed, 391–394
SCSG cell for manufacturability, 386–389
special requirements and considerations, 383–385
defined, 49, 373, 543
design
array architecture, 399–400
cell selection, 400–401
design techniques for embedded Flash module, 398–403
Flash module design for embedded applications, 396–398
high-speed circuit techniques, 401–402
low-voltage design, 403
process consideration, 401
special requirements and considerations, 394–396
system architecture, 398–399
disadvantages compared with stand-alone Flash memory, 376–377
logic-based vs. memory-based processes, 385
overview, 49, 373–375
size and process complexity trade-off, 384–385
vs. stand-alone Flash memory, 47, 375–377
Endurance:
as aspect of nonvolatile memory (NVM), 13, 387
cycling, 454, 467, 544, 555
DINOR (divided bitline NOR), 315, 333
ferroelectric memories, 671–672
Flash memory limitations, 623
floating-gate devices, 133–135
magnetic memories, 387
NROM (nitrided ROM) memories, 639–640
overview, 13, 133–135
SST memory cells, 218–219
SuperFlash, 218–219
Energy barrier, 9–10, 144–146, 148, 150, 151, 183, 195, 447, 450, 486, 600, 601, 607, 709
INDEX

Engine spark timing control, 380
Enhancement mode, 5, 11, 15, 213, 230–231, 272, 429, 516
EPROM (erasable programmable ROM): compared with Flash memory, 601 defined, 2
vs. EEPROM, 179
evolution of Flash memory from, 21–22
history, 21, 23
strengths and weaknesses, 21
UV, 179–180
ERASE command, 74
Erase counts, 35
Erase cycles, 29, 49–50, 57–58, 133, 139, 480, 515, 538, 544, 623, 642
Erase distribution, 104, 183, 187–190, 191, 462, 466, 481, 528, 530
Erase disturb, 139, 187, 206, 210, 495
Erase margin, 132, 491, 545, 641
Erase methods, 332, 353, 447, 456–459, 461, 479
Erase operation:
alternative memory technologies, 623, 626, 627, 628, 629, 631, 636, 642, 643, 654, 671, 691, 703, 708, 716
as basic Flash cell operation, 63, 64, 90
basic NAND cells, 227–228
block sizes, 28–29
block-erase, 30, 34, 57, 226, 233–235
bulk-erase Flash devices, 28
and compaction, 65, 97–98
conduction mechanisms, 10
cycling, 29–30, 57–58
and DINOR Flash memory technology, 314, 319, 321, 328
distribution control, 187–190
EEPROM history, 14, 27
and electric fields, 216–217
and embedded Flash memory, 387, 392, 544–547
EPROM devices, 21–22
erratic erase, 462–465, 570–571
and error correction, 88
and ETOX technology, 180, 183–185, 188, 189, 190, 191, 200, 205–206
and Flash memory architecture, 66, 67, 68, 70, 71, 73, 74
and Flash memory limitations, 623
in floating-gate devices, 11–12
and multilevel cell digital memories, 601, 605
and NAND Flash memory technology, 233, 248
and NOR Flash memory technology, 5, 179, 180, 183–185, 188, 189, 190, 191, 200, 205–206, 208, 215, 217
NROM devices, 15, 626, 627, 628, 629, 631, 636, 642, 643
overerase correction programming, 450–452
overview, 11–12, 131
and P-channel Flash, 338, 339, 343, 345, 353
physics of mechanism, 143–157, 159
poly-to-poly, 512–517
and reclamation, 35
reliability issues, 445, 447, 452, 456, 457, 458, 459, 461, 462, 478, 479, 482, 495, 523, 527, 537, 544, 547
and row redundancy, 79, 82–84, 86, 93, 96
self-boosted NAND inhibit scheme, 233–235
software issues, 32–33
SuperFlash EEPROM cells, 209–210
and SuperFlash technology, 208, 215, 217
and suspends, 30–31, 57
and tunnel dielectrics, 430, 431, 432, 433, 434, 437, 440
Erase pulse, 12, 74, 79, 96–97, 135, 447–448, 544, 545–546
Erase suspend, 30, 31, 57, 58, 74
Erase through oxide (ETOX). See ETOX (EPROM tunnel oxide)
Erase verify operation, 74, 93, 97, 98, 103, 228, 396, 448, 451, 453, 517, 544, 546
Erratic erase, 462–465, 570–571
Error correction, 87–89, 548–552
ESD (electrostatic discharge), 67, 122, 555
ETOX (EPROM tunnel oxide):
array configuration, 603
cycling-induced degradations in Flash memories, 447–466
embedded erase and program algorithms, 544–547
erase operation, 183–185, 601–602
erased cell vs. programmed cell, 182–183
Flash cell technology, 179, 180–206
Flash memory background, 599–603
history, 14–15, 612
manufacturing, 612
and multilevel cell (MLC), 592–594
overview, 592–594
program operation, 183, 184, 601
read operation, 602–603
relationship to UV-EPROM, 180–182
sensing operation, 182–183
stacked gate SAS etch process and erase distribution - reliability issues, 528–530
Execute-in-place (XIP) usage model, 38, 39–43, 45, 51

F
Face centered cubic (fcc) sublattice, 711, 712
FACE (Flash algorithmic control engine), 608–609
Failure in time (FIT), 553, 566, 675
Failure rate calculations, 565–570
Fast bits, 188, 387, 527
FAT (file allocation table) file sectors, 35
FCBR (full chip burst read) operation, 272–273, 274
Fcc (face centered cubic) sublattice, 711, 712
FDI (Flash Data Integrator), 58
Feature size, 190, 255, 262
Ferroelectric memories:
capacitor cells, 665–667
cells and arrays, 664–670
die and test cost, 675–676
endurance, 671–672
fabrication, 670–671
field-effect transistor cells, 660, 664–665
imprint behavior, 673
nonvolatile characteristics, 671–673
overview, 658–660
programming speed, 669–670
programming voltage, 667–669
reliability, 674–675
retention, 672–673
scaling, 673–674
stacked cells, 665–666
storage mechanism, 660–664
FETs (field-effect transistors):
ferroelectric, 660, 664–665
N-channel, 416
P-channel, 416
Few-electron phenomenon:
as alternative memory technology, 689–696
impact on scaling, 576–579
FGRAM (floating-gate RAM), 706–707
Field-accelerated testing, 137–138
Field-effect transistors (FETs):
ferroelectric, 660, 664–665
N-channel, 416
P-channel, 416
Field-enhancing tunneling injector EEPROM
cells. See SuperFlash
File allocation table (FAT) file sectors, 35
Filing systems, Flash, 35
Film thickness, 191–197
Find operation, 36
Fin-FET NROM cells, 655
FIT (failure in time), 553, 566, 675
Flash, origin of term, 14, 21
Flash algorithmic control engine (FACE),
608–609
Flash cards, 24, 46, 47, 50, 51, 52, 71
Flash Data Integrator (FDI), 58
Flash memories. See also Embedded Flash;
NAND Flash technology; NOR Flash
memories; SuperFlash
alternative technologies overview, 617–619
applications overview, 19–38
architecture overview, 66–68
array architectures, 69–71
asymmetrical vs. symmetrical, 28–29
basic cell operations, 63–65
basic models, 140–143
basic operating principles, 130–143
capacitor model, 10, 140–143
in cell phones, 19–20
characteristics, 130–143
circuit techniques, 108–123
command set, 74
cost considerations, 596–597
circuit-induced degradations, 447–466
data retention, 466–486
design for testability, 89–108
device attributes, 26–32
disturbs, 487–496
embedded vs. removable, 47
error correction, 87–89, 548–552
ETOX cell technology, 180–206
evolution from EPROM, 2, 21–22
floating-gate structure, 3, 9–12
future applications, 45–46
history, 14–18, 179
how it works, 594–596
key circuit building blocks, 200–206
limitations, 619–624
list of attributes, 25–26
overview, 13–16
physics, 129–171
redundancy, 75–86
reliability overview, 445–447
reliability testing and screening, 552–570
removable, 47, 50–53
role of software, 20, 25–26, 29, 31, 32–36
scaling issues, 190–200, 257, 258, 260, 262–
263, 264, 265
split-gate memory technology, 180, 206–216
storage, 23–24, 38–62
strengths and weaknesses, 21
terminology, 131–140
typical layout, 619, 620
usage models, 23–24, 38–46, 49, 50, 54–62
Flash memory core (FMC), 375, 394, 395,
396–398
Flash translation layer (FTL), 35, 51
FlashFile architecture, 29
Floating-gate devices:
capacitance model, 10, 140–143
dielectric, 242–429
endurance, 133–135
erasing, 183–185
Flash cells as transistors, 63–65, 594
history, 596
isolation, 136, 197
N-channel, with deposited silicon nitride
tunnel dielectric, 425–429
nitride, 195–196, 624–658
noncrystal storage nodes, 196–197
operational overview, 130–131
INDEX

P-channel, with deposited silicon nitride tunnel dielectric, 429–432
reliability issues, 526–528
replacing, 196–197
role of electrode, 3
silicon nitride as tunnel dielectric, 409
structural overview, 3, 9–12
Floating-gate RAM (FGRAM), 706–707
Floating-gate-to-control-gate isolation, 136
Floating-gate-to-floating-gate coupling, 574–575
FMC (Flash memory core), 375, 394, 395, 396–398
FN tunneling. See Fowler-Nordheim (FN) tunneling
4-bit NROM memory cells, 645–650, 655, 657
4-level NAND cell array, 288–293, 306
Fourier transform infrared (FTIR) spectrum, 411–412
Fowler-Nordheim (FN) tunneling:
for comparing Flash cells, 65
equation for erase distribution, 188
for erasing Flash cells, 64
as method of erasing Flash memory, 447
as method of programming Flash memory, 447
in NAND EEPROMS, 223
overview, 10, 145–148
as P-channel Flash operation, 338, 339, 340, 341, 342, 343
for programming Flash cells, 64
FP (Frenkel-Poole) conduction, 414–415, 416, 471
Frenkel-Poole (FP) conduction, 414–415, 416, 471
FTIR (Fourier transform infrared) spectrum, 411–412
FTL (Flash translation layer), 35, 51
Fujitsu, 409, 676, 677
Full chip burst read (FCBR) operation, 272–273, 274
Full-width at half-maximum (FWHM), 633
Fuse bits, 73. See also Fuse cells
Fuse cells, 78–79, 92–93, 94, 96, 98, 99, 100
FWHM (full-width at half-maximum), 633

Ge-Sb-Te, See Germanium antimony tellurium (GST) alloys
Giant magneto-resistance (GMR) effect, 679–683, 687, 689
GIDL (gate-induced drain leakage), 341, 575–576, 633, 635, 636, 637
GMR (giant magneto-resistance) effect, 679–683, 687, 689
GPPDs (gate-protected polysilicon diodes), 323–324, 325
Gray code, 82, 85, 89
Guard rings, 123

H
Hamming codes, 550–551
Hard disk drives, 21, 40, 44, 46, 48, 62, 87, 596, 678
Hardware redundancy, 549
HAST (highly accelerated stress test), 556
Hcp (hexagonal close-packed) structure, 712
Heap charge pump, 117–118, 326, 327
Heater resistor, 712, 717–718
Hexagonal close-packed (hcp) structure, 712
HfO2, 194, 408, 434–435
High on-chip voltages, 109
High voltages external forcing, 91, 101–103
Higher injection MOS (HIMOS), 159, 386, 512, 521–523, 524
Highly accelerated stress test (HAST), 556
High-temperature operating life (HTOL) test, 554
High-voltage source with grounded gate erase (HSE), 456–459, 461, 462, 465
High-voltage transistors:
MMOS and PMOS, 254, 265, 282
overview, 536–537
process defects, 539–543
reliability in Flash memory products, 537–539
role of cycling and burn-in, 539–543
HIMOS (higher injection MOS), 159, 386, 512, 521–523, 524
Hole fluence, 160–162
Hole injection mechanism, 160–161, 167, 465, 493, 654
Horizontal parity, 550
Host processor, 67, 73–74
Hot-carrier injection, 10, 162, 164, 191, 196, 363
Hot-electron injection:
back-bias-assisted band-to-band tunneling-induced hot-electron injection (B4-Flash), 363
band-to-band hot-electron (BBHE) injection cell operation, 332–333
channel hot-electron (CHE) injection, 10, 64, 65, 150–153, 422–423, 447
Chung research studies, 353, 357
and DINOR programmed cells, 332–333, 334
Ohnakado research studies, 349–353, 354, 355
and P-channel cells, 329–332, 334
as P-channel Flash operation, 338, 339, 340–341, 342
secondary impact ionization initiated channel hot-electron injection, 156–157
Shen research studies, 353, 355, 356
substrate hot-electron injection (SHEI), 144, 153–154, 163–164
Hot-hole injection:
reliability concerns, 432 (See also Substrate hot-hole injection (SHHI))
substrate hot-hole injection (SHEI), 154, 163
Hot-induced breakdown, 557
HSE (high-voltage source with grounded gate erase), 456–459, 461, 462, 465
HTOL (high-temperature operating life) test, 554
Hybrid CMOS/nanodevice resistive memories, 696, 700–701, 702, 703
Hydrogen release model, 166, 167–168
Hysteresis curve, 662–663, 684
Hysteretic charging curve, 691

I
IDE (integrated device electronics) interface, 51
Impedance restriction, 689
Incremental step pulse programming (ISPP), 247, 283
Infant mortality, 543, 564
Injection:
back-bias-assisted band-to-band tunneling-induced hot-electron injection (B4-Flash), 363
band-to-band hot-electron (BBHE) injection cell operation, 332–333
channel hot-electron (CHE) injection, 10, 64, 65, 150–153, 422–423, 447
hot-carrier injection, 10, 162, 164, 191, 196, 363
secondary impact ionization initiated channel hot-electron injection, 156–157
source-side injection (SSI), 144, 155–156, 512, 517–525
substrate hot-electron injection (SHEI), 144, 153–154, 163–164
substrate hot-hole injection (SHEI), 154, 163
Injection mechanisms (overview), 135, 144, 145, 147, 156, 338, 654
In-line plasma charging damage, 530–533
Input/output buffers, 122–123, 228, 375–376
In-system reprogrammability, 19
Integrated device electronics (IDE) interface, 51
Intel:
Advanced+Boot Block architecture, 29, 32
Flash Data Integrator (FDI), 58
FlashFile architecture, 29
history of ETOX, 14–15, 17, 180, 612, 623
NOR technology, 22, 612
PCM fabrication, 721–722
role in Flash origins, 21
SSD design, 87
StrataFlash technology, 27, 41, 591, 594–596, 598, 599, 608, 612, 613
Interblock disturb, 186
Interface states, 192, 452–454, 498, 521, 522, 524
Interlaced vertical parity (IVP), 87
Interleaving, 40, 41, 57, 226
Intermetal dielectric layer, 533, 534–535
Internal pattern write and verify technique, 91, 98, 105–106, 107
Internal threshold voltage, 141
International Technology Roadmap for Semiconductors (ITRS), 16–18, 192, 702, 723
Interpoly dielectric (IPD), 191, 192, 195
Intrablock disturb, 186–187
Intrinsic charge loss, 12–13, 135–136, 467, 473, 478, 483, 607
Intrinsic failure mechanisms, 134, 554
Inverted-read operation, 276–278
I/O buffers, 122–123, 228, 375–376
I/O pads, 67, 376, 395
Ion contamination, 137, 142
IPD (interpoly dielectric), 191, 192, 195
Iridium oxide, 660
Islands, 408, 690, 693, 694, 696
Isolation of floating gates, 136, 197
ISPP (incremental step pulse programming), 247, 283
ITRS (International Technology Roadmap for Semiconductors), 16–18, 192, 702, 723
IVP (interlaced vertical parity), 87

J
JEDEC. See Joint Electron Device Engineering Council (JEDEC) standards
Jet-vapor deposition (JVD):
gate-quality film properties, 411–417
NOR overview, 192–193
for silicon nitride film, 409–411
Joint Electron Device Engineering Council (JEDEC) standards, 554, 574
JVD. See Jet-vapor deposition (JVD)

L
Lanthanum strontium cobalt oxide, 660
LATCH signal, 113–114
Latch-up testing, 543, 555
Lateral channel electric field, 10, 450, 453
Lateral redistribution, 633, 636
Lead integrity test, 556
Lead zirconate titanate (PZT), 659–660, 668, 670, 671, 673, 674
Level shifting circuits, 385
Life tests, 220, 467, 539, 541, 542, 554–555, 557, 561, 565–570, 573
Linear Flash card interface, 51
Linked lists, 34–35
Local oxidation (LOCOS), 198
Lockdown, 32, 60
LOCOS (local oxidation), 198
Low-temperature operation life (LTOL) test, 554
LTOL (low-temperature operation life) test, 554
Lucky electron model, 151, 601

M
Magnetic cores, 678, 687
Magnetic disks, 8
Magnetic memories:
die and test cost, 688–689
fabrication, 386–387
magnetic GMR cell scaling, 687
magnetic random-access memory (MRAM) with giant magnetoresistive devices, 679–684
magnetic random-access memory (MRAM) with magnetic tunnel junction devices, 684–685
magnetic tunnel junction scaling, 687–688
nonvolatile characteristics
endurance, 387
retention, 387
overview, 678–679
programming speed, 686
programming voltage, 685–686
reliability, 688
scaling, 687–688
Magnetic spin-valve devices, 679
Magnetic thin films, 679
Magnetic tunnel junction (MTJ) devices, 679, 684–685, 686, 687–688, 689
Magnetoresistance, 678, 679, 682, 684–685, 687, 688
Main bitline, 69, 70, 316, 321
Main memory, 8
Managers. See Media managers; Software data managers
Mass storage, 13, 46, 68, 283, 447, 543, 549, 551, 552
Media managers, 20, 30, 32, 34–36, 58, 59, 60–61
MEDICI device simulator, 330
Melting temperature, 709, 711, 712, 714, 723, 724
Memory. See also DRAM (dynamic random-access memory); Flash memories;
Nonvolatile memory (NVM); SRAM (static random-access memory)
common technologies, 21
elementary concepts, 2–9
hierarchy, 8
history, 14–18, 592
ideal, characteristics, 618–619
low-cost goal, 592–594
main, 8
nonvolatile overview, 1–18
storage overview, 9–12
Memory cards, 24, 46, 47, 50–53, 71
Metastable state, 711, 712
Micron, 87
MiniSD memory card, 53
Mirrorbit, 658
Mitsubishi, 69, 346
Mixed signal design implementation, 608–611
MLC. See Multilevel cell (MLC) technology
MMC (MultiMedia Cards), 51, 53
Mobile applications, 19, 29, 225, 313
Mobile ions, 137, 466, 467, 534, 535, 564
MoneT cell, 386, 391–394, 401
Monte Carlo method, 77
Moore, Gordon, 16
Moore’s law, 1, 16, 614
MOS-C charge pump, 114–118
Motorola one-transistor cell. See MoneT cell
MRAM (magnetic random-access memory):
with giant magnetoresistive devices, 679–684
with magnetic tunnel junction devices, 684–685
MTJ (magnetic tunnel junction) devices, 679, 684–685, 686, 687–688, 689
Multilevel cell (MLC) technology:
comparison of 1-bitcell and 2-bitcell product features, 598
cost considerations, 592–594
digital memories, 591–614
evolution of technology, 592, 596–599
Flash memory background, 599–603
history, 592, 596–599
key features, 599
low-cost design implementation, 611–612
low-cost process manufacturing, 612
mixed signal design implementation, 608–611
MLC concept, 596–599
MLC operation, 603–607
overview, 206, 591–592
power supplies, 613
precise charge placement, 603–606
precise charge retention, 607
precise charge sensing, 606–607
programming speed, 613
read speed, 613
reliability, 613
role of ETOX, 592–594
scaling, 614
SST cells in, 216
standard product feature set, 612–613

Multilevel NAND:
array noise suppression technology, 286–293
circuit technology, 283–286
double-level V_{th} select gate array architecture, 290–293
high-speed programming, 301–307
three-level, 297–301
MultiMedia Cards (MMC), 51, 53

NAND Flash technology:
array architecture, 5–6, 69, 70–71, 231–237, 286–293, 344–345
basic cell structure and operation, 227–231
bit-by-bit verify circuits
simple, 237–242
sophisticated, 242–247
booster plate technology, 256–258
channel boost capacitance cells, 258–263
circuit/technology interactions, 270–283
for data storage, 47–48
floating-gate-to-floating-gate coupling, 574–575
full chip burst read operation, 272–273
key circuits, 270–273
multilevel, 283–307
negative V_{th} cells, 263–268
overcoming energy barriers, 10
overprogram elimination scheme, 247–252
overview, 22, 23, 223–226
P-channel Flash, 344–345
process and scaling issues, 252–269
process flowchart, 367, 368–370
for removable Flash media, 50–51
shallow trench isolation, 252–256
shielded bitline sensing method, 270–272
side-wall transfer transistor cell, 293–296
similarities with NOR, 13, 15
source line programming scheme, 278–283
symmetric sense amplifier with page copy function, 276
wordline spacing, 268–269
Nanocrystal memory, 12, 195, 196, 197, 363
Natural decay, 13, 725
N-channel devices, 416, 425–429
NDRO (nondestructive readout), 4, 696
Negative gate channel erase (NGCE), 456–459
Negative gate with positive source erase
(NGSE), 456–459, 461, 462, 465
Negative level shifter, 110–111
Negative resistance, 715, 727
Negative threshold voltage, 65, 263, 451, 544
Negative voltage:
charge pump circuits, 117
switching, 110
Negative-gate erase, 184, 191, 206, 456, 491, 495, 537
Neobit, 364, 366
NeoFlash, 363, 366, 386
NGCE (negative gate channel erase), 456–459
NGSE (negative gate with positive source
erase), 456–459, 461, 462, 465
Nitridation, 454–455
Nitride floating gates, 195–196
Nitride traps, 12, 363, 632–633
N-metal-oxide-semiconductor (NMOS) field-effect transistors (FETs), 625–626
NMOS (N-metal-oxide-semiconductor) field-effect transistors (FETs), 625–626
Noise:
bitline capacitive coupling, 265–266, 270, 288, 292
in cell array during program verify, 266
cell array suppression, 286–293
Non-charge-based memory devices, 12
Nondestructive readout (NDRO), 4, 696
Nonremovable Flash memory, 46–47
Nonvolatile memory:
NOVORAM, 694, 703–707
Nonvolatile memory (NVM):
endurance aspect, 13
EPROMs as, 21
Flash overview, 13–16
floating-gate structure, 3, 9–12
funtional capability classifications, 2
in ITRS, 16–17
overview, 1
retention aspect, 2, 9, 12–13
storage aspect, 9–12
unique aspects, 9–13
Nonvolatility, 1, 2, 9, 13, 32, 49, 138, 606, 607, 613, 678, 689
NOR Flash memories. See also ETOX
(EPROM tunnel oxide); SuperFlash
array architecture, 5, 6, 69, 343–344
common erase bias schemes, 456–459
for data storage, 47–48
and erase operation, 11
overcoming energy barriers, 10
overview, 22
P-channel Flash, 343–344
process and scaling issues, 190–200
process flowchart, 364, 367, 368
for removable Flash media, 50–51
similarities with NAND, 13, 15
NOVORAM (nonvolatile RAM), 694, 703–707
NROM (nitrided ROM) memories:
4-bit cells, 645–650, 655, 657
adjustable read, 642, 648
array architecture, 16, 628–630
array disturbs, 630–632
cell structure and operation, 625–628
data retention, 636–640, 641
endurance, 639–640
fabrication, 650–652
manufacturing process, 650–652
nitride trapping levels, 633–634
overview, 4, 15, 16, 625
process flow outline, 650
products, 655–658
quad technology, 645–650, 655, 657
reliability, 638–645
scaling, 652–655
spatial distribution of localized charge, 635–636
storage mechanism, 632–638
threshold voltage shifts, 632
window sensing, 641–643, 647
Nucleation, 410, 714
NVM. See Nonvolatile memory (NVM)
O
One/zero discrimination, 3
ONO structure, and charge loss, 474–477, 478
On-off regulation, 120
Optical bandgap, 716
Optical disks, 708, 710, 712
Output buffers, 42, 87, 101, 122, 123, 551
Overprogram elimination scheme, 247–252
Overstressing, 12, 109, 543, 569
Ovonix, Inc., 709
Oxide breakdown, 168–171
Oxide charge trapping, 164–165
Oxide defects, 136–137, 217, 466, 473, 478, 512, 573, 588, 625, 639
Oxide degradation:
CHE (channel hot-electron) programming-induced, 449–455
electron trap generation, 163–164
hole fluence, 160–162
interface trap creation, 162–163
overview, 159–160
oxide charge trapping, 164–165
stress-induced leakage current, 165–166
trap generation mechanism, 166–168
tunnel-erase-induced, 456–462
Oxides:
integrity, 216–217
plasma-induced damage, 530–533
reliability issues, 216–217
P
Package size, embedded Flash device, 49
Packaging, Flash device, 36–38
Packaging qualification, 561
Page buffers, 27, 68, 224, 226, 235, 236, 243, 248, 249, 250, 284–286
Page copy function, 273–274, 276, 277, 278
Page mode, 27, 41, 42, 44, 398, 399
Page-program operation:
in bit-by-bit verify circuit, 243–244, 245
in high-speed multilevel programming, 301–307
in multilevel NAND circuit, 285–286
Page-read operation, 229, 283, 285
Parameter blocks, 66
Parity check, 549–550
PASHEI programming technique, 427–428
PC cards. See PCMCIA cards
P-channel technology:
DINOR architecture
band-to-band hot-electron (BBHE) injection
cell operation, 329–333
overview, 328
field effect transistors, 416
Flash memories
array architecture, 343–345
device structure, 338
embedded memory, 354, 363–366
erase mode, 339
evolution, 345–366
history chart, 346
illustrated, 338
multibit storage, 363
operations, 338–345
overview, 337–338
program disturb mode, 339
program mode, 339
read disturb mode, 339
read mode, 339
scalability, 362–363
floating-gate, with deposited silicon nitride
tunnel dielectric, 429–432
PCM. See Phase change memories (PCM)
PCMCIA cards, 37, 51, 52–53, 543
PCs (personal computers), 8–9
PDA (postdeposition annealing), 411
Peak stress, 12
Percolation model for breakdown, 169, 170
Perovskite unit cell, 660–661
Personal Computer Memory Card International Association (PCMCIA) cards, 37, 51, 52–53, 543
Personal computers (PCs), 8–9
PF (Poole-Frenkel) conduction, 136, 144, 192, 475–476, 636, 637
Phase change memories (PCM):
array and support circuitry, 720–721
basic cell structure, 712
cell operation concepts, 712–714
 electrical characteristics, 714–720
 fabrication, 721–722
 GST phase change material, 709–712
 overview, 707–709
 products, 727
 programming waveforms, 714–720
 reliability, 725–727
 scaling, 722–725
 storage mechanism, 709
 Phase diagrams, 709–710
 Plasma CVD using tetra-ethoxy-silane (P-TEOS), 533–534
 Plasma-induced oxide damage, 530–533
 Plastic leaded chip carriers (PLCCs), 36, 37
 Plastic small outline package (PSOP), 37
 Plate line, 665, 666, 667, 669
 Plated wire, 678, 687, 689
 PLCCs (plastic leaded chip carriers), 36, 37
 Poisson distribution, 77, 566
 Polyoxide conduction, 144, 148–150
 Polyoxide tunneling, 133, 150
 Polyoxides, 144, 148, 149, 150
 Poly-to-poly erase:
 charge trap-up, 514–517
 formation of injectors, 512–514
 reliability issues, 512–517
 Poole-Frenkel (PF) conduction, 136, 144, 192, 475–476, 636, 637
 Positive source erase, 184, 456
 Postdeposition annealing (PDA), 411
 Posterase repair, 189, 465, 466
 Power-loss recovery, 35, 58
 PPOT (pressure pot operating test), 556
 Precise charge placement:
 analog circuit blocks for, 609–610
 charge placement algorithm, 608–609
 mixed signal design implementation, 608–611
 overview, 603–606
 Precise charge retention, 607
 Precise charge sensing:
 analog circuit blocks for, 610
 parallel scheme, 610–611
 Preconditioning, 189, 545, 556, 566
 Preprogram operation, 79, 82, 83, 84, 85
 Preprogramming, 74, 189, 207, 545
 Pressure pot operating test (PPOT), 556
 Primary memory, 8, 60
 Product qualification flow, 561–564
 Production test flow, 559–561
 Program algorithm, 74, 81, 98, 237, 543, 544, 546–547, 627
 PROGRAM command, 74
 Program disturb:
 in basic NAND cells, 229–230
 effect of cycling, 494–495
 latest phenomenon in NAND Flash memory, 575–576
 overview, 491
 as reliability issue, 491–495
 in source line programming scheme, 280–281, 283
 Program margin, 453, 642
 Program operation:
 as basic Flash cell operation, 63, 64, 90
 basic NAND cells, 228–229
 embedded Flash, 544–547
 and ETOX technology, 183, 200, 204–205
 high-speed multilevel programming, 301–307
 and intrablock disturbs, 186–187
 NROM (nitrided ROM) memories, 626, 627, 628, 629
 overview, 131
 page program operation, 236–237
 and P-channel Flash, 338–343
 physical mechanisms, 64
 self-boosted NAND inhibit scheme, 235–237
 soft, 189–190
 source line programming scheme, 278–283
 SuperFlash, 210–212
 symmetric sense amplifier with page copy function, 274–275
 three-level NAND architecture, 297, 299
 Program path, 81, 204–205
 Program suspend, 30
 Program verify operation, 74, 93, 105, 237–247, 297, 299, 448
 PROGRAM/ERASE RESUME command, 74
 PROGRAM/ERASE SUSPEND command, 74
 Programmable diode technologies, 696, 698–699
 Programming voltage:
 ferroelectric memories, 667–669
 Flash memory limitations, 619–623
 magnetic memories, 685–686
 Pseudo-binary tie line, 709, 710
 Pseudo-spin valve (PSV), 680–683, 687
 PSOP (plastic small outline package), 37
 PSV (pseudo-spin valve), 680–683, 687
 P-TEOS (plasma CVD using tetra-ethoxy-silane), 533–534
 Pulse width generator, 96–97
 PZT (lead zirconate titanate), 659–660, 668, 670, 671, 673, 674
 Q
 Quad NROM, 645–650, 655, 657
 Quantization of gate charge, 691, 693
 Quantum unit of resistance, 690
 R
 RAM (random-access memory), overview, 7, 21, 23. See also DRAM (dynamic random-access memory); MRAM (magnetic random-access memory); SRAM (static random-access memory)
 Ramp of the erase pulse, 135
Random access memory digital versatile disks (DVD-RAM), 708
Random background charge, 693, 695, 696
Random telegraph signals (RTS), 576–579
Rapid thermal CVD (RTCVD), 409
READ ARRAY command, 74
Read disturb, 339, 487–490
Read operation:
64-Mbit NAND EEPROM, 237
as basic Flash cell operation, 3, 4, 5, 6
basic NAND cells, 230–231
and ETOX technology, 182–183, 200, 202–204
full chip burst, 272–273
NAND cell vs. SWATT cell, 294–295
NROM (nitrided ROM) memories, 626
symmetric sense amplifier with page copy function, 273–278
three-level NAND architecture, 297, 298
READ STATUS REGISTER command, 74
Readout, destructive vs. nondestructive, 4, 695–696
Readout operation, 4, 5, 132, 133
Ready/busy signal, 7
Recall operation, 3, 4, 5, 243–244
Reclamation, 35
Recovery effects, 134
Redundancy:
advanced design, 81–86
in columns, 75, 80–81
defectivity, 75
Flash memory overview, 75
fuse design, 78–79
hardware, 549
process variations, 75
as reliability issue, 547–548, 549
in rows, 75, 79–80, 82–86, 93, 96
yield improvement, 75–76
yield simulator, 77–78
Reference cells, 112, 113, 203, 602–603, 607, 610–611, 629, 647
Reference current generation, 112, 113
Reference voltage generator, 72, 118, 119
Reliability:
acceleration models
temperature acceleration model, 557
temperature and humidity acceleration model, 559
temperature cycling acceleration model, 559
voltage acceleration model, 557–558
ferroelectric memories, 674–675
Flash memories
burn-in, 539–543, 564–565
design and system impacts, 543–552
failure rate calculations, 565–570
floating-gate devices, 526–528
high-voltage periphery transistors, 536–543
process impacts, 525–536
product qualification flow, 561–564
qualification methods, 573–574
screening and qualification, 552–570
hot-hole injection concerns, 432
magnetic memories, 688
multilevel cell (MLC) issues, 596–597, 613
NROM (nitrided ROM) memories, 638–645
oxide issues, 216–217
phase change memories (PCM), 725–727
SuperFlash
contact integrity, 217
data retention, 217–218
disturbs, 219–220
dynamic burn-in, 220
endurance, 218–219
life testing, 220
overview, 216
oxide integrity, 216–217
testing
acceleration models, 557–559
data retention storage life (DRSL) test, 554–555
electrostatic discharge, 555
endurance cycling, 555
failure rate calculations, 565–570
highly accelerated stress test (HAST), 556
high-temperature operating life (HTOL) test, 554
latch-up, 555
lead integrity, 556
low-temperature operation life (LTOL) test, 554
overview, 552–554
pressure pot operating test (PPOT), 556
production test flow, 559–561
solderability testing, 556
temperature cycle test, 556
temperature humidity bias (THB) test, 555–556
thermal shock, 556
wafer sort and screen tests, 559–561
Removable Flash storage, 47, 50–53
Removable media, 47, 50–53
Removal of electrons, 11
RESET state, 709, 715
Resistive memory:
expected performance, 701–702
hybrid CMOS/nanodevice resistive memories, 700–701, 702, 703
overview, 696–698
programmable diode technologies, 698–700
Retention. See Charge loss; Data retention
Retention time, defined, 2, 12–13. See also Data retention
Reverse tunneling, 211–212
Rewritable compact disks, 708
Rewritable digital versatile disks (DVD-RW), 708
ROM (read-only memory):
 defined, 2
vs. EPROM, 23
strengths and weaknesses, 21
Row decoder:
 defined, 67
 level shifter, 201
NAND arrays, 231–233
NAND technology, 225–226
redundancy design, 82–86
staggered, 231–233
Row defects, 75
Row failures, 75
Row redundancy, 75, 79–80, 82–86, 93, 96
RTCVD (rapid thermal CVD), 409
RTS (random telegraph signals), 576–579

S
SAC (self-aligned contact), 197, 199
Saifun, 15, 625, 650
Samsung, 22, 225
SanDisk, 87, 496, 512
SAP (self-aligned poly), 191, 197, 199–200
SAS (self-aligned source):
 scaling technique, 197–198
 stacked gate reliability issues, 528–530
SA-STI (self-aligned shallow trench isolation), 252
Saturated drift velocity, 147
SBT (strontium bismuth tantalate): 660, 668, 670, 671, 673, 675, 662
Scaling:
 architectural aspect, 197–200
dielectrics, 191–197
feature size aspect, 190–191
ferroelectric memories, 673–674
film thickness aspect, 191–197
Flash memory limitations, 623–624
impact of few-electron phenomenon, 576–579
impact of random telegraph signals, 576–579
magnetic memories, 687–688
multilevel cell (MLC) technology, 614
NAND Flash technology, 257, 258, 260, 262–263, 264, 265
NOR Flash technology, 190–200
NROM (nitrided ROM) memories, 652–655
P-channel technology, 362–363
phase change memories (PCM), 722–725
self-aligned contact (SAC) technique, 199
self-aligned poly (SAP) technique, 199–200
self-aligned source (SAS) technique, 197–198
self-aligned shallow trench isolation (SA-STI), 252
Shadow array, 380
Shallow trench isolation (STI), 182, 197, 198–199, 252–256, 293, 385
Sharing of interconnection overhead, 15
SHEI (substrate hot-electron injection), 144, 153–154, 163–164
SHHI (substrate hot-hole injection), 154, 163
Shielded bitlines, 265, 270–272, 273, 286, 288
Shrink small outline package (SSOP), 37
Side-wall transfer transistor (SWATT), 293–296
SII (secondary impact ionization), 141, 144, 156–157
SILC. See Stress-induced leakage current (SILC)
Silicon dioxide, as tunnel dielectric, 408–409
Silicon nitride:
 advantage as tunnel dielectric, 422–423
 chemical vapor deposition, 409, 410
 as deposited tunnel dielectric, 417–425
 jet-vapor deposition, 409–411
 properties of gate-quality JVD films, 411–417
 as tunnel dielectric for N-channel floating-gate devices, 425–429
Schottky emissions, 144, 471
SCSG (source-coupled split-gate) cell, 386–389, 401
SD (Secure Digital) memory cards, 51, 52–53
Secondary impact ionization initiated channel hot-electron injection, 156–157
Secondary impact ionization (SII), 141, 144, 156–157
Secondary memory, 8
Secondary store, 8
Secure Digital (SD) memory cards, 51, 52–53
SEDC (single-bit error detection and correction). See Single-bit errors
Self-aligned contact (SAC), 197, 199
Self-aligned poly (SAP), 191, 197, 199–200
Self-aligned shallow trench isolation (SA-STI), 252
Self-aligned source (SAS):
 scaling technique, 197–198
 stacked gate reliability issues, 528–530
Self-assembled monolayers, 698
Self-boosted-erase inhibit scheme, 233–235
Self-convergence-erasing scheme, 544
Self-convergent programming scheme, 353, 355, 356, 363
Self-limiting program scheme, 350
Semiconductor devices. See also Memory;
 Nonvolatile memory
generations, 16–18
history, 16–18
nonvolatile drives, 8
Sense-and-latch (SL) unit, 284–285
Sensing schemes, 112–114, 614, 629
Sequential trap-assisted tunneling, 499
SET state, 709, 714, 715
Shadow array, 380
Shallow trench isolation (STI), 182, 197, 198–199, 252–256, 293, 385
Sharing of interconnection overhead, 15
SILC. See Stress-induced leakage current (SILC)
Silicon dioxide, as tunnel dielectric, 408–409
Silicon nitride:
 advantage as tunnel dielectric, 422–423
 chemical vapor deposition, 409, 410
 as deposited tunnel dielectric, 417–425
 jet-vapor deposition, 409–411
 properties of gate-quality JVD films, 411–417
 as tunnel dielectric for N-channel floating-gate devices, 425–429
as tunnel dielectric for P-channel floating-gate devices, 429–432
as tunnel dielectric for scaled Flash memory cells, 407–439
Silicon Storage Technology, Inc., 206, 386, 496, 512. See also SuperFlash
Silicon-rich oxide (SRO), 347, 348, 408
Single-bit errors, 7, 550–551
Single-bit failures, 75, 87, 480, 625, 642, 645, 647, 675
Single-electron charging energy, 690
Single-electron memories, 618, 689–693
Single-electron transistor, 689, 691, 694, 695–696, 698
Single-electron trap, 691, 692, 700
Single-poly floating-gate cells, 136
SiO2-based tunnel oxides, 408–409
SL (sense-and-latch) unit, 284–285
Small outline packages (SOPs), 36–37
SmartMedia (SSFDC), 51–52, 53
SMT (surface mount technology), 36
Snapback, 538, 543
SnD (store and download) usage model, 38, 40, 43, 44–45
SNNNS structure, 433–434
Socket Flash, 543, 551, 562
Sodium, 535
Soft errors, 484–486
Soft programming, 65, 188, 189–190
Software, as Flash attribute, 20, 25–26, 29, 31, 32–36
Software data managers, 24, 29, 50, 54, 56–57
Software stack, 58, 59–60
Soft-write effects, 138, 139
Solderability testing, 556
Solid-state disks (SSD), 87, 596–597, 598
SONOS (silicon oxide nitride oxide silicon) transistors, 3, 12, 16, 195, 363, 366, 432–434, 617–618
SOPs (small outline packages), 36–37
Source lines:
array noise suppression suppression technology, 286–293
programming scheme, 278–283
Source-coupled split-gate (SCSG), 386–389, 401
Source/drain hot-carrier injection disturbance, 576
Source-erase stacked gate Flash, 14
Source-side injection (SSI):
charge trapping, 519–525
gap region formation, 517–519
overview, 144, 155–156
reliability issues, 512, 517–525
Spansion, Inc., 22, 658, 699
Spatial charge distribution, 632
Spatially localized C2O lone-pair valence band tail states, 716
Special test mode decoder, 91, 92
Spin polarization, 679, 685
Spin-valve-type devices, 679
Split-gate cells:
applications, 220
characteristics, 133, 138
embedded Flash technology, 374, 385, 386–389, 401
overview, 15
reliability issues, 219, 517–519
source-coupled (SCSG), 386–389, 401
and source-side injection (SSI), 517–519
SuperFlash, 179, 206, 209, 212–213, 214, 215, 216, 513
SRAM (static random-access memory), 20, 21, 38, 41, 42, 43, 44, 66, 87, 327–328, 485, 486, 539, 592, 594, 619, 623, 707
SRO (silicon-rich oxide), 347, 348, 408
SSD (solid-state disks), 87, 596–597, 598
SSFDC (SmartMedia), 53
SSI. See Source-side injection (SSI)
SSOP (shrink small outline package), 37
SST memory cell. See SuperFlash
SST (Silicon Storage Technology, Inc.), 206, 386, 496, 512. See also SuperFlash
ST Micro, 22, 722
Stacked gate structure, 13, 14, 206, 255, 268–269, 317, 528–530
Staircase programming pulses, 289
State machines, 8, 75, 91, 97–98, 384, 446, 543, 545, 547. See also Write state machines
Static RAM. See SRAM (static random-access memory)
Status output signal, 7
STI (shallow trench isolation), 182, 197, 198–199, 252–256, 293, 385
STMicroelectronics, 22, 722
Storage, 2, 9–12, 38–62
Store and download (SnD) usage model, 38, 40, 43, 44–45
StrataFlash technology, 27, 41, 591, 594–596, 598, 599, 608, 612, 613
Stress-induced leakage current (SILC):
and FN tunneling, 447
as limiting factor for tunnel oxide scaling, 511
microscopic characteristics, 508–510
in oxynitride, 510–511
related retention effects, 571–572
in thin oxide after bipolarity stress, 502–508
trap-assisted, 496
tunnel oxide overview, 496–497
uniform, in thin oxide, 407, 497–502
Strontium bismuth tantalate (SBT), 660, 662, 668, 670, 671, 673, 675
Sub-arrays, 2, 66, 399–400
Sub-bitlines, 69, 70, 316, 321, 339, 352
Substrate hot-electron injection (SHEI), 144, 153–154, 163–164
Substrate hot-hole injection (SHHI), 154, 163
Subthreshold slope, 133–134, 162, 523
SuperFlash:
applications, 220
array architecture and operation, 212–214
cell cross sections and layout, 207–208
charge transfer mechanisms, 208–209
embedded cell manufacturability, 401
erase operation, 209–210
erase threshold control and distribution,
214–216
history, 179–180
key circuit interactions, 215
multilevel cell implementation, 216
overview, 206–207
process scaling issues, 214–216
program operation
overview, 210–211
program-disturb, 211
punch-through disturb, 212
reverse tunnel disturb, 211–212
reliability
contact integrity, 217
data retention, 217–218
disturbs, 219–220
dynamic burn-in, 220
endurance, 218–219
life testing, 220
overview, 216
oxide integrity, 216–217
Surface microdefects, 482, 484, 485, 526
Surface mount technology (SMT), 36
Suspends, 26, 30–31, 56, 57
SWATT (side-wall transfer transistor), 293–296
Switch-mode regulation, 119, 120
Symmetric sense amplifier, 273–278
Symmetrical blocking, 25, 29, 49
Synchronous burst mode, 43
Synchronous Flash, 41, 42–43
Syndrome generator, 87
System Flash, 29, 57, 543, 551
Test entry, 91–92
Textured oxides, 408
Textured poly floating gate (TPFG), 154
Textured polyoxides, 148, 150, 515
Textured polysilicon gate, 512
THB (temperature humidity bias) test, 555–556
Thermal cross talk, 724
Thermal energy, 9, 710
Thermal shock test, 556
Thermochemical E model, 557
Thick organic films, 698
Thin films, 679
Thin small outline package (TSOP), 37
Threshold voltage:
array noise suppression technology, 287–290
NAND cell vs. SWATT cell, 295
NROM (nitrided ROM) memories, 632
overview, 132–133
and readout operation, 132, 133
transient characteristics, 133
Time-dependent dielectric breakdown (TDDB),
216, 413, 476, 502, 547, 557, 564, 565
TMR (tunneling magnetoresistance), 679, 685,
687–688
Top boot, 99
Toshiba, 14, 21, 87, 225
TPFG (textured poly floating gate), 154
Transconductance degradation, 421, 432, 447,
448, 459, 530, 531
Transient equation, 143
Transistors:
field-effect (FET), 416, 625, 660, 664–665
Flash cells as, 63–65, 594
floating-gate concept, 3–4
high-voltage
MMOS and PMOS, 254, 265, 282
overview, 536–537
process defects, 539–543
reliability in Flash memory products,
537–539
role of cycling and burn-in, 539–543
side-wall transfer (SWATT), 293–296
single-electron, 689, 691, 694, 695–696, 698
Trap density, 162, 163, 165, 168, 169, 192, 413,
454, 500, 526
Trap generation mechanism, 166–168
Trap-assisted SILC, 496
Trapping of hot holes, 164
Triangular barrier, 145, 194, 471, 703–704
Trimming:
in analog circuits, 366
and data path configuration, 99–101
DFT overview, 91, 92
high voltages, 94–96
reference, 93–94
timings, 96–97
Triple-well process, 69, 70, 110, 367, 401, 457,
538, 539
Tessera Corporation, 38

T
Tail bits, 159, 482–484, 485, 571, 577
TDDDB (time-dependent dielectric breakdown),
216, 413, 476, 502, 547, 557, 564, 565
Technology node, defined, 16
Temperature acceleration model, 557
Temperature and humidity acceleration model,
559
Temperature cycle test, 556
Temperature cycling acceleration model, 559
Temperature humidity bias (THB) test, 555–556
Temperature-accelerated testing, 135–137, 138,
467–469, 506, 557, 559
Tessera Corporation, 38

INDEX
INDEX

TSOP (thin small outline package), 37
Tunnel barrier engineering:
- crested barrier
 - and FN tunneling, 194
- NOVORAM/FGRAM memories, 703–706
- silicon nitride as dielectric, 437–439
- few-electron memories, 694
- magnetic memories, 684, 686
- multiple barriers, 437–439
- NOR memories, 192, 193–195
- NOVORAM/FGRAM memories, 703–706
- silicon nitride overview, 437
- single-electron memories, 691, 693
- tunnel oxide scaling, 192, 193–195
- U-shaped barrier, 439
Tunnel dielectrics:
- defined, 408
- deposited silicon nitride
 - early work, 409–410
 - for N-channel floating-gate devices, 425–429
 - overview, 417–425
 - for P-channel floating-gate devices, 429–432
 - potential advantage, 422–423
- graded bandgap, 409
- high-K dielectric benefits, 434–436
 - overview, 407–408
 - for scaled Flash memory cells, 407–439
- SiO2 as, 408–409
 - for SONOS cells, 432–434
- thickness limitations, 619–620, 621
Tunnel oxide process. See also Tunnel barrier engineering
dielectrics for scaled Flash memory cells, 407–439
JVD nitride overview, 192–193
- overview, 192
 - reliability issues, 526
 - scaling limitations, 192, 407, 511
- SILC as limiting factor, 511
Tunnel-erase-induced oxide degradation:
- band-to-band current-induced degradation
 - and charge trapping, 460–462
- band-to-band tunneling current, 459–460
 - erase methods, 456–459
 - erratic erase, 462–465
 - overview, 456
- Tunneling magnetoresistance (TMR), 679, 685, 687–688
- 2TS cells, 386, 389–391, 401, 403

U
Usage models, 23–24, 38–46, 49, 50, 54–62
U-shaped barrier, tunnel barrier engineering, 439
UV-EPROMs, 22, 69, 179–182, 466, 473

V
Valence alternation pair (VAP) states, 716
VAP (valence alternation pair) states, 716
Verify read operation, 229, 238, 240–241, 243, 244, 267, 274–275, 276, 303, 305
Vertical parity, 87, 550
Virtual blocking, 34
Virtual drain effect, 155–156
Virtual ground array (VGA), 16, 316–320, 625, 627, 629, 647, 656
Voice recording, 20, 134, 358
Volatile memory, 2, 3, 623
Voltage acceleration model, 557–558
Voltage detectors, 92, 324–326
Voltage level shifting, 109–111
Voltage multiplication, 114–118
Voltage regulation, 119–122
Voltage supply, as Flash memory attribute, 29
Voltage-accelerated test, 469–472
Von Neumann model, 8

W
Wafer sorts, 203, 548, 559–560
Weak cell detection, 104
Wear leveling, 35, 50, 543, 547, 552
Wearout mechanisms, 35, 497, 541, 543, 553, 687
Weibull distribution, 170, 218
Wentzel-Kramers-Brillouin (WKB) approximation, 464
Window closure, 13, 134, 426, 447–448, 453, 454, 514, 521–522
Wiring resistance degradation, 547
Word compression, 107–108
Wordline pitch, 16, 225, 231, 257, 269
Wordline sweeping read (WSR) scheme, 285
Wordlines:
- boost scheme for DINOR circuits, 326–327
 - defined, 5
- NAND spacing issue, 268–269
 - in NROM arrays, 15–16
 - and row decoder circuits, 201, 231
 - in row redundancy, 79–80
- Word-oriented memory, 7, 8
- Write protection, 26, 31, 32, 40, 57
- Write state machines (WSM), 25, 27, 30–31, 39, 56, 58, 73
- Write suspends, 30, 56, 57
- Write-read cycles, 13
- WSM (write state machines), 25, 27, 30–31, 39, 56, 58, 73
- WSR (wordline sweeping read) scheme, 285

X
XIP (execute-in-place) usage model, 38, 39–43, 45, 51

Y
Yield improvement, 75–76
Yield simulator, 77–78