Contents

Preface to the First Edition .. xv

Preface to the Second Edition .. xix

Acknowledgments ... xxi

1 What are Theory, Computation, and Modeling? 1

1.1 Definition of Terms .. 1

1.2 Quantum Mechanics .. 4

1.3 Computable Quantities .. 5

1.3.1 Structure .. 5

1.3.2 Potential Energy Surfaces 6

1.3.3 Chemical Properties 10

1.4 Cost and Efficiency .. 11

1.4.1 Intrinsic Value .. 11

1.4.2 Hardware and Software 12

1.4.3 Algorithms .. 14

1.5 Note on Units .. 15

Bibliography and Suggested Additional Reading 15

References ... 16

2 Molecular Mechanics ... 17

2.1 History and Fundamental Assumptions 17

2.2 Potential Energy Functional Forms 19

2.2.1 Bond Stretching .. 19

2.2.2 Valence Angle Bending 21

2.2.3 Torsions .. 22

2.2.4 van der Waals Interactions 27

2.2.5 Electrostatic Interactions 30

2.2.6 Cross Terms and Additional Non-bonded Terms 34

2.2.7 Parameterization Strategies 36

2.3 Force-field Energies and Thermodynamics 39

2.4 Geometry Optimization .. 40

2.4.1 Optimization Algorithms 41

2.4.2 Optimization Aspects Specific to Force Fields 46
CONTENTS

2.5 Menagerie of Modern Force Fields 50
 2.5.1 Available Force Fields 50
 2.5.2 Validation 59
2.6 Force Fields and Docking 62
2.7 Case Study: (2R*,4S*)-1-Hydroxy-2,4-dimethylhex-5-ene 64
Bibliography and Suggested Additional Reading 66
References 67

3 Simulations of Molecular Ensembles 69
 3.1 Relationship Between MM Optima and Real Systems 69
 3.2 Phase Space and Trajectories 70
 3.2.1 Properties as Ensemble Averages 70
 3.2.2 Properties as Time Averages of Trajectories 71
 3.3 Molecular Dynamics 72
 3.3.1 Harmonic Oscillator Trajectories 72
 3.3.2 Non-analytical Systems 74
 3.3.3 Practical Issues in Propagation 77
 3.3.4 Stochastic Dynamics 79
 3.4 Monte Carlo 80
 3.4.1 Manipulation of Phase-space Integrals 80
 3.4.2 Metropolis Sampling 81
 3.5 Ensemble and Dynamical Property Examples 82
 3.6 Key Details in Formalism 88
 3.6.1 Cutoffs and Boundary Conditions 88
 3.6.2 Polarization 90
 3.6.3 Control of System Variables 91
 3.6.4 Simulation Convergence 93
 3.6.5 The Multiple Minima Problem 96
 3.7 Force Field Performance in Simulations 98
 3.8 Case Study: Silica Sodalite 99
Bibliography and Suggested Additional Reading 101
References 102

4 Foundations of Molecular Orbital Theory 105
 4.1 Quantum Mechanics and the Wave Function 105
 4.2 The Hamiltonian Operator 106
 4.2.1 General Features 106
 4.2.2 The Variational Principle 108
 4.2.3 The Born–Oppenheimer Approximation 110
 4.3 Construction of Trial Wave Functions 111
 4.3.1 The LCAO Basis Set Approach 111
 4.3.2 The Secular Equation 113
 4.4 Hückel Theory 115
 4.4.1 Fundamental Principles 115
 4.4.2 Application to the Allyl System 116
 4.5 Many-electron Wave Functions 119
 4.5.1 Hartree-product Wave Functions 120
 4.5.2 The Hartree Hamiltonian 121
 4.5.3 Electron Spin and Antisymmetry 122
 4.5.4 Slater Determinants 124
 4.5.5 The Hartree-Fock Self-consistent Field Method 126
Bibliography and Suggested Additional Reading 129
References 130
5 Semiempirical Implementations of Molecular Orbital Theory

5.1 Semiempirical Philosophy
5.1.1 Chemically Virtuous Approximations
5.1.2 Analytic Derivatives
5.2 Extended Hückel Theory
5.3 CNDO Formalism
5.4 INDO Formalism
5.4.1 INDO and INDO/S
5.4.2 MINDO/3 and SINDO1
5.5 Basic NDDO Formalism
5.5.1 MNDO
5.5.2 AM1
5.5.3 PM3
5.6 General Performance Overview of Basic NDDO Models
5.6.1 Energetics
5.6.2 Geometries
5.6.3 Charge Distributions
5.7 Ongoing Developments in Semiempirical MO Theory
5.7.1 Use of Semiempirical Properties in SAR
5.7.2 d Orbitals in NDDO Models
5.7.3 SRP Models
5.7.4 Linear Scaling
5.7.5 Other Changes in Functional Form
5.8 Case Study: Asymmetric Alkylation of Benzaldehyde

6 Ab Initio Implementations of Hartree–Fock Molecular Orbital Theory

6.1 Ab Initio Philosophy
6.2 Basis Sets
6.2.1 Functional Forms
6.2.2 Contracted Gaussian Functions
6.2.3 Single-\(\zeta\), Multiple-\(\zeta\), and Split-Valence
6.2.4 Polarization Functions
6.2.5 Diffuse Functions
6.2.6 The HF Limit
6.2.7 Effective Core Potentials
6.2.8 Sources
6.3 Key Technical and Practical Points of Hartree–Fock Theory
6.3.1 SCF Convergence
6.3.2 Symmetry
6.3.3 Open-shell Systems
6.3.4 Efficiency of Implementation and Use
6.4 General Performance Overview of Ab Initio HF Theory
6.4.1 Energetics
6.4.2 Geometries
6.4.3 Charge Distributions
6.5 Case Study: Polymerization of 4-Substituted Aromatic Enynes

Bibliography and Suggested Additional Reading
References
7 Including Electron Correlation in Molecular Orbital Theory 203
7.1 Dynamical vs. Non-dynamical Electron Correlation 203
7.2 Multiconfiguration Self-Consistent Field Theory 205
 7.2.1 Conceptual Basis 205
 7.2.2 Active Space Specification 207
 7.2.3 Full Configuration Interaction 211
7.3 Configuration Interaction 211
 7.3.1 Single-determinant Reference 211
 7.3.2 Multireference 216
7.4 Perturbation Theory 216
 7.4.1 General Principles 216
 7.4.2 Single-reference 219
 7.4.3 Multireference 223
 7.4.4 First-order Perturbation Theory for Some Relativistic Effects 223
7.5 Coupled-cluster Theory 224
7.6 Practical Issues in Application 227
 7.6.1 Basis Set Convergence 227
 7.6.2 Sensitivity to Reference Wave Function 230
 7.6.3 Price/Performance Summary 235
7.7 Parameterized Methods 237
 7.7.1 Scaling Correlation Energies 238
 7.7.2 Extrapolation 239
 7.7.3 Multilevel Methods 239
7.8 Case Study: Ethylenedione Radical Anion 244
Bibliography and Suggested Additional Reading 246
References 247

8 Density Functional Theory 249
8.1 Theoretical Motivation 249
 8.1.1 Philosophy 249
 8.1.2 Early Approximations 250
8.2 Rigorous Foundation 252
 8.2.1 The Hohenberg–Kohn Existence Theorem 252
 8.2.2 The Hohenberg–Kohn Variational Theorem 254
8.3 Kohn–Sham Self-consistent Field Methodology 255
8.4 Exchange-correlation Functionals 257
 8.4.1 Local Density Approximation 258
 8.4.2 Density Gradient and Kinetic Energy Density Corrections 263
 8.4.3 Adiabatic Connection Methods 264
 8.4.4 Semiempirical DFT 268
8.5 Advantages and Disadvantages of DFT Compared to MO Theory 271
 8.5.1 Densities vs. Wave Functions 271
 8.5.2 Computational Efficiency 273
 8.5.3 Limitations of the KS Formalism 274
 8.5.4 Systematic Improvability 278
 8.5.5 Worst-case Scenarios 278
8.6 General Performance Overview of DFT 280
 8.6.1 Energetics 280
 8.6.2 Geometries 291
 8.6.3 Charge Distributions 294
8.7 Case Study: Transition-Metal Catalyzed Carboxylation of Methanol 299
Bibliography and Suggested Additional Reading 300
References 301
Contents

9 Charge Distribution and Spectroscopic Properties

9.1 Properties Related to Charge Distribution
- 9.1.1 Electric Multipole Moments
- 9.1.2 Molecular Electrostatic Potential
- 9.1.3 Partial Atomic Charges
- 9.1.4 Total Spin
- 9.1.5 Polarizability and Hyperpolarizability
- 9.1.6 ESR Hyperfine Coupling Constants

9.2 Ionization Potentials and Electron Affinities

9.3 Spectroscopy of Nuclear Motion
- 9.3.1 Rotational
- 9.3.2 Vibrational

9.4 NMR Spectral Properties
- 9.4.1 Technical Issues
- 9.4.2 Chemical Shifts and Spin–spin Coupling Constants

9.5 Case Study: Matrix Isolation of Perfluorinated p-Benzene

Bibliography and Suggested Additional Reading

10 Thermodynamic Properties

10.1 Microscopic–macroscopic Connection

10.2 Zero-point Vibrational Energy

10.3 Ensemble Properties and Basic Statistical Mechanics
- 10.3.1 Ideal Gas Assumption
- 10.3.2 Separability of Energy Components
- 10.3.3 Molecular Electronic Partition Function
- 10.3.4 Molecular Translational Partition Function
- 10.3.5 Molecular Rotational Partition Function
- 10.3.6 Molecular Vibrational Partition Function

10.4 Standard-state Heats and Free Energies of Formation and Reaction
- 10.4.1 Direct Computation
- 10.4.2 Parametric Improvement
- 10.4.3 Isodesmic Equations

10.5 Technical Caveats
- 10.5.1 Semiempirical Heats of Formation
- 10.5.2 Low-frequency Motions
- 10.5.3 Equilibrium Populations over Multiple Minima
- 10.5.4 Standard-state Conversions
- 10.5.5 Standard-state Free Energies, Equilibrium Constants, and Concentrations

10.6 Case Study: Heat of Formation of H₂NOH

Bibliography and Suggested Additional Reading

11 Implicit Models for Condensed Phases

11.1 Condensed-phase Effects on Structure and Reactivity
- 11.1.1 Free Energy of Transfer and Its Physical Components
- 11.1.2 Solvation as It Affects Potential Energy Surfaces

11.2 Electrostatic Interactions with a Continuum
- 11.2.1 The Poisson Equation
- 11.2.2 Generalized Born
- 11.2.3 Conductor-like Screening Model

11.3 Continuum Models for Non-electrostatic Interactions
- 11.3.1 Specific Component Models
- 11.3.2 Atomic Surface Tensions
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.4</td>
<td>Strengths and Weaknesses of Continuum Solvation Models</td>
<td>410</td>
</tr>
<tr>
<td>11.4.1</td>
<td>General Performance for Solvation Free Energies</td>
<td>410</td>
</tr>
<tr>
<td>11.4.2</td>
<td>Partitioning</td>
<td>416</td>
</tr>
<tr>
<td>11.4.3</td>
<td>Non-isotropic Media</td>
<td>416</td>
</tr>
<tr>
<td>11.4.4</td>
<td>Potentials of Mean Force and Solvent Structure</td>
<td>419</td>
</tr>
<tr>
<td>11.4.5</td>
<td>Molecular Dynamics with Implicit Solvent</td>
<td>420</td>
</tr>
<tr>
<td>11.4.6</td>
<td>Equilibrium vs. Non-equilibrium Solvation</td>
<td>421</td>
</tr>
<tr>
<td>11.5</td>
<td>Case Study: Aqueous Reductive Dechlorination of Hexachloroethane</td>
<td>422</td>
</tr>
<tr>
<td></td>
<td>Bibliography and Suggested Additional Reading</td>
<td>424</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>425</td>
</tr>
<tr>
<td>12</td>
<td>Explicit Models for Condensed Phases</td>
<td>429</td>
</tr>
<tr>
<td>12.1</td>
<td>Motivation</td>
<td>429</td>
</tr>
<tr>
<td>12.2</td>
<td>Computing Free-energy Differences</td>
<td>429</td>
</tr>
<tr>
<td>12.2.1</td>
<td>Raw Differences</td>
<td>430</td>
</tr>
<tr>
<td>12.2.2</td>
<td>Free-energy Perturbation</td>
<td>432</td>
</tr>
<tr>
<td>12.2.3</td>
<td>Slow Growth and Thermodynamic Integration</td>
<td>435</td>
</tr>
<tr>
<td>12.2.4</td>
<td>Free-energy Cycles</td>
<td>437</td>
</tr>
<tr>
<td>12.2.5</td>
<td>Potentials of Mean Force</td>
<td>439</td>
</tr>
<tr>
<td>12.2.6</td>
<td>Technical Issues and Error Analysis</td>
<td>443</td>
</tr>
<tr>
<td>12.3</td>
<td>Other Thermodynamic Properties</td>
<td>444</td>
</tr>
<tr>
<td>12.4</td>
<td>Solvent Models</td>
<td>445</td>
</tr>
<tr>
<td>12.4.1</td>
<td>Classical Models</td>
<td>445</td>
</tr>
<tr>
<td>12.4.2</td>
<td>Quantal Models</td>
<td>447</td>
</tr>
<tr>
<td>12.5</td>
<td>Relative Merits of Explicit and Implicit Solvent Models</td>
<td>448</td>
</tr>
<tr>
<td>12.5.1</td>
<td>Analysis of Solvation Shell Structure and Energetics</td>
<td>448</td>
</tr>
<tr>
<td>12.5.2</td>
<td>Speed/Efficiency</td>
<td>450</td>
</tr>
<tr>
<td>12.5.3</td>
<td>Non-equilibrium Solvation</td>
<td>450</td>
</tr>
<tr>
<td>12.5.4</td>
<td>Mixed Explicit/Implicit Models</td>
<td>451</td>
</tr>
<tr>
<td>12.6</td>
<td>Case Study: Binding of Biotin Analogs to Avidin</td>
<td>452</td>
</tr>
<tr>
<td></td>
<td>Bibliography and Suggested Additional Reading</td>
<td>454</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>455</td>
</tr>
<tr>
<td>13</td>
<td>Hybrid Quantal/Classical Models</td>
<td>457</td>
</tr>
<tr>
<td>13.1</td>
<td>Motivation</td>
<td>457</td>
</tr>
<tr>
<td>13.2</td>
<td>Boundaries Through Space</td>
<td>458</td>
</tr>
<tr>
<td>13.2.1</td>
<td>Unpolarized Interactions</td>
<td>459</td>
</tr>
<tr>
<td>13.2.2</td>
<td>Polarized QM/Unpolarized MM</td>
<td>461</td>
</tr>
<tr>
<td>13.2.3</td>
<td>Fully Polarized Interactions</td>
<td>466</td>
</tr>
<tr>
<td>13.3</td>
<td>Boundaries Through Bonds</td>
<td>467</td>
</tr>
<tr>
<td>13.3.1</td>
<td>Linear Combinations of Model Compounds</td>
<td>467</td>
</tr>
<tr>
<td>13.3.2</td>
<td>Link Atoms</td>
<td>473</td>
</tr>
<tr>
<td>13.3.3</td>
<td>Frozen Orbitals</td>
<td>475</td>
</tr>
<tr>
<td>13.4</td>
<td>Empirical Valence Bond Methods</td>
<td>477</td>
</tr>
<tr>
<td>13.4.1</td>
<td>Potential Energy Surfaces</td>
<td>478</td>
</tr>
<tr>
<td>13.4.2</td>
<td>Following Reaction Paths</td>
<td>480</td>
</tr>
<tr>
<td>13.4.3</td>
<td>Generalization to QM/MM</td>
<td>481</td>
</tr>
<tr>
<td>13.5</td>
<td>Case Study: Catalytic Mechanism of Yeast Enolase</td>
<td>482</td>
</tr>
<tr>
<td></td>
<td>Bibliography and Suggested Additional Reading</td>
<td>484</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>485</td>
</tr>
<tr>
<td>14</td>
<td>Excited Electronic States</td>
<td>487</td>
</tr>
<tr>
<td>14.1</td>
<td>Determinantal/Configurational Representation of Excited States</td>
<td>487</td>
</tr>
</tbody>
</table>
CONTENTS

14.2 Singly Excited States 492
 14.2.1 SCF Applicability 493
 14.2.2 CI Singles 496
 14.2.3 Rydberg States 498
14.3 General Excited State Methods 499
 14.3.1 Higher Roots in MCSCF and CI Calculations 499
 14.3.2 Propagator Methods and Time-dependent DFT 501
14.4 Sum and Projection Methods 504
14.5 Transition Probabilities 507
14.6 Solvatochromism 511
14.7 Case Study: Organic Light Emitting Diode Alq3 513
Bibliography and Suggested Additional Reading 515
References 516

15 Adiabatic Reaction Dynamics 519
15.1 Reaction Kinetics and Rate Constants 519
 15.1.1 Unimolecular Reactions 520
 15.1.2 Bimolecular Reactions 521
15.2 Reaction Paths and Transition States 522
15.3 Transition-state Theory 524
 15.3.1 Canonical Equation 524
 15.3.2 Variational Transition-state Theory 531
 15.3.3 Quantum Effects on the Rate Constant 533
15.4 Condensed-phase Dynamics 538
15.5 Non-adiabatic Dynamics 539
 15.5.1 General Surface Crossings 539
 15.5.2 Marcus Theory 541
15.6 Case Study: Isomerization of Propylene Oxide 544
Bibliography and Suggested Additional Reading 546
References 546

Appendix A Acronym Glossary 549

Appendix B Symmetry and Group Theory 557
 B.1 Symmetry Elements 557
 B.2 Molecular Point Groups and Irreducible Representations 559
 B.3 Assigning Electronic State Symmetries 561
 B.4 Symmetry in the Evaluation of Integrals and Partition Functions 562

Appendix C Spin Algebra 565
 C.1 Spin Operators 565
 C.2 Pure- and Mixed-spin Wave Functions 566
 C.3 UHF Wave Functions 571
 C.4 Spin Projection/Annihilation 571
 Reference 574

Appendix D Orbital Localization 575
 D.1 Orbitals as Empirical Constructs 575
 D.2 Natural Bond Orbital Analysis 578
 References 579

Index 581