Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>About the Authors</td>
<td>xv</td>
</tr>
<tr>
<td>Preface</td>
<td>xvii</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Microwaves and radio frequencies</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Frequency bands</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Applications</td>
<td>6</td>
</tr>
<tr>
<td>Bibliography</td>
<td>8</td>
</tr>
<tr>
<td>2 Basic electromagnetic theory</td>
<td>9</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>9</td>
</tr>
<tr>
<td>2.2 Maxwell’s equations</td>
<td>9</td>
</tr>
<tr>
<td>2.3 Time-harmonic EM fields; polarization of a vector</td>
<td>12</td>
</tr>
<tr>
<td>2.4 Maxwell’s equations in the harmonic regime</td>
<td>14</td>
</tr>
<tr>
<td>2.5 Boundary conditions</td>
<td>15</td>
</tr>
<tr>
<td>2.6 Energy and power of the EM field; Poynting’s theorem</td>
<td>17</td>
</tr>
<tr>
<td>2.7 Some fundamental theorems</td>
<td>19</td>
</tr>
<tr>
<td>2.7.1 Uniqueness theorem</td>
<td>19</td>
</tr>
<tr>
<td>2.7.2 Lorentz’s reciprocity theorem</td>
<td>19</td>
</tr>
<tr>
<td>2.7.3 Love’s equivalence theorem</td>
<td>20</td>
</tr>
<tr>
<td>2.8 Plane waves</td>
<td>21</td>
</tr>
<tr>
<td>2.9 Solution of the wave equation in rectangular coordinates</td>
<td>22</td>
</tr>
<tr>
<td>2.9.1 Plane waves: an alternative derivation</td>
<td>24</td>
</tr>
<tr>
<td>2.9.2 TEM waves</td>
<td>25</td>
</tr>
<tr>
<td>2.9.3 TE and TM waves</td>
<td>26</td>
</tr>
<tr>
<td>2.10 Reflection and transmission of plane waves; Snel’s laws</td>
<td>27</td>
</tr>
<tr>
<td>2.10.1 Snel’s laws; total reflection</td>
<td>28</td>
</tr>
<tr>
<td>2.10.2 Reflection and transmission (Fresnel’s) coefficients</td>
<td>31</td>
</tr>
<tr>
<td>2.10.3 Reflection from a conducting plane</td>
<td>34</td>
</tr>
<tr>
<td>2.11 Electrodynamic potentials</td>
<td>36</td>
</tr>
<tr>
<td>Bibliography</td>
<td>38</td>
</tr>
<tr>
<td>3 Guided EM propagation</td>
<td>39</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>39</td>
</tr>
<tr>
<td>3.2 Cylindrical structures; solution of Maxwell’s equations as</td>
<td>41</td>
</tr>
<tr>
<td>3.3 Modes of propagation as transmission lines</td>
<td>48</td>
</tr>
<tr>
<td>3.4 Transmission lines as 1-D circuits</td>
<td>52</td>
</tr>
<tr>
<td>3.5 Phase velocity, group velocity and energy velocity</td>
<td>55</td>
</tr>
<tr>
<td>3.6 Properties of the transverse modal vectors e, h; field expansion in</td>
<td>57</td>
</tr>
<tr>
<td>3.7 Loss, attenuation and power handling in real waveguides</td>
<td>59</td>
</tr>
</tbody>
</table>
CONTENTS

3.8 The rectangular waveguide 61
3.9 The ridge waveguide 67
3.10 The circular waveguide 68
3.11 The coaxial cable 72
3.12 The parallel-plate waveguide 74
3.13 The stripline 76
3.14 The microstrip line 78
3.14.1 The planar waveguide model 82
3.15 The coplanar waveguide 82
3.16 Coupled lines 84
3.16.1 Basic principles for EM analysis 85
3.16.2 Equivalent circuit modelling 86
Bibliography 88

4 Microwave circuits 91
4.1 Introduction 91
4.2 Microwave circuit formulation 91
4.3 Terminated transmission lines 94
4.4 The Smith chart 97
4.5 Power flow 105
4.6 Matrix representations 109
4.6.1 The impedance matrix 109
4.6.2 The admittance matrix 110
4.6.3 The ABCD or chain matrix 111
4.6.4 The scattering matrix 112
4.7 Circuit model of a transmission line section 119
4.8 Shifting the reference planes 123
4.9 Loaded two-port network 124
4.10 Matrix description of coupled lines 125
4.11 Matching of coupled lines 126
4.12 Two-port networks using coupled-line sections 127
Bibliography 129

5 Resonators and cavities 131
5.1 Introduction 131
5.2 The resonant condition 131
5.3 Quality factor or \(Q \) 134
5.4 Transmission line resonators 136
5.5 Planar resonators 139
5.6 Cavity resonators 142
5.7 Computation of the \(Q \) factor of a cavity resonator 144
5.8 Dielectric resonators 146
5.9 Expansion of EM fields 147
5.9.1 Helmholtz’s theorem 148
5.9.2 Electric and magnetic eigenvectors 148
5.9.3 General solution of Maxwell’s equations in a cavity 153
5.9.4 Resonances in ideal closed cavities 154
5.9.5 The cavity with one or two outputs 155
5.9.6 Excitation of cavity resonators 157
Bibliography 161
6 Impedance matching
 6.1 Introduction 163
 6.2 Fano’s bound 163
 6.3 Quarter-wavelength transformer 165
 6.4 Multi-section quarter-wavelength transformers 167
 6.4.1 The binomial transformer 171
 6.4.2 Chebyshev polynomials; the Chebyshev transformer 172
 6.5 Line and stub transformers; stub tuners 178
 6.6 Lumped L networks 180
Bibliography 185
Simulation files 185

7 Passive microwave components
 7.1 Introduction 187
 7.2 Matched loads 187
 7.3 Movable short circuit 188
 7.4 Attenuators 190
 7.5 Fixed phase shifters 193
 7.5.1 Loaded-line phase shifters 193
 7.5.2 Reflection-type phase shifters 194
 7.6 Junctions and interconnections 195
 7.6.1 Guide-to-coaxial cable transition 198
 7.6.2 Coaxial-to-microstrip transition 203
 7.7 Dividers and combiners 204
 7.7.1 The Wilkinson divider 205
 7.7.2 Hybrid junctions 209
 7.7.3 Directional couplers 211
 7.8 Lumped element realizations 221
 7.9 Multi-beam forming networks 223
 7.9.1 The Butler matrix 224
 7.9.2 The Blass matrix 225
 7.9.3 The Rotman lens 227
 7.10 Non-reciprocal components 230
 7.10.1 Isolator 232
 7.10.2 Circulator 232
Bibliography 234
Simulation files 235

8 Microwave filters
 8.1 Introduction 237
 8.2 Definitions 237
 8.3 Lowpass prototype 239
 8.3.1 Butterworth filters 240
 8.3.2 Chebyshev filters 240
 8.3.3 Cauer filters 244
 8.3.4 Synthesis of the lowpass prototype 245
 8.4 Semi-lumped lowpass filters 250
 8.5 Frequency transformations 254
 8.5.1 Lowpass to highpass transformation 255
 8.5.2 Lowpass to bandpass transformation 257
10.4.1 True-delay and slow-wave phase shifters 402
10.4.2 Reflection phase shifters 404
10.4.3 Stepped phase shifters 407
10.4.4 Binary phase shifters 408
10.4.5 Final considerations on phase shifters 412
Bibliography 412
Related files 413

11 Amplifiers 415
11.1 Introduction 415
11.2 Small-signal amplifiers 415
 11.2.1 Gain definitions 416
 11.2.2 Stability 420
 11.2.3 Matching networks 424
 11.2.4 Maximum gain impedance matching 425
11.3 Low-noise amplifiers 429
11.4 Design of trial amplifier 432
11.5 Power amplifiers 440
 11.5.1 Output power optimization with negligible transistor parasitics 440
 11.5.2 Output power optimization in presence of transistor parasitics 444
 11.5.3 Load pull 451
 11.5.4 Balanced amplifiers 454
 11.5.5 PA classes 459
 11.5.6 Amplifier linearization 473
 11.5.7 Additional PA issues 481
11.6 Other amplifier configurations 482
 11.6.1 Feedback amplifiers 483
 11.6.2 Distributed amplifiers 485
 11.6.3 Differential pairs 489
 11.6.4 Active loads 494
 11.6.5 Cascode configuration 495
11.7 Some examples of microwave amplifiers 497
 11.7.1 Two-stage millimetre-wave amplifier 497
 11.7.2 Low-noise amplifier 499
Bibliography 501
Related files 501

12 Oscillators 503
12.1 Introduction 503
12.2 General principles 503
12.3 Negative resistance oscillators 508
12.4 Positive feedback oscillators 512
12.5 Standard oscillator configuration 518
 12.5.1 Inductively coupled oscillator 521
 12.5.2 Inductive gate feedback oscillator 523
 12.5.3 Hartley oscillator 525
 12.5.4 Colpitts oscillator 526
14.3.5 Capacitors 645
14.3.6 Semiconductor devices 646
14.4 Simulation models and layout libraries 649
14.4.1 Single element models 650
14.4.2 Scalable models 650
14.4.3 Nonlinear models 651
14.4.4 MMIC statistical models 651
14.4.5 Temperature-dependent models 652
14.5 MMIC production technique 652
14.5.1 Lithography 653
14.5.2 On-wafer testing 655
14.5.3 Cut and selection 655
14.6 RFIC 656
Bibliography 657

15 RF and microwave architectures 659
15.1 Introduction 659
15.2 Review of modulation theory 659
15.2.1 Amplitude modulation 660
15.2.2 Angular modulation 663
15.3 Transmitters 665
15.3.1 Direct modulation transmitters 665
15.3.2 Polar modulator 675
15.3.3 Cartesian modulator 677
15.3.4 Transmitters with frequency translation 681
15.4 Receivers 682
15.4.1 RF tuned receivers 682
15.4.2 Superetherodyne receivers 692
15.4.3 Zero-IF and low-IF receivers 696
15.4.4 Walking IF receivers 699
15.4.5 One practical IC-based receiver 701
15.4.6 Digital receivers 703
15.5 Further concepts on RF transmitters and receivers 710
15.5.1 Transceivers 710
15.5.2 CAD analysis of a radar transmitting subassembly 719
15.5.3 Receiver performance analysis 725
15.6 Special radio functional blocks 731
15.6.1 Quadrature signal generation 731
15.6.2 PLL 735
15.6.3 ALC and AGC 744
15.6.4 SDLVA 749
Bibliography 753
Related files 754

16 Numerical methods and CAD 757
16.1 Introduction 757
16.2 EM analysis 760
16.2.1 The method of moments 761