CONTENTS

Preface xi

CHAPTER 1 INTRODUCTION 1

1.1 Soil Behavior in Civil and Environmental Engineering 1
1.2 Scope and Organization 3
1.3 Getting Started 3

CHAPTER 2 SOIL FORMATION 5

2.1 Introduction 5
2.2 The Earth’s Crust 5
2.3 Geologic Cycle and Geological Time 6
2.4 Rock and Mineral Stability 7
2.5 Weathering 8
2.6 Origin of Clay Minerals and Clay Genesis 15
2.7 Soil Profiles and Their Development 16
2.8 Sediment Erosion, Transport, and Deposition 18
2.9 Postdepositional Changes in Sediments 25
2.10 Concluding Comments 32
Questions and Problems 33

CHAPTER 3 SOIL MINERALOGY 35

3.1 Importance of Soil Mineralogy in Geotechnical Engineering 35
3.2 Atomic Structure 38
3.3 Interatomic Bonding 38
3.4 Secondary Bonds 39
3.5 Crystals and Their Properties 40
3.6 Crystal Notation 42
3.7 Factors Controlling Crystal Structures 44
3.8 Silicate Crystals 45
3.9 Surfaces 45
3.10 Gravel, Sand, and Silt Particles 48
3.11 Soil Minerals and Materials Formed by Biogenic and Geochemical Processes 49
3.12 Summary of Nonclay Mineral Characteristics 49
3.13 Structural Units of the Layer Silicates 49
3.14 Synthesis Pattern and Classification of the Clay Minerals 52
3.15 Intersheet and Interlayer Bonding in the Clay Minerals 55
3.16 The 1:1 Minerals 56
3.17 Smectite Minerals 59
3.18 Micalike Clay Minerals 62
3.19 Other Clay Minerals 64
CONTENTS

6.18 Concluding Comments 169
Questions and Problems 169

CHAPTER 7 EFFECTIVE, INTERGRANULAR, AND TOTAL STRESS 173

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>173</td>
</tr>
<tr>
<td>7.2</td>
<td>Principle of Effective Stress</td>
<td>173</td>
</tr>
<tr>
<td>7.3</td>
<td>Force Distributions in a Particulate System</td>
<td>174</td>
</tr>
<tr>
<td>7.4</td>
<td>Interparticle Forces</td>
<td>174</td>
</tr>
<tr>
<td>7.5</td>
<td>Intergranular Pressure</td>
<td>178</td>
</tr>
<tr>
<td>7.6</td>
<td>Water Pressures and Potentials</td>
<td>180</td>
</tr>
<tr>
<td>7.7</td>
<td>Water Pressure Equilibrium in Soil</td>
<td>181</td>
</tr>
<tr>
<td>7.8</td>
<td>Measurement of Pore Pressures in Soils</td>
<td>183</td>
</tr>
<tr>
<td>7.9</td>
<td>Effective and Intergranular Pressure</td>
<td>184</td>
</tr>
<tr>
<td>7.10</td>
<td>Assessment of Terzaghi’s Equation</td>
<td>185</td>
</tr>
<tr>
<td>7.11</td>
<td>Water–Air Interactions in Soils</td>
<td>188</td>
</tr>
<tr>
<td>7.12</td>
<td>Effective Stress in Unsaturated Soils</td>
<td>190</td>
</tr>
<tr>
<td>7.13</td>
<td>Concluding Comments</td>
<td>193</td>
</tr>
</tbody>
</table>

Questions and Problems 193

CHAPTER 8 SOIL DEPOSITS—THEIR FORMATION, STRUCTURE, GEOTECHNICAL PROPERTIES, AND STABILITY 195

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>195</td>
</tr>
<tr>
<td>8.2</td>
<td>Structure Development</td>
<td>195</td>
</tr>
<tr>
<td>8.3</td>
<td>Residual Soils</td>
<td>200</td>
</tr>
<tr>
<td>8.4</td>
<td>Surficial Residual Soils and Taxonomy</td>
<td>205</td>
</tr>
<tr>
<td>8.5</td>
<td>Terrestrial Deposits</td>
<td>206</td>
</tr>
<tr>
<td>8.6</td>
<td>Mixed Continental and Marine Deposits</td>
<td>209</td>
</tr>
<tr>
<td>8.7</td>
<td>Marine Deposits</td>
<td>209</td>
</tr>
<tr>
<td>8.8</td>
<td>Chemical and Biological Deposits</td>
<td>212</td>
</tr>
<tr>
<td>8.9</td>
<td>Fabric, Structure, and Property Relationships: General Considerations</td>
<td>213</td>
</tr>
<tr>
<td>8.10</td>
<td>Soil Fabric and Property Anisotropy</td>
<td>217</td>
</tr>
<tr>
<td>8.11</td>
<td>Sand Fabric and Liquefaction</td>
<td>223</td>
</tr>
<tr>
<td>8.12</td>
<td>Sensitivity and Its Causes</td>
<td>226</td>
</tr>
<tr>
<td>8.13</td>
<td>Property Interrelationships in Sensitive Clays</td>
<td>235</td>
</tr>
<tr>
<td>8.14</td>
<td>Dispersive Clays</td>
<td>239</td>
</tr>
<tr>
<td>8.15</td>
<td>Slaking</td>
<td>243</td>
</tr>
<tr>
<td>8.16</td>
<td>Collapsing Soils and Swelling Soils</td>
<td>243</td>
</tr>
<tr>
<td>8.17</td>
<td>Hard Soils and Soft Rocks</td>
<td>245</td>
</tr>
<tr>
<td>8.18</td>
<td>Concluding Comments</td>
<td>245</td>
</tr>
</tbody>
</table>

Questions and Problems 247

CHAPTER 9 CONDUCTION PHENOMENA 251

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>251</td>
</tr>
<tr>
<td>9.2</td>
<td>Flow Laws and Interrelationships</td>
<td>251</td>
</tr>
<tr>
<td>9.3</td>
<td>Hydraulic Conductivity</td>
<td>252</td>
</tr>
<tr>
<td>9.4</td>
<td>Flows Through Unsaturated Soils</td>
<td>262</td>
</tr>
<tr>
<td>9.5</td>
<td>Thermal Conductivity</td>
<td>265</td>
</tr>
<tr>
<td>9.6</td>
<td>Electrical Conductivity</td>
<td>267</td>
</tr>
<tr>
<td>9.7</td>
<td>Diffusion</td>
<td>272</td>
</tr>
<tr>
<td>9.8</td>
<td>Typical Ranges of Flow Parameters</td>
<td>274</td>
</tr>
<tr>
<td>9.9</td>
<td>Simultaneous Flows of Water, Current, and Salts</td>
<td>274</td>
</tr>
<tr>
<td></td>
<td>Through Soil-Coupled Flows</td>
<td>274</td>
</tr>
<tr>
<td>9.10</td>
<td>Quantification of Coupled Flows</td>
<td>277</td>
</tr>
</tbody>
</table>

Questions and Problems 277
9.11 Simultaneous Flows of Water, Current, and Chemicals 279
9.12 Electrokinetic Phenomena 282
9.13 Transport Coefficients and the Importance of Coupled Flows 284
9.15 Electroosmosis 291
9.16 Electroosmosis Efficiency 294
9.17 Consolidation by Electroosmosis 298
9.18 Electrochemical Effects 303
9.19 Electrokinetic Remediation 305
9.20 Self-Potentials 305
9.21 Thermally Driven Moisture Flows 307
9.22 Ground Freezing 310
9.23 Concluding Comments 319

Questions and Problems 320

CHAPTER 10 VOLUME CHANGE BEHAVIOR 325

10.1 Introduction 325
10.2 General Volume Change Behavior of Soils 325
10.3 Preconsolidation Pressure 327
10.4 Factors Controlling Resistance to Volume Change 330
10.5 Physical Interactions in Volume Change 331
10.6 Fabric, Structure, and Volume Change 335
10.7 Osmotic Pressure and Water Adsorption Influences on Compression and Swelling 339
10.8 Influences of Mineralogical Detail in Soil Expansion 345
10.9 Consolidation 348
10.10 Secondary Compression 353
10.11 In Situ Horizontal Stress (K_0) 355
10.12 Temperature–Volume Relationships 359
10.13 Concluding Comments 365

Questions and Problems 366

CHAPTER 11 STRENGTH AND DEFORMATION BEHAVIOR 369

11.1 Introduction 369
11.2 General Characteristics of Strength and Deformation 370
11.3 Fabric, Structure, and Strength 379
11.4 Friction Between Solid Surfaces 383
11.5 Frictional Behavior of Minerals 389
11.6 Physical Interactions Among Particles 393
11.7 Critical State: A Useful Reference Condition 400
11.8 Strength Parameters for Sands 404
11.9 Strength Parameters for Clays 411
11.10 Behavior After Peak and Strain Localization 415
11.11 Residual State and Residual Strength 417
11.12 Intermediate Stress Effects and Anisotropy 422
11.13 Resistance to Cyclic Loading and Liquefaction 425
11.14 Strength of Mixed Soils 432
11.15 Cohesion 436
11.16 Fracturing of Soils 438
11.17 Deformation Characteristics 444
11.18 Linear Elastic Stiffness 447
11.19 Transition from Elastic to Plastic States 452
11.20 Plastic Deformation 456
11.21 Temperature Effects 460
CHAPTER 12 TIME EFFECTS ON STRENGTH AND DEFORMATION 465

12.1 Introduction 465
12.2 General Characteristics 466
12.3 Time-Dependent Deformation–Structure Interaction 470
12.4 Soil Deformation as a Rate Process 478
12.5 Bonding, Effective Stresses, and Strength 481
12.6 Shearing Resistance as a Rate Process 488
12.7 Creep and Stress Relaxation 489
12.8 Rate Effects on Stress–Strain Relationships 497
12.9 Modeling of Stress–Strain–Time Behavior 503
12.10 Creep Rupture 508
12.11 Sand Aging Effects and Their Significance 511
12.12 Mechanical Processes of Aging 516
12.13 Chemical Processes of Aging 517
12.14 Concluding Comments 520
Questions and Problems 520

List of Symbols 523
References 531
Index 559