Index

ab initio calculations, 366
Accelrys Material Studio/Dmol³ program, 457
acenes, 627
acene–thiophenes, 618–19
acetylene, 51
acid chloride, 17
acids
 alkanoic, 170
 ascorbic, 818
 camphorsulfonic, 816
 m-chloroperbenzoic (m-CPBA), 29–30
 cyanoacetic, 28, 31
cyanoacrylic, 27
dihydroxybenzoic (DHB), 185
trans-3-indoleacrylic (IAA), 185
nucleic, 63, 819, 822, 824
quaterthiophenecarboxylic, 534
sinapinic, 185
sulfonic, 552
3-thiophenecarboxylic, 426
trifluoroacetic, 53, 557
acrylate-substituted oligothiophenes, 20
active electrode materials, 577–92; see also electrodes
active-matrix liquid crystal displays (AMLCDs), 648
acyl-thiophenes, 621, 622
adenine, 59
adenosine triphosphate (ATP), 817
adlayer structures, 538–9
adsorption geometries, 517
AFM, see atomic force microscopy
aggregates
disc-like, 186
H-type, 12–13, 14
light scattering studies of, 185–7
needle-like, 186
NMR spectroscopy studies of, 174
UV–Vis studies of, 12, 176, 184
aggregational behavior, 174, 184–7
air stability; see environmental stability
alanine, 61
Alexa Fluor, 822
alignments
 magnetically forced, 501
 molecular, 480–1
 oblique, 479
 of conjugated polymers, 497
 vertical, 479, 480, 482, 490–2
 uniaxial, 480
aliphatic ether dendrons, 118
alkali metals, 57
alkanethiols, 5, 687
alkanoic acids, 170
alkoxycarbonyl-substituted polymers, 700
alkoxy groups, 427, 428–9, 432, 440
3-alkoxy-4-methylthiophenes, 554
3,4-(alkylenedioxy)pyrrole)s, 436
alkyl-substituted oligothiophenes, 19–20, 407, 483, 519
 formation of SAMNs on HOPG and gold, 538
 in OFETs, 604–12
alkyl-substituted polymers, 230
alkyl-substituted polythiophenes, 629–35
alkyl-substituted thiophenes, 518–24, 531, 545
alkylsulfanyl groups, 427, 429–30, 432, 440
3-alkylthiophenes
electrochemical properties of, 425–6, 427
‘quasi-living’ polymerization of, 164, 167, 168
all-optical Mach–Zehnder modulator, 790
all-organic electronic devices, 549, 566, 595
all-plastic devices, 197, 198

Handbook of Thiophene-based Materials: Applications in Organic Electronics and Photonics Edited by Igor F. Perepichka and Dmitrii F. Perepichka © 2009 John Wiley & Sons, Ltd
alpha substituted oligothiophenes, 19
Alzheimer’s disease, 65
AM1, see Austin Model, 1
ambient air, 198, 659; see also environmental stability
ambient stability; see environmental stability
ambipolar transport, 234, 742
amides, 559, 624
2-aminoethyl groups, 711
aminomethyl-substituted oligothiophenes, 379–81
aminophenyl groups, 711
AMLCDs, see active-matrix liquid crystal displays
amorphous films, 788–90
amorphous glasses, 104, 126, 479–80
amorphous oligothiophenes, 25, 104, 126, 391, 392
amorphous silicon, 233, 330
amperometric biosensors, 58, 59
amperometric sensors, 48, 55, 303
amplified spontaneous emission (ASE), 462–71, 612
amplifiers, 455
amyloid fibrils, 64, 65, 827
anisotropic electrical conductivity, 497, 501, 504
anisotropy, 190, 497, 741
annealing, 681–4, 687
annulenes, 75–9, 86, 88–96
[18]annulene trisulfide, 89
anthracene, 36, 45, 456, 478, 485–7, 618
anthracene-doped fluorene crystals, 485, 486, 487
anthradithiophene, 626–7
anthraquinone, 45
anthra[2,3-b]thiophene, 627
anthrazine, 732
antibodies, 61, 63
antistatic coatings, 430, 559–60
aptamers, 824–5
A–Q copolymers, see aromatic–quinonoid copolymers
arene–thiophenes, 614–17
aromatic polymers, 349–54
aromatic–quinonoid copolymers, 353–8
artificial enzymes, 384
artificial muscles, 779
artificial photosynthetic systems, 45
aryl–aryl coupling reactions, 3, 110
arylene groups, 432
aryloxy groups, 428–9
ascorbic acid, 818
ASE, see amplified spontaneous emission
atomic force microscopy (AFM), 160, 191–2
atom transfer radical polymerization (ATRP), 202
ATP, see adenosine triphosphate
ATRP, see atom transfer radical polymerization
Austin Model 1 (AM1), 386
Avrami analysis, 194
azaferrocene, 307
azobenzene, 30
B3LYP, see Becke’s three-parameter hybrid functional
backup energy sources, 577
bandgaps
control, 341–62
factors influencing, 360–1
of ladder-like polythiophenes, 358–60
barium titanate, 561
bathochromic effect, 557
batteries, 578
BBT, see benzobisthiadiazole
BDT, see bis(benzodithiophene) and bisdithienothiophene
Becke’s three-parameter hybrid functional (B3LYP), 345, 367, 374
BEDT-TTF, see bis(ethylenedithio)tetrathiafulvalene
bendable displays, 330
benzobisthiadiazole (BBT), 369
benzobisthiazole, 732
benzodichalcogenophenes, 626
benzodithiophenes, 240
benzo-EDOT, 550
benzoquinones, 803
benzoselenophenes, 332–3
benzothiadiazole (BT), 241, 369, 725, 729, 742
benzothiazole-containing copolymers, 725–31
benzo[b]thiophene, 279, 286
benzo[c]thiophene, 66, 67, 69
benzothiophenes, 66–9, 619
benzothiophene-S,S-dioxide, 738
benzotriazole, 700–1
benzothiophenes, 75, 88, 102
beta substitutions
 by alkasulfanyl and dialkylamino groups, 427, 429–30
 by alkoxy and aryloxy groups, 427, 428–9
 by electron-releasing and electron-withdrawing groups, 426–8
BFEE, see boron fluoride ethyl ether
BHJSC, see bulk heterojunction solar cells
BI, see bovine insulin
bias-stress effect, 637
bicyclo[2.2.2]octene, 440
bicyclo[4.4.1]undecane, 24
biisothianaphthene, 386–7
bilayer heterojunction solar cells, 105, 110
billboards, 769, 777
binaphthyl–oligothiophene copolymers, 714
Bingel-type reaction, 41
biochips, 822–23
bioconjugates, 63
biological sensors; see also biosensors
 for detection of adenosine triphosphate (ATP), 817
 for detection of DNA, 819–24
 for detection of neurotransmitters, 818–19
 for detection of proteins, 824–8
 for detection of small molecules, 817–18
biomolecular devices, 384
biomolecules, 58–60, 384
biopolymers, 63
biosensors, 4, 384, 537; see also biological sensors
 amperometric, 58, 59
biotin, 65, 824
biotin–avidin system, 824
biphenylene, 75
bipolarons, 370–6, 444, 445
bipolaron state, 371
bipropylendioxythiophenes, 772, 775
bipyridine, 52, 305
bipyridyl-based ligands, 298
bipyridyl-substituted thiophenes, 303
bis(benzodithiophene) (BDT), 625
bis(benzothiophenyl)ethene, 795
bisdithienothiophene (BDT), 401, 625
bis-EDOT, 430, 432, 436, 441, see also EDOT dimer
bis-EDST, 432
bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF), 327
1,4-bis(oxadiazolyl)benzene, 404
bisplatinomacrocyle, 81
bis(sulfone), 795
2,3-bis[(3-thienylcarbonyl)oxy]propyl
 3-thiophencarboxylate, 761
2,5-bis(trimethyl)silylthiophene-S,S-dioxide, 278
bithiazole, 306
bithienylethenylenes, 26
bithiophene–phenylene–bithiophene oligomers, 613
bithiophenes
 all-oxidized, 259
crown-annelated, 429
 in copolymers with thienothiophenes, 656, 661
 linked, 238–42
BLA, see bond length alternation
block copolymers, 11–13, 16, 17
 charge carrier mobilities in, 199–200
 containing oligothiophenes and polystyrene, 13
 containing regioregular polythiophenes, 201–3
boat-shaped structures, 77
Boltzmann constant, 491
Bombyx mori silk, 534
bond length alternation (BLA), 347
borole–thiophene co-oligomers and copolymers, 404
boron, 238, 301
boron fluoride ethyl ether (BFEE), 425, 761
boronic ester, 12
bovine insulin (BI), 64–5, 827
bovine serum albumin (BSA), 61, 65, 825, 826
bowl-shaped structures, 75
Bragg progression, 617
branched structures, 98–131, 628–9
Brillouin zone, 346
3-bromothiophene, 425
BSA, see bovine serum albumin
BT, see benzothiadiazole
BTPD-PFCB, see triarylamine/perfluorocyclobutane-containing polymer
bulk heterojunction (BHJ), 680; see also bulk heterojunction solar cells
bulk heterojunction solar cells (BHJSC), 68, 71, 72, 73, 100, 110, 673

C_{14}-PEDOT, see	polytetradecylethyleneedioxythiophene
C_{2}SHeI, see thiohelicene
C_{2}SLad, see thienoacene ladder polymer
calcineurin, 827
calixarenes, 53–5
calmodulin, 827
camphorsulfonic acid, 816
capacitors 561–2; see also electrochemical capacitors
capillary electrophoresis, 556
carbazole, 737
carbazole-containing polymers, 775
carbazole–di(thienyl)benzothiadiazole copolymers, 727
carbazole–thiophene copolymers, 676
carbon paper electrodes, 587
carbonyl groups, 620–3

carbonyl-substituted oligothiophenes, 620–4
carbosilane, 113
5-carboxyquater(3-hexylthiophene), 61
Carothers equation, 665

catenanes, 93–4, 295, 403–4
cathode ray tubes (CRTs), 549, 560
cathodes, 561
CCE, see composite coloration efficiency
CD, see circular dichroism
CDM, 368, 369
CE, see coloration efficiency, 757
centerband-only detection of exchange (CODEX), 187
chain-growth mechanism, 164, 167, 172
charge carrier mobility; see also field effect mobility
 factors influencing, 195–200
 in block copolymers and blends, 199–200
 in organic semiconductors, 648, 650
charge carriers, 293–4, 370–6, 598
charge-coupled device (CCD) spectrometer, 462
charge injection, 599
charge storage mechanism, 578
charge transfer (CT), 32, 273, 284, 285, 286; see also electron transfer
charge transport, 437, 479, 599; see also electron transfer
 in FET devices, 483–5, 649
 in organic semiconductors, 599–600
intrachain, 311
charge trapping, 598
chelating ligands, 52
chemically modified electrodes, 55
chemical polymerization, 306, 311
chemical sensors, 815–17; see also chemosensors
chemosensors, 4; see also chemical sensors
chicken lysozyme, 64, 827
(chloromethyl)dimethylsilylthienylstannanes, 61
m-chloroperbenzoic acid (m-CPBA), 29–30
cholesterol groups, 14
chromophores, 125–6
 D–π – D, 407
 laser, 486
 (porphyrinato)zinc(II)-based, 45, 47
tetrahedral, 110–11
chronocoulometry, 306
CIE coordinates, 276, 278, 758
circular dichroism (CD), 12, 15
circulene structures, 245–6
circumrotation, 93
CIS, see single excitation configuration interactions
clusters, 304
CMOS circuits, see complementary metal oxide semiconductor circuits
cobalt, 312–13
CODEX, see centerband-only detection of exchange
coherent phonons, 456, 474
coil-shaped structures, 41, 185
coloration efficiency (CE), 757, 758, 760–1
colorimetric analysis, 758
color control, 758, 770–6
color-tunable emitting materials, 391
color tuning, 704–10
complementary metal oxide semiconductor (CMOS) circuits, 638–9
composite coloration efficiency (CCE), 758; see also coloration efficiency
conducting materials, 497
 ferroelectric liquid crystalline (FLC), 511
selenophene-based, 322–6
conducting polymers, 549; see also organic semiconductors
applications of, 763
electrochemical behavior of, 423
electrochromic polymers as, 758
formation of, 420–23
redox processes in, 578–9
solution-processable, 629
conductivity
anisotropic, 501, 504
in polymers, 293–4
confocal spectroscopy, 602
conjugated cyclothiophenes, 78–86
conjugated macrocycles, 295
conjugated oligomers, 2, 293, 295, 298, 457
conjugated polyelectrolytes, 239
conjugated polymers (CPs), 2, 58, 158, 293
alignment of, 497
as laser materials, 485
bandgaps of, 341–62, 384
chiral, 762–3
conductivity in, 293–4
containing boron centers, 301
electrochromism in, 762–3
evaluating bandgaps of, 366–70
FLC, 498; see ferroelectric liquid crystalline materials
for chemical and biological sensors, 813
incorporating metal–metal quadruple bonds, 298
incorporating thieno[2,3-b]thiophene, 234
integration of biomolecules into, 58–9
liquid crystalline, 497, 500
properties of, 343
with high field effect mobilities, 195–200
consistent valence force field (CVFF), 385
constant current charge/discharge cycling, 581–2
contact angle measurements, 7
controlled polymerization, see ‘quasi-living’ polymerization
convergent method, 99
copper complexes, 306
corannulene, 75, 246
coronene, 246
COT, see cyclooctatetraene
Cotton effect, 12, 15, 108
coumarin dyes, 31, 119
counteranions, 562
counterions, 551–2
coupling reactions
aryl–aryl, 3, 110
Eglinton-type, 23, 51
Grignard, 25
McMurry, 89, 90, 91, 108
Wittig, 299
Wurtz, 158
Yamamoto, 233, 238
m-CPBA, see m-chloroperbenzoic acid
CPDT, see cyclopentadi thiophene
CP/MAS NMR, see cross-polarization magic angle spinning
CPs, see conjugated polymers
cross-coupling polymerization; see also Grignard metathesis
nickel-mediated, 163–9, 174
palladium-mediated, 168–9
purification of product, 171–3
cross-coupling reactions, 3, 4–5, 158
chain-growth mechanism, 172
for synthesis of regioregular polythiophenes, 160–3
Heck, 299
Kumada, 4, 5, 8, 19, 21, 23, 37, 116, 119, 124, 160, 170, 230
mechanism of, 164
Sonogashira, 5, 9, 21, 51, 77, 86, 88, 101, 108
Suzuki, 4, 12, 21, 22, 25, 28, 32, 34, 72, 105, 108, 112, 125, 160, 236, 299, 326
cross-polarization magic angle spinning (CP/MAS) NMR, 187
crown-annelated bithiophenes, 429
crown ether-functionalized oligothiophenes, 55–8
crown ethers, 50, 51, 53, 55–8, 815; see also crown ether-functionalized oligothiophenes
CRTs, see cathode ray tubes
cryostat, 472
crystal devices, 490
crystalline microwires, 189
crystallization mechanism, 193–5
crystals
laser emission from, 485–90
low-dimensional, 455–74
molecular alignments in, 480–1
needle-like, 456, 457, 460–2, 465, 480, 483–4
of thiophene/phenylene co-oligomers, 455–74, 483
platelet, 456, 458–60, 462–3, 467–8
Van-der-Waals, 485
with no defects, 491
CT, see charge transfer
Curie–Weiss law, 509
current-driven displays, 648
current-injected lasers, 490, 492
CVFF, see consistent valence force field
cyanoacetic acid, 28, 31
cyanoacrylic acid, 27
cyanobiphenyl, 436; see also cyanobiphenyl-type (CBT) LC group
cyanobiphenyl-type (CBT) LC group, 498–9, 503
cyano groups, 29, 721–2
cyano-substituted oligothiophenes (DCN-nTs), 21, 28–9, 376–9
in OFETs, 624
cyanothiophenes, 369, 426
cyclam complexes, 302–3
cyclic oligothiophenes, 402–4; see also macrocycles
cyclic voltammetry (CV), 420, 422
in characterization of biomolecules, 58
in evaluating performance of electrochemical capacitors, 579–81
cyclo(diacylenes–oligothiophenes), 403
cyclo(oligothienylbutadiynes), 84
cyclo[8]pyrroles, 97
cyclo(quinquethiophenebutadiyne)s, 79
cycloadditions, 255
cycloalkane-end-capped quinquethiophene, 537
cyclobutadi thiophene, 75
cyclo(di,3,4-thi enylene), 75
cyclohexyldiamine/diimine, 14–15
cyclooctatetraene (COT), 76, 77
cyclooligomerization, 88
cyclopentadi thiophene (CPDT), 55, 56, 241
cyclophane, 23
cyclotetra(2,3-thi enylene), 77, 86
cyclotetra thiophen es, 76
cyclo [2]thi ophene, 75
cyclo [3]thi ophene, 75
cyclo [4]thi ophene, 76
cyclo [8]thi ophene, 81
cyclo [12]thi ophene, 78, 80
cyclo [14]thi ophene, 86
cyclo [16]thi ophene, 80
cyclo [18]thi ophene, 80
cyclo[n]thi ophenes, see cyclothiophenes
cyclothiophenes, 402, 522
adsorption and self-assembling properties of, 84
cross-conjugated, 75–8
fully α-conjugated, 78–86
optical properties of, 84–5
syn and anti conformations of, 85–6
cyclotri(3,4-thi enylene), 75
cyclo triynes, 87
d–A, see donor–acceptor
–D–A–D–A–polymers 713
D–π–D chromophores, 407
data storage, 789, 790
Davydov splitting, 482, 491
DCV, see dicyanovinyl
defects
charged, 391
crystals not involving, 491
head-to-head, 158, 160, 163
interrupting π-conjugation, 343
quenching effect, 744
tail-to-tail, 163
vibrational spectra of oligothiophenes with, 393
dendrimers, 98–9, 106
all-thiophene, 119–29
G2, 114, 123
G4, 115, 125
in electroluminescent applications, 711–13
peripheral functionalization with
oligothiophenes, 114–16
phenylene–thi enylene, 116
polyphenylene, 116
with oligothiophenes as cores, 116–19, 712
dendritic oligothiophenes (DOTs), 100, 119–129
dendrons
Advincula type, 116
aliphatic ether, 118
G2–119, 123
Index 839

G3-116, 118, 119

G4-125
polybenzyl ether, 116
semi-flexible, 126
density functional theory (DFT), 345, 365–6, 374
time-dependent, 384
deposition processes, 598
detection techniques, 59, 820–4
Dexter-type ‘double-electron transfer’, 298
DFT, see density functional theory
DHB, see dihydroxybenzoic acid
dialkoxythiophenes, 550, 553
dialkylamino groups, 427, 429–30
dialkylbithiophene comonomers, 662
dialkyloligothiophenes, 19
3,6-dialkylthieno[3,2-b]thiophene, 667
dialkylthienothiophenes
in copolymers with bithiophene, 661
synthesis of, 663–4
diamine–oligothiophenes, 299
diaminotriaizine, 778
diarylaminocapped dithienylbenzo[c]thiophenes, 68
diarylaminocapped oligothiophenes, 26
diarylaminogroups, 440, 441
dibenzothienobenzothiophene, 625
dibenzothienyl-S,S-dioxide, 262
dibenzothiophene-S,S-dioxide, 279, 738
in co-oligomers with fluorene, 262–5, 271–5, 738–40
2,5-dibromo-3,4-ethylenedioxythiophene
(DBEDOT), 763
3,4-dibromothiophene, 425
dichroic fluorescence, 504
diclofenac, 775
dicyanomethylene, 28
dicyanovinyl (DCV), 29, 65
dicyanovinylene, 28, 105
didecyloligothiophenes, 19
didehydrotribenz[18]annulene, 88
Diels–Alder reaction, 116, 255, 660, 803, 804
diethylphosphate groups, 23
differential scanning calorimetry (DSC), 193, 194, 233
4,4-difluorocyclopentadithiophene, 242
diformyl–oligothiophenes, 242
dihexyfluorenes, 239, 729
dimerization, 437
dimesitylboryl groups, 711
3,6-dimethoxyfluorene, 737
dimethyl-capped quaterthiophene, 478, 480–1
2,2-dimethyl-ProDOT, 568
dimethyl sulfoxide (DMSO), 558
di(1,3,4-oxadiazole)phenylenes, 405
dip coating, 558
3,3’-dipentyl-α-quinquethiophene, 524–5
diphenylamine, 738
diphenylaminocapped oligothiophenes, 27
diphenylaminofluorenyl groups, 711
diphenylamino groups, 279
dipping process, 562
displays
active-matrix liquid crystal (AMLCDs), 648
bendable, 330
current-driven, 648
electrochromic, 759–62
electrophoretic, 647
flat-panel, 195
large-area, 769 779, 330
distributed feedback (DFB), 281
distyrlyl-substituted quaterthiophene, 620
disulfides, 5, 310
dithienophospholes, 239
dithienosilole (DTS), 723–4
dithienothiophenes (DTTs), 234–8, 243
in D–π–D chromophores, 407
in OFETs, 626
structural isomers of, 234
di(thienyl)benzoselenadiazole, 727
di(thienyl)benzothiadiazole–pyrrole copolymers, 727
di(thienyl)benzothiadiazole–thiophene
copolymers, 727
di(2-thienyl)-2,1,3-benzothiazole (DBT), 725–30
dithienylbenzo[c]thiophenes, 67, 68
dithienylene ethene, 88
dithielylenethenes (DTE), 784–5
architecture, 784, 796, 801–4
as bulk amorphous materials, 788–90
as dopants in polymers, 790–2
as pendant groups in polymers, 792–3
D–A based, 25
dimethylaniline-substituted, 36
fused, 804–5
dithienylethenes (DTE) (continued)
 in main-chain polymers, 794–7
 phenol-functionalized, 796
 photochromism in single crystals of, 785–8
 self-assembly on gold and silver, 797–9
 2,3-di(3-thienyl)thieno[3,4-b]pyrazine, 72
 dithiol-based oligothiophenes, 7
 dithranol, 185
 divergent method, 99
 dioxolane groups, 620, 621, 622
 dihydroxybenzoic acid (DHB), 185
 DMA, see dynamic mechanical analysis
 DMQtT, see dimethyl-capped quaterthiophene
 DMS-E process, 562–3
 DMSO, see dimethyl sulfoxide
 DNA, 63
 detection of, 819–24
 ss-DNA (single stranded), 817, 820, 823–5
 doctor blading, 558
 dodecyl-substituted molecules, 519, 520
 donor–acceptor concept, 369
 donor–acceptor fragments, 713
 donor–acceptor (D–A) systems, 24–30, 32, 369
 cyclopentadithiophene–benzothiadiazole, 241
 incorporating fullerene, 34, 35, 36, 44, 108
 incorporating porphyrins, 44, 45
 oligothiophene–perylen-based, 110, 238
 star-shaped, 105
 dopamine, 818–19
 doping level, 421
 doping/undoping processes, 420–1, 259, 578;
 see also redox processes
 in electrochemical capacitors, 579–81
 DOTs, see dendritic oligothiophenes
 double-cables, 683
 double-helical structures, 77
 DBEDOT, see
 2,5-dibromo-3,4-ethylenedioxythiophene
 drive electronics, 566
 DSC, see differential scanning calorimetry
 DSSCs, see dye-sensitized solar cells
 DTE, see dithienylethenes
 DTF–LDA method, 371
 DTS, see dithienosilole
 DTT, see dithienothiophenes
 dumbbell-shaped structures, 118
 duplexes, 819, 822, 825
dye-functionalized oligothiophenes, 30–43
dyes, 20
 coumarin, 32, 119
 highly colored, 329
 perylene, 32, 34
 phosphorescent
 squaraine, 65
dye-sensitized solar cells (DSSCs), 27, 28, 31
 dynamic mechanical analysis (DMA), 195

EA, see electron affinity
ECC, see effective conjugation coordinate
ECDs, see electrochromic devices
ED, see electron diffraction patterns
EDFA, see erbium-doped fiber amplifier
‘edge-on’ orientation, 653
edge-to-face motif, 600; see also herringbone
motif
EDOS, see 3,4-ethylenedioxydiumethyleneselenophene
EDOST, see thieno[3,4-b]-1,4-oxathiane
EDOT, see 3,4-ethylenedioxythiophene
EDOT-based copolymers, 432
EDOT-dimer, 388, see also bis-EDOT
EDOT oligomers, 441–2
EDST, see 3,4-ethylenedisulfanylthiophene
Effective Conjugation Coordinate (ECC), 392,
 407, 445
EFISH, see electric field-induced second
 harmonic generation
Eglinton conditions, 93
Eglinton cyclooligomerization, 88
Eglinton–Glaser oxidative coupling, 79
Eglinton homocoupling, 127
Eglinton reaction, 79
Eglinton-type coupling, 23, 51
Einstein β coefficient, 491
EL devices, see electroluminescence devices
electric field-induced second harmonic generation
 (EFISH), 25
electroactive materials, 327–30
electroactive surfactants, 23
electrochemical capacitors, 577, 578–9; see also
 capacitors
 application of polythiophenes derivatives in,
 582–4
 compared with batteries, 578
 electrolytes used in, 590
fabrication of electrodes, 587–90
hybrid, 591
performance of, 579–82, 590–1
prototypes, 591
types of, 585–7
electrochemical impedance spectroscopy, 581
electrochemical polymerization, see electropolymerization
electrochemistry, 419–23; see also electropolymerization
spectroelectrochemistry
of EDOT-based polythiophenes, 430–6
of thiophene monomers and oligomers, 423–5
of β-functionalized thiophene monomers, 425–8
of β-functionalized thiophene oligomers, 428–30, 437–42
electrochromic contrast, 760
electrochromic devices (ECDs), 4, 72, 248, 757, 763
architectures of, 764–6
dual-type, 775, 777
fabrication of, 766–7
see-through, 764
types of, 767–9
electrochromic efficiency, see coloration efficiency
electrochromic inks, 780
electrochromic materials, 757–63
colors and coloration efficiencies, 761
in applications, 778–9
multicolored, 758, 759, 778
organic vs inorganic, 777–8
requirements for, 759–62
techniques for characterizing, 758, 759
types of, 759
electrochromic mirrors, 779
electrochromic polymers, 757–8
colors, 771
electrochromic windows, 567–8; see also ‘smart windows’
electrochromism, 757
in conjugated polymers, 762–3
in polythiophene derivatives, 770–7
optically active, 763
electrodes
chemically modified, 55

composite, 589
in electrochemical capacitors, 587–90
transparent, 430
electroluminescence
blue, green, 716–721
in oligothiophenes, 710–713
color tuning in polythiophenes, 393, 704–707, 716
color tuning in thiophenes copolymers, 713–740
NIR, 721, 727–728
red, 326, 722–726
white, 729–731
improving efficiency of, 741
in oligothiophene-S,S-dioxides, 278–81
polarized, 741
electroluminescent devices, 126
containing thiophene-S,S-dioxides, 256, 735–740
materials for, 695–7
inorganic, 561
electrolytes
for electrochromic devices, 763
gel, 567–8, 590
electrochemical capacitors, 590
electrolytic capacitors, 578
electron affinity (EA), 256, 257
electron-beam lithography, 10, 281
electron diffraction (ED) patterns, 461
electronic absorption bands, 443, 445–6
electronic identification cards, 195
electronic paper, 330
electronics packaging, 549
electron paramagnetic resonance (EPR), 385; see also ESR
electron-releasing groups, 426–8
electron spin resonance (ESR), 27, 35, 36, 191, 235, 306, 370, 438, 439, 444–5; see also EPR
electron transfer
Dexter-type, 298; see also energy transfer
outer-sphere, 303
photoinduced, 50–1
electron-withdrawing groups, 426–8
electrophoretic displays (EPDs), 647, 648
electrophosphorescent devices, 741
electropolymerizable monomers, 295
electropolymerization (electrochemical polymerization), 294–5, 302–14; see also
electrochemistry early stages of, 543–4, 545 epitaxial, 543–4 mechanism of, 419–23 of β-functionalized thiophene oligomers, 428–30 of β-functionalized thiophene monomers, 425–8 of EDOT-based polythiophenes, 432–6 of thiophene monomers and oligomers, 423–5 electrospay ionization Fourier transform ion cyclotron resonance (ESI-FTICR), 295 ellipsometry, 7 emission color tuning, see color tuning energy gaps, 341–362 calculations of, 343–6 connectivity and, 346–9 experimental sources of, 343 energy storage devices, 577 energy transfer Förster energy transfer, 276, 268, 709, 713, 724, 730, 741 Förster resonance energy transfer (FRET), 822, 823 environmental stability, 198–9, 233, 650 Envision, the, 562 enzymes, 59, 817 e-paper, 647, 648; see electronic paper EPDs, see electrophoretic displays EPR, see electron paramagnetic resonance EQE, see external quantum efficiency erbium-doped fiber amplifier (EDFA), 455 ESI-FTICR, see electrospray ionization Fourier transform ion cyclotron resonance ESR, see electron spin resonance esters, 11, 170, 624 ethenylene, 91 N-ethylcarbazole, 27 ethylene, 325 3,4-ethylenedioxyxyselenophene (EDOS), 436 3,4-ethylenedioxythiophene (EDOT), 3, 232, 297, 323, 369, 534, 553 hydroxymethyl-functionalized, 435, 436 in co-oligomers and copolymers with thiophene- S,S-dioxide, 265–6 in copolymer with thieno[3,4-b]thiophene, 229 in electrochromic devices, 763, 770, 775, 776 in low bandgap polymers, 69, 72, 353 in terthiophene–fullerene dyads, 36 polythiophenes based on, 430–6 synthesis of, 550 3,4-ethylenedisulfanylthiophene (EDST), 432 ethynylenylene, 91, 106 excitation energies, 394–5; see also excited states excitation laser, 465, 466 excited states, 273; see also excitation energies excitons, 491 external quantum efficiency (EQE), 72, 73, 683 extrapolations Hoffman–Weeks, 194 oligomer-based, 344, 345–6, 366–7 F8T2, see poly(9,9-dioctylfluorene-co-bithiophene)
Fabry–Pérot cavities, 487 face-to-face arrangement, 189, 479, 480, 520, 600, 625 fan-shaped texture, 507, 509 faradaic processes, 580–1 fast-scan voltammetry, 421 FBC model, 444, 445 FCR, see fluorescence chain reaction ferrocene, 52, 303, 307, 436, 778 ferrocene-functionalized oligothiophenes, 52 ferrocenyl-capped oligothiophenes, 301 ferroelectric behavior, 504, 509, 510 ferroelectricity, 498, 507, 510 ferroelectric liquid crystalline (FLC) conducting materials, 511 ferroelectric behavior in alignment, 504 optical and electroresponsive properties of, 507–11 synthesis of monomers and polymers, 505–7 thermotropic properties of, 507 ferroelectric liquid crystalline (FLC) molecules, 497–8, 504, 509 FE-SEM, see field emission-scanning electron microscopy FETs, see organic field effect transistors fiber amplifiers, 455 fiber Raman amplifier (FRA), 455 fibers, 455, 789 fibrils, 827
field effect mobility; see also charge carrier mobility
factors influencing, 195–200
in organic semiconductors, 597
in thiophene/phenylene co-oligomers-based FET devices, 484
field emission-scanning electron microscopy (FE-SEM), 7
flat-panel displays, 195
FLC, see ferroelectric liquid crystalline conducting materials
flexible displays, 566
flexible plastics, 595
flexography, 650
fluorene, 72, 239
in copolymers with selenophene, 326, 331, 718
in copolymers with thiophene, 716–20
fluorene–benzothiadiazole copolymers, 729
fluorene–bithiophene, 239
fluorene–dibenzothiophiene-S,S-dioxide, 262–5, 271–5, 738–9
fluorene–PTV copolymers, 722
fluorene–thienopyrazine copolymers, 731
fluorene–thiophene–phenylenevinylene copolymers, 722
fluorene–thiophene-S,S-dioxide copolymers, 262–5, 737
fluorene–thiophenes, 619–20
fluorenone, 620
fluorescence, 501–4
chain reaction (FCR), 822
sensors, 239; see also fluorescent markers techniques, 59, 820–4
fluorescent markers, 60–1, 63, 822–4
fluorescent nanobeds, 18
fluorescent probes, 110
fluoride recognition, 49
fluorine-containing polymers, 637
fluoroalkyl-substituted oligothiophenes, 405–6
fluoroarene–thiophenes, 614–16, 618
fluorocarbon-substituted oligothiophenes, 609–12
fluorophores, 63, 65
force field methods, 384–5
formamides, 55
formylation
Vilsmeier, 26, 44
Vilsmeier–Haack, 29, 31, 38, 45, 105, 115
Fourier transform infrared spectroscopy (FT-IR), 25, 391
Fourier transform Raman spectroscopy, 391
FRA, see fiber Raman amplifiers
fractionation, 171–3
Franz–Keldysh effect, 757
Frenkel excitons, 84, 491
FRET, see Förster resonance energy transfer
Friedel–Crafts acylation, 19
Friedel–Crafts alkylation reaction, 795
Friedel–Crafts condition, 663
Friedel–Crafts reaction, 22
Friedländer condensation reaction, 795
FT-IR, see Fourier transform infrared spectroscopy
FT-Raman spectroscopy, see spectroscopy
fuel cells, 313
fullerenes, 84, 334, 358; see also phenyl-C_{61}-butyric acid methyl ester (PCBM)
in donor–acceptor (D–A) systems, 34, 35, 36, 44, 108
in host–guest systems based on macrocycles, 535–7
in triads with oligothiophene and porphyrin, 50
fullerene-functionalized oligothiophenes, 34–44
fullerene-linked oligothiophenes, 7
full width at half-maximum (FWHM), 462
functionalized oligothiophenes, 4–66
fused dithienylethenes, 804–5
fused oligothiophenes
in OFETs, 625–8
synthesis and molecular properties of, 219–48
fused thienothiophenes, 3
fused thiophenes, 66–74
FWHM, see full width at half-maximum, 462
G2-dendrimers, 114, 123
G2-dendrons, 119, 123
G3-dendrons, 119
G4-dendrimer, 115, 125
G4-dendron, 125
GAGAG, see glycine–(L-alanine)–glycine–(L-alanine)–glycine sequence
gas-phase systems, 546
Gaussian03 program, 354
gelators, 14
gel permeation chromatography (GPC), 185, 498, 557, 666, 795
GI-FTIR, see grazing incidence Fourier transform infrared spectroscopy
GISAXS, see grazing incidence small-angle X-ray scattering
GIXD, see grazing incidence X-ray diffraction
Glaser coupling, 81; see also Eglinton homocoupling
glucose oxidase, 59
glycine, 61
glycine–(L-alanine)–glycine–(L-alanine)–glycine sequence, 534
Gogte pathway, 550
gold
 alkylated oligothiophenes on, 538 complexes, 297, 309
 self-assembled monolayers on, 537–8
gold nanoparticles, 5, 7, 8, 115–16, 717
 self-assembly of dithienylethenes on, 797–9
Gompper protocol, 330
GPC, see gel permeation chromatography
GPS model, 446
Grätzel photoelectrochemical cell, 298
gravure, 647, 650
grazing incidence Fourier transform infrared spectroscopy (GI-FTIR), 7, 235
grazing incidence small-angle X-ray scattering (GISAXS), 196; see also X-ray scattering
grazing incidence X-ray diffraction (GIXD), 195, 601
green-colored polymers, 774
Grignard coupling reactions, 25
Grignard metathesis (GRIM), 162–8, 169, 170, 174, 185, 202
Grignard reagents, 162
GRIM, see Grignard metathesis
Gronowitz synthetic protocol, 328
Grubbs’ catalyst, 18, 35
guanine, 63
HABTE, see hexanoic acid bis (thiophen-3-ylethyl) ester
Hall effect, 599
Hamiltonians, 366, 370, 393, 713
Hammett parameters, 610
Hammett constants, 426, 427
Hartree–Fock approach, 366, 370, 393; see also Hartree–Fock theory
Hartree–Fock theory, 345; see also Hartree–Fock approach
HAS, see helium atomic scattering and human serum albumin
haystack microstructure, 654
HB motif, see herringbone motif
head-to-head (HH) orientation, 158, 159, 160, 163, 698
head-to-tail (HT) orientation, 158, 163, 698
head-to-tail polythiophenes (HT-PT), see regioregular polythiophenes
Heck cross-coupling reaction, 299
helical structures, 77, 244, 248, 543
helicenes, 245, 246, 359, 360
helium atomic scattering (HAS), 537
herringbone (HB) motif, 602, 609–10, 616, 617, 232, 332, 479, 520, 600
heteroatoms, 238
heterojunction, 673, 680
heterojunction photovoltaics, 673; see also bulk heterojunction solar cells and heterojunction solar cells
heterowires, 545
hexaethynylbenzene, 628
hexafluorophosphate, 552, 554
hexamethyldisilazane (HMDS), 653
hexane, 687
hexanoic acid bis (thiophen-3-ylethyl) ester (HABTE), 761
hexathia [30]annulene, 89
hexathiabornoporphyrene, 90
hexatriene, 785, 790, 799, 800, 801–5
hexylcarbonyl groups, 620
4-n-hexylcyclopentadi thiophene, 307
hexyl-end-capped oligothiophenes, 442
hexyl groups, 441
HF, see Hartree–Fock
HH, see head-to-head
high-boiling solvents, 559
highest occupied crystal orbital (HOCO), 341, 346–9, 352–3, 359, 360
highly ordered pyrolytic graphite (HOPG), 62, 191
 alkylated oligothiophenes on, 538
 in formation of superstructures, 518, 531
high-temperature transitions, 193
H-like aggregations, 603
HMDS, see hexamethyldisilazane
HOCO see highest occupied crystal orbital
Hoffer’s chloro sugar, 63
Hoffman–Weeks extrapolation, 194
hole-transport materials, 68
hole-transporting oligothiophenes, 26
HOMO energy, 341, 346–9
oxidative stability and, 659–62
in thiophene/phenylene co-oligomers, 457–8
HOMO–LUMO energy gaps, 366–70
homocoupling
Eglinton, 127
oxidative, 4, 19
Ullmann-type, 32
homogenous electron gas theory, 366
‘honeycomb’ pattern, 84, 522
HOPG, see highly ordered pyrolytic graphite
Horner–Emmons reaction, 721
host–guest systems, 535–7
hot-wall epitaxy, 457, 465
HPC, see hydroxypropylcellulose
HT, see head-to-tail
HT-PT, see regioregular polythiophenes
H-type aggregates, 12–13, 14
Hückel band calculation, 353
human serum albumin (HAS), 65
human α-thrombin, 824–6
hydrazine, 556
hydrocarbons, 477
hydrogen bonding, 44, 545, 599
combined with van der Waals interactions, 531–5
effect on 2D structure of molecules, 532
hydroxylamine, 556
hydroxymethyl, 435, 436
4-hydroxyphenylbithiophene, 65
hydroxypropylcellulose (HPC), 763
N-hydroxysuccinimide (NHS) esters, 59, 815
hydroxythiophene, 369
hyper-Rayleigh light scattering, 47
hysteresis, 422

ICPs, see inherently conductive polymers
ID tags, 330
imidazolium groups, 816
impurities, see purification
incident angle-dependent polarized absorption spectroscopy, 481
incident photon-to-current conversion efficiency (IPCE), 28
indenofluorene, 727
indium tin oxide (ITO), 104, 303, 443
in OLEDs, 563, 564
in organic solar cells, 560, 564, 565, 566
in transparent conductors, 561
INDO, see intermediate neglect of differential overlap
trans-3-indoleacrylic acid (IAA), 185
infrared active vibration (IRAV), 235, 443, 445–6
infrared (IR) spectroscopy, 188–9, 391–3
inherently conductive polymers (ICPs), 549, 550
inkjet printing, 232, 558, 566, 647
inorganic electroluminescent devices, 549
inorganic semiconductors, 485, 597, 599
in situ-PEDOT, 552–3, 549, 554, 558
integrated photonic devices, 455
interchain interactions, 360–1
interchain overlap, 361
intermediate neglect of differential overlap
(INDO), 368, 401
inter-ring twisting, 384–90
intrachain charge transport, 311
iodide, 816
iodine, 543, 544, 545
ion-doped solids, 456
ionochromic properties, 436
IPCE, see incident photon-to-current conversion efficiency
IR spectroscopy, see infrared spectroscopy
IRAV, see infrared active vibration
ir-PT, see regioirregular polythiophenes
isocyanides, 8–9, 309
isocyanide-terminated oligothiophenes, 8–9
isobestic point, 385
isothianaphthene, 66
isothiocyanates, 60–1, 823
ITO, see indium tin oxide
IUPAC rules, 159

Kekulé structure, 241
Kelvin probe, 286, 565
Knoevenagel reaction, 26, 105, 229, 721
knots, 403–4
 trefoil, 95, 131
Koopman’s theorem, 366
Kumada-type cross-coupling reactions, 4, 5, 8, 19,
 21, 23, 37, 116, 119, 124, 160, 170, 230
ladder-like polythiophenes, 358–60
ladder poly(p-phenylene) (LPPP), 710
ladder-type structures, 77, 239, 358–69
lamellae, 687
lamella-type structures, 519–20
Langmuir–Blodgett deposition, 457, 630
lanthanide complex, 311
laser chromophores, 486
laser-like emissions, 458, 467
laser materials, 485–6
laser oscillation, 485–90
 in single crystals of TPCOs, 486–8
 low-threshold, 488
lasers
 application of oligothiophene-S,S-dioxides in, 281–4
 current-injected, 490, 492
 distributed feedback (DFB), 281
 excitation, 465, 466
 microring, 488
 random, 283
 silicon Raman, 455
 single-mode, 281
 YAG/OPO, 462
lasing
 mirrorless, 472, 474
 single-mode, 281
Lawesson’s reagent, 13
layer-by-layer assembly method (LBL), 766–7
LBL assembly method, see layer-by-layer assembly method
LCD polarizer films, 549
LC materials, see liquid crystalline materials
LE, see local excited state
LECs, see light-emitting cells
LEDs, see light-emitting diodes
LEED, see low-energy electron diffraction
Lee–Yang–Parr correlation functional (LYP), 345, 367
LEPs, see light-emitting polymers
LETs, see light-emitting transistors
LHS approach, see Longuet-Higgins and Salem semiempirical approach
ligands
 bipyridyl-based, 298
 chiral diamine–oligothiophenes as, 299
 dimine-based, 305
 dithio ether, 311
 phenanthroline-containing, 306
 phosphorus-based, 296–8, 309–10
 polypyridyl, 52
 sulfur, 310–11
 terpyridyl-containing, 306
light amplification, 456
light-emitting electrochemical cells (LECs), 696, 741, 742
light-emitting diodes (LEDs), 158, 419, 430, 741;
 see also organic light-emitting diodes
light-emitting polymers (LEPs), 695, 732, 744
light-emitting transistors (LETs), 485
light-harvesting materials, 68
light-harvesting systems, 119
light-scattering studies, 185–7
linearly polarized fluorescence, 501–4
line-patterning, 566, 768
liquid crystalline (LC) polythiophene derivatives, 186, 498–504
liquid crystalline groups, 497, 498, 504, 510
liquid crystalline materials, 19–22, 87
liquid crystallinity, 487, 504
lithium cations, 429
lithography, 10, 18, 271, 281, 595
living radical polymerization, 203
local excited state (LE), 273
local spin density approximation (LSDA), 366, 367
long-distance optical transmission, 455
Longuet-Higgins and Salem semiempirical approach, 353, 356
low-bandgap polymers, 66–74, 229–30, 341, 352–8, 368–70
 in photovoltaic applications, 676–9
low-boiling solvents, 558
low-dimensional crystals, 455–74
low-end electronics, 566
low-energy electron diffraction (LEED), 537
low-temperature transitions, 193

LPPP, see ladder poly(p-phenylene)

LSDA, local spin density approximation

LU CO (lowest unoccupied crystal orbital), 341, 346–9, 352–3, 359, 360

LUMO (lowest unoccupied molecular orbital), 341, 346–9

in thiophene/phenylene co-oligomers, 457–8

lysin e, 60, 61

lysozyme, see chicken lysozyme

MacDonald-type conditions, 299

macrocycles; see also cyclic oligothiophenes

28π, 90

based only on thiophenes, 74–86

conjugated, 295

host–guest systems based on, 535–7

interlocked, 93

large and giant, 91–2, 93

mixed, 86–96

porphyrinoid, 96–8

pyridine-containing, 93

thi enylene–ethynylene–vinylene, 91

thiophene–pyrrole, 96

with phenylene units, 93

with photochromic reactivity, 88, 89

macro cyclization reactions, 80

magnetic micro-beads, 822

magnets, 501

MALDI-TOF-MS, see matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

maleimide-containing copolymers, 734

manganese dioxide, 561

matrices, 708, 709

matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), 64, 127, 185, 556, 557

McCullough method, 160, 164, 185, 698–9

McMurry coupling, 89, 90, 91, 108

MDMO-PPV, see poly[2-metoxy-5-(3,7-dimethyloctyloxy-1,4-phenylenevinylene)]

MDOT, see 3,4-methylenedioxythiophene

MD simulations, see molecular dynamic simulations

MEH-PPV, 285

melamine, 44, 566

mercury, 815

mesitylthio groups, 441, 442

mesitylthio-oligothiophenes (MesSnT), 393, 395

MesSnT, see mesitylthio-oligothiophenes

metal bipyridyl complexes, 298, 303–4

metal-capped oligomers, 301

metal-containing macrocycles, see metallamacrocycles

metal evaporation, 598

metallomacrocyclus, 81, 88, 295

metalophthalocyanine polymer, 312

metaloporphyrins, 50

metallorotaxanes, 308–9

metal–metal quadruple bonds, 298

metal-to-ligand charge transfer (MLCT), 306, 307

metal-vapor deposition, 768

methacrylate-functionalized oligothiophenes, 21

methacrylate polymers, 17

methanofullerene, see phenyl-C61-butyric acid methyl ester (PCBM)

methine-like-connections, 352–3

methine-linked polymers, 353

[3-(ω-methoxy)alkylthiophene]s, 699

β-methoxyoligothiophenes, 439

3-methoxythiophene, 427

methyl acrylate, 202

methyl end-capped quinquethiophenes, 23

methyl methacrylate, 202

methyl–PBTVCN, see poly(thienylvinylene), methyl-substituted

3,4-methylenedioxythiophene (MDOT), 551, 553

methylsulfanyl groups, 429, 437

3-methylsulfanylthiophene, 427

3-methylthiophene, 189, 303, 425, 426

methylviologen, 7, 778

Michael acceptors, 255

microcavity LEDs, 741

microfluid lithography, 18

microislands, 543

microlenses, 789

‘microring laser’, 488

microscopy

atomic force (AFM), 160, 191–2

field emission-scanning electron (FE-SEM), 7

in characterization of electropolymerized materials, 295
microscopy (continued)
in solid-state studies of polythiophenes, 191–3
Kelvin probe force, 286
polarized fluorescence, 461
scanning electron (SEM), 8, 13, 601
scanning force (SFM), 13, 286
scanning tunneling (STM), 84, 191, 160
tapping mode atomic force (TMAFM) 192, 196
transmission electron (TEM), 13, 601
microwave heating, 666
miniemulsion polymerization, 792
mirrorless Raman lasing, 472, 474
Mitsunobu reaction, 551
MLCT, see metal-to-ligand charge transfer
MNDO, see multi-reference configuration
interaction calculations
Möbius band, 131
modified neglect of differential overlap (MNDO), 368
‘molecular actuators’, 76
molecular alignments, 479–82, 490–492
molecular crystals, see crystals
molecular diodes, 405
molecular dynamic (MD) simulations, 384
molecular electronic devices, 537
molecular recognition groups, 60; see also
recognition groups
molecular recognition properties, 59
molecular rods, 3
molecular switching, 783–4
molecular weight, 238
bulk properties of regioregular polythiophenes and, 172–3
charge carrier mobility and, 632
influence on thin-film microstructure, 654–6
thermal properties of regioregular polythiophenes and, 195
molecular wires, 9, 51, 308
molybdenum complexes, 298
monoclinic system, 481
monoclonal antibodies, 61, 63
Monte Carlo calculations, 160
Mott insulation, 328
MRD-CI, see multi-reference configuration
interaction calculations
MTR model, see multiple trap and thermal release model
Mulliken population analysis, 371, 400
multi-frequency photochromic recording, 791–2
multimetallic complexes, 298
multiple trap and thermal release (MTR) model, 597
multi-reference configuration interaction
calculations (MRD-CI), 368
nanobeds, 18
nanofibres, 687, 763, 764
nanofibrils, 195–7
nanoimprint lithography (NIL), 271, 281, 282
nano-LEDs, 741
nanomaterials, 115
nanoparticles, 123
nanopatterning, 537
‘nanoribbon’, 656
nanotemplates; 540–3; see also templates
nanotubes, 760–2, 779
nanowires, 629, 741–2
naphthodithiophenes, 240–1
naphthothiophenes, 68, 619
narrow-bandgap polythiophene derivatives, 582–4, 591
natural population analysis (NPA), 379
NBS
near-edge X-ray absorption fine structure
spectroscopy (NEXAFS), 601, 635
near-field optical recording, 789
n-EDOT oligomers, 370
nEDTF, see oligoethylenedithiafuran
needle-like crystals, 456, 457, 460–2, 480, 483–4
of p-sexiphenyl, 465–6
Negishi cross-coupling reaction, 25, 32, 108, 111, 160, 170; see also cross-coupling reactions
neurotransmitters, 818
NEXAFS, see near-edge X-ray absorption fine structure spectroscopy
NHS, see N-hydroxysuccinimide
nickel complexes, 51, 52
NICS, see nucleus-independent chemical shift
NIL, see nanoimprint lithography
NIR PLEDs, see polymer light-emitting diodes,
near-infrared
9-nitroanthracene, 185
nitrobenzene, 687
nitro-functionalized terthiophenes, 396–7
3-nitrothiophene, 426
nitrooxides, 659

NLO, see nonlinear optical materials
NMR spectroscopy, 173–4, 187
non-cojugated polymers, 239, 294
non-destructive data storage, 789, 790
nonlinear optical (NLO) materials, 24, 26, 329
non-radiative losses, see quenching
NPA, see natural population analysis

nT, see oligothiophenes

nTVs, see oligothienylenevinylene
cleation, 420, 421
nucleic acids, 63, 819, 822
 synthetic, 824
nucleobases, 59, 60
nucleosides, 63
nucleus-independent chemical shift (NICS), 403

OAE, see optically active electrochromism
oblique alignment, 479
octadecyltrichlorosilane (OTS), 625
octi(3-hexylthiophene), 45
alpha-octi(thienoaacene), 74
octithiophene (8T), 1, 2
3-octyl-4-methyithiophene, 544
3-octyloxy-4-methyithiophene, 544
3-octythiophene, 543
octyltrichlorosilane (OTS), 232
OFETs, see organic field effect transistors
off-currents, 649
OLEDs, see organic light-emitting diodes
olefination, 26, 105
OLETs, see organic light-emitting transistors
oligoacenes, 478
oligo(3-alkylthiophene)s, 175, 521
oligoalkylthiophenes, 519
oligodeoxynucleotides, 63
oligoethylenedithiafuran (nEDTF), 370
oligofluorenes, 264–5
oligofluorene–thiophenes (DHFnTF), 378–9
oligo(3-hexylthiophene)s, 32, 112, 174
oligomer approach mechanism, 421, 422
oligomer-based extrapolations, 344, 345–6, 366
oligomer crystals, 490
oligomers
 conjugated, 2, 293, 295, 298, 457
 metal-capped, 301
pincer-type, 23
thiénylene-ethynylenyl, 9, 10
thiophene–acene, 612–20
oligonucleotides, 63, 820–4
oligo(3-octylthiophene)s, 174
oligooxynethylene, 58
oligophenylenes, 457, 478
oligosenophenes, 322, 323–5
oligothienoacenes, 74, 244
oligothienylenes, 106
oligothienylenevinylene (nTVs, OTV), 3, 40, 608, 721
oligothienylethynylene (OTE), 3, 41, 111
oligothienylferrocene complexes, 313
meso-(oligo)thienylporphyrins, 45
oligothienylsilanes, 110
oligothiophenediacetylenes, 402, 522
oligothiohpene dications, 372–4
oligothiophene–perylen D–A systems, 110, 238
oligothiophene polycations, 374–6
oligothiophenes
 acrylate-substituted, 20
 alkyl-capped, 483
 alkyl-substituted, 406, 538, 545
 all-oxidized, 259
 alpha-linked, 519
 alpha-substituted, 323–4
 alpha,omega-substituted, 43, 437, 604–12
 aminomethyl-substituted, 379–81
 amorphous, 25, 104, 126, 391, 392
 as cores in dendrimers, 116–19, 712
 as liquid crystalline materials, 19–22
 as organogelators, 14
 as pendant groups in polymers, 16–18
 beta-substituted, 437–42, 525
 beta, beta’-alkyl and perfluoroalkyl substituted, 604–12
 biologically active, 58–66
 carbonyl-substituted, 620–4
 chemical and physical properties of, 3, 4
 chiral, 12
 containing polypyridyl chelating ligands, 52
 containing recognition groups, 53–8
 containing redox-active groups, 34–53
 containing surface-active groups, 5–10
 containing transition metals, 295–302
oligothiophenes (continued)

conventional versus

oligothiophene-\(\text{S,S}-\)dioxides, 276
crown ether-functionalized, 55–8
cyano-substituted, 21, 28–9, 376–9, 624
cyclic, 243–7, 402–4
dendritic, 100, 119–29
dendronized, 118–19
diarylamino-capped, 26
diphenylamino-capped, 27
dithiol-based, 7
dye-functionalized, 30–43
electroactive, 602–29
dendrimer-functionalized, 4–66
end-capped, 1, 2, 437–9, 710–11
dendronized \(\beta\)-functionalized, 437–42
face-to-face \(\pi\)-stacking in, 520
errocene-functionalized, 52
ferrocenyl-capped, 301
fluoroalkyl-substituted, 405–6
fluorocarbon-substituted, 609–12
for electrochromic applications, 770
for electroluminescent applications, 710–13
for OFETs, 602–29
fullerene-functionalized, 34–44
fullerene-linked, 7
functionalized, 4–66
fused, 219–48, 625–8
helical, 243–7
heteroaromatic ring-fused, 69–74
hexyl-end-capped, 442
higher fused and linear, 242–3
hole-transporting, 26
in block copolymers with polystyrene, 13
incorporating metal–metal quadruple bonds, 298
in peripheral functionalization of dendrimers, 114–16
isocyanide-terminated, 8–9
long, 3, 131, 437, 441
methacrylate-functionalized, 21
packing structures of, 384–5
perfluorofluorene-modified, 381–4
porphyrin-functionalized, 44–52
quinoid, 29, 398–402
self-assembling hybrid, 10–16
self-assembling properties of, 5–7, 12
star-shaped, 75, 99–110, 629
tetrahedral, 110–14
thermochromic, 385
tolyl-end-substituted, 613
unsubstituted, 602–4
with bipyridyl-based ligands, 298
with incompatible substituents, 22
with phosphorus-based ligands, 296–8
X-shaped, 100
oligothiophene–spirobifluorenes, 111–13
oligothiophene-\(\text{S,S}-\)dioxide isothiocyanates, 61
oligothiophene-\(\text{S,S}-\)dioxides, 29, 237
all-oxidized, 259, 262
electroluminescence in, 278–81
in blends with poly(3-hexylthiophene), 284–7
in lasers, 281–4
in organic light-emitting diodes, 276–81
in photovoltaic devices, 284–7
oligothiophene-truxenes, 107–8
photoluminescence properties of, 268–71, 287
photoluminescence quantum yields (PLQY), 268, 270, 271
V-shaped, 279, 286, 738
one-dimensional crystals, 282, 283; see also
needle-like crystals
on/off switching, 51, 198, 650
on-tip photonic devices, 455
open-circuit memory, see optical memory
ophthalmic lenses, 784
optical amplification, 455, 474
optical amplifiers, 455
optical buffer memories, 474
optical cells, 443
optical devices, 479
optical fiber communication, 455
optically active electrochromism (OAE), 763
optically pumped photoluminescence, 462, 467
optical memory, 761, 791
optical phonons, 456, 471; see also phonons
optical recording, 791–2
optical storage, 791
optoelectronic devices, 490
OPVs, see organic photovoltaics
order to disorder transition, 194
organic electronics, 347–8, 396
organic field effect transistors (OFETs) 1, 4, 238, 241, 243, 248, 477, 479, 540, 595–6, 648–50; see also thin film transistors
α,ω-alkyl and perfluoroalkyl oligothiophenes in, 604–12
alkyl-substituted polythiophenes in, 629–35
β,β′-alkyl and perfluoroalkyl oligothiophenes in, 604–12
amphiphilic, 39
carbonyl- and cyano-substituted oligothiophenes in, 620–4
charge transport in, 483–5, 649
device configurations, 598
device geometries, 648
device structure and operation, 596–8
durability of, 331
electroactive oligothiophenes for, 602–29
electroactive polythiophenes for, 629–38
fused oligothiophenes in, 625–8
incorporating dendritic thiophenes, 116
material requirements, 598–602
oligomers with branched structures in, 628–9
‘on’ state of, 597
poly(3-alkylthiophene)s in, 629–33
polyquaterthiophenes (PQTs) in, 633
selenophenes in, 330–4
solution-processable materials in, 113
star-shaped oligothiophenes in, 100, 103, 105
thienothiophenes in, 232, 233
thiophene–acene oligomers in, 612–20
thiophene–azine and thiophene–azole oligomers in, 624–5
thiophene-based copolymers in, 635–8
‘top-gate’, 598
unsubstituted oligothiophenes in, 602–4
organic light amplification devices, 471
organic light-emitting diodes (OLEDs), 1, 4, 6, 119; see also polymer light-emitting diodes (PLEDs)
all-polymer, 563
amorphous materials in, 25, 391
basic physics of, 564
oligothiophene-S,S-dioxides in, 276–81
PEDOT as hole injection layer in, 563–4
PEDOT:PSS in, 556
star-shaped oligothiophenes in, 102, 104, 105
organic light-emitting transistors (OLETs), 742
organic memory devices, 498
organic photovoltaics (OPVs), 238, 241
organic pulse lasers, 474
organic semiconducting films, 517
organic semiconductor lasers, see lasers
organic semiconductors, 157–8, 247, 331–3, 477, 595, 650–1; see also semiconductors
ambient stability in, 650
ambipolar, 597
charge carrier mobility in, 648, 650
charge injection and transport in, 599–600
field effect mobility in, 597
incorporating thieno[2,3-b]thiophene, 234
in OFET devices, 596–7, 598–602
in thin film transistors, 195
p- and n-type, 597–8, 599
research, 492
solid-state structure of, 600–2
organic solar cells (OSCs), 1, 29, 68, 248
based on oligothiophene–perylen D–A systems, 110, 238
basic physics of, 564
electrically conducting coatings in, 560–1
fullerene in, 34, 35
incorporating dendritic thiophenes, 116
indium tin oxide in, 560
PEDOT in, 564–6
silicon-based, 560
organic thin film transistors (OTFTs), 612
organoboron, 160, 164
organogelators, 14
organomagnesium, 160, 164
organomolybdenum clusters, 304
organosilane, 164
organotin, 160, 164
organozinc, 160, 164
orthorhombic system, 481
OSCs, see organic solar cells
OS films, see organic semiconducting films
osmium complexes, 298, 306, 313
OTE, see oligothienylethynylenes
OTFTs, see organic thin film transistors
OTS, see octadecyltrichlorosilane
OTS, see octyltrichlorosilane
Otswald ripening process, 521
OTV, see oligothienylevinylene
outer-sphere electron transfer, 303
oxadiazone-containing copolymers, 725
oxidative coupling, 4, 19, 79
oxidative homocoupling, 4, 19
oxidative polymerization, 796
oxidative stability, 659–62
oxyethylene, 58
oxygen, 198–9, 659
ozone, 198–9, 659–60

P3AT, see poly(3-alkylthiophene)s
P3BT, see poly(3-butylthiophene)
P3DDT, see poly(3-dodecylthiophene)
P3HT, see poly(3-hexylthiophene)
P3MHOCT, see poly(3-(2-methylhex-2-yl)-oxycarbonyldithiophene)
P3MT, see poly(3-methylthiophene)
P3ODT, see poly(3-octadecylthiophene)
P3OT, see poly(3-octylthiophene)
PA, see polyacetylene
PAA, see poly(acrylic acid)
packing arrangements, 384–5, 600
palladium complexes, 51, 52, 297, 309, 310, 311
PAN, see polycrylonitrile
PAni, see polyaniline
Parametric Model 3 (PM3), 388
patterning techniques, 566, 768
PBCs, see periodic boundary conditions
PBEDOT-NMeCz, see
poly(bis-EDOT-N-methylcarbazole)
PBEDOT-Pyr, see poly(bis-EDOT-pyridine)
PBEDOT-PyrPyr, see
poly(bis-EDOT-pyridopyrazine)
pBTCT, see [poly(bithiophene-crossconjugated thiophene]
pBTTTT, see poly[2,5-bis(3-alkylthien-2-yl)thieno-[3,2-b]thiophene]
PBTVCN, see poly(thienylvinylene), cyanosubstituted
PCBM, see phenyl-C_{61}-butyric acid methyl ester
PCDT, see
copolycyclopenta[2,1-b;3,4-b']dithiophene-4-one
PCE, see power conversion efficiency
PCFF, see polymer-consistent force field
PCH, see phenylcyclohexyl-type LC group
PDA, see polycyclopentadienes
PDPA, see polydiphenylamine
PDTTs, see poly(dithienothiophene)s
PEB, see
copoly(3,4-ethylenedioxythiophene–didode–cyloxybenzene)
PEDOT, see poly(3,4-ethylenedioxythiophene)
PEDOTEHITN, 446, 447
PEDOT:PSS, see
poly(3,4-ethylenedioxythiophene):poly-(styrenesulfonate)
PEDST, see polyethylenedithiathiophene
PEDT, see poly(3,4-ethylenedioxythiophene) (PEDOT)
Pariser–Parr–Pople (PPP) model, 370
PEG, see polyethylene glycol
Peierls distortion, 352, 347
pendant oligothiophenes, 16–18
pentacene, 332, 478, 566
pentathiinoacene, 626
cyclophene, 628
PEO, see poly(ethylene oxide)
PEOPT, 683
peptides, 61–2, 384
perchlorate, 552, 554
perfluorarene-modified oligothiophenes, 381–4
perfluorarene–thiophene oligomers, 623
perfluoroalkyl-substituted oligothiophenes,
604–12
perfluorobenzene, 616
perfluorohexylcarbonyl groups, 620
periodic boundary conditions (PBCs), 341, 344,
345–6, 354, 367
perovskite materials, 711
perturbation analysis, 360
perturbing end-effects, 74, 84
peryleneamide, 637
perylenbisimides, 34, 108–9
perylen-contained polymers, 637, 638
perylenediimide, 238
perylenes, 32, 34
perylenemonoimides, 32, 637
perylo[1,12-bcd]thiophene, 627
PES, see poly(ethylene glycol methyl ether terephthalate)
phase-growth mechanism, 420–2
phase transitions, 193–5; see also polymorphism
PheDOT, 436
phenacenes, 359
phenanthrolines, 52, 93, 306, 803
phenol-functionalized dithienylethenes, 796
phenols, 48
phenyl-C₆₁-butyric acid methyl ester (PCBM), 34, 35, 68, 72, 73, 234, 674
 in solvent vapor treatment, 684
 in thermal processing, 681–2
phenylcyclohexyl-type (PCH) LC group, 498–9, 503
phenyl end-capped quaterthiophenes, 18
phenylenes
 in cyclothiophenes, 93
 in dendrimers, 116
 in copolymers with thiophene, 637, 713–16
phenylene-thiophenes, 612–14, 617–18
phenylenevinylene, 722
phenyl groups, 441
phenylmethine, 353
phonons, 456, 471, 474
phosphines, 309
 as ligands in transition metal chemistry, 296–8
 as surface anchoring group, 5
phospholes, 238
phosphoraminites, 63, 823
phosphorescent dyes, 741
phosphorus-based ligands, 296–8 309–10
photochromic materials, 784; see also
 photoresponsive materials
photochromic switches, see photoswitches
photochromism, 784
 fluorine atoms and, 794
 in amorphous films, 788–90
 in polymers, 790–7
 in single crystals, 785–8
 on metal surfaces, 797–99
photodiodes, 11
photodoping, 443
photoelectrochemical cells, 298
photographic films, 549
photoinduced absorption (PIA), 10, 38
photoinduced charge separation systems, 43–4
photoinduced charge transfer, 284, 285, 286
photoinduced electron transfer
 in fullerene-functionalized oligothiophenes, 34–41
 in polyether-bridged sexithiophene, 384
 in porphyrin-functionalized oligothiophenes, 50–1
photolithography, 598
photoluminescence, 462
 quantum yields (PLQY), 268–71, 275–6, 707, 715, 716
 spectroscopy, 284
 materials, 237
 micrographs, 587
 photonic crystals, 282, 283
 devices, 283, 455, 474
 responses, 455–74
photoresponsive materials, 799–805; see also
 photochromic materials
photosensitizers, 298
photo-sensors, 566
photoswitches, 784–5; see also switches
photosynthetic systems, 45
photovoltaic cells, 284–7, 560
photovoltaic devices, 564
 fullerene-functionalized oligothiophenes in, 34, 35, 38, 39, 41
 oligothiophene-S,S-dioxides in, 284–7
photovoltaics (PV), 673–5; see also organic solar cells (OSCs)
 annealing-free techniques, 687
 double-cable, 683
 low-bandgap polymers for, 676–9
 processing at higher levels, 679–80
 solvent vapor treatment, 683–4
 thermal processing, 680–3
 thermocleavage, 684–7
 thiophene-based materials in, 675–6
pH-sensitive fluorescent probes, 110
PIA, see photoinduced absorption
pi-conjugated systems, 2, 10–11, 22
pi-dimeric model system, 22–4
pi-dimers, 22, 23, 445
pincer-type oligomers, 23
pi-stacking, 24, 28, 491
PITN, see polyisothianaphthene
Planck’s constant, 491
plasma cleaning, 558
plastic photonic devices, 474
platelet crystals, 456, 458–60, 462–3, 467–8
platinum complexes, 297
PLEDs, see polymer light-emitting diodes
PLQY, see photoluminescence quantum yields
PM3, see Parametric Model, 3
PMMA, see poly(methyl methacrylate)
p–n copolymers, 404–5
polar groups, 524–31
polarized electroluminescence, 741
polarized fluorescence microscopy, 461
polarized optical microscope (POM), 17
polarizers, 560
polaron-pairs, 445
polarons, 293, 295, 370–6, 444–5
polar solvents, 559
pollutants, 659, 660–1; see also purification
polyacenes, 330
polyacetylene, 158, 322, 342, 366, 477, 549
 bandgaps of, 347–50
poly(acrylic acid) (PAA), 708
polyacrylonitrile (PAN), 590
poly(3-alkoxy-4-methylthiophene)s, 815
poly(3,4-alkylenedioxythiophene) (PXDOT), 430, 759
polyalkyl ether, 815
poly(3-alkylselenophene)s, 323
poly(3-alkylthiophene)s (P3AT), 158, 160, 187, 566
 annealing of, 682
 as light-emitting materials, 699
 chain-end modification, 169
 charge carrier mobility, 197, 200, 632
 in electrochromic devices, 770
 in OFET devices, 629–33
 light-scattering studies, 185
 MALDI-TOF-MS studies, 185
 NMR spectroscopy studies, 173–4, 175
 regiorandom, 630–1
 regioregular head-to-tail, 630–2
 synthesis of, 160, 162
 thermal analysis, 193
 UV–Vis spectroscopy studies, 184
 vibrational spectroscopy studies, 189
polyalkylthiophenes, 651
polyaniline (PAni), 326, 563, 767, 778
 in electrochemical capacitors, 578–9, 585
polybenzyl ether dendrons, 116
poly{2,5-bis(3-decylthiophen-2-yl)thieno[2,3-b]-thiophene}, 234
poly(bis-EDOT-N-methylcarbazole) (PBEDOT-NMeCz), 758
poly(bis-EDOT-pyridine) (PBEDOT-Pyr), 758
poly(bis-EDOT-pyrindopyrazine) (PBEDOT-PyrPyr), 758
poly[2,5-bis(2-thienyl)-3,6-dipentadecylthieno-[3,2-b]thiophene], 233
poly(bithiophene-co-fluorene)s, 566
 [poly(bithiophene-crossconjugated thiophene)] (pBTCT), 656, 658, 666
poly(3-butylthiophene), 160
 charge carrier mobility, 197
 glass transition temperature in, 187
 in OFETs devices, 630
 thermal analysis, 194
 twist-glass transition, 193
 vibrational spectroscopy studies, 188
polychlorinated phenols, 48
poly(cyanothiophene), 369
polycyclopenta[2,1-b;3,4-b′]dithiophene-4-one, 584
poly(3-decylthiophene), 630, 703
polydiacetylenes (PDA), 343
poly(dialkoxydithiophenes)s, 772
poly(3,6-dialkylthieno[3,2-b]thiophene-co-bithiophene), 666, 667
poly(3,3-diethyl-3,4-dihydro-2H-thieno[3,4-b]-[1,4]dioxepine (PProDOTEt2), 762
poly(4,8-dihexyl-2,6-bis(3-hexylthiophen-2-yl)-benzo[1,2-b′:4,5-b′]dithiophene, 240
poly(3,6-dimethoxythiopheno[3,2-b]thiophene), 231, 232
poly(3,3-dimethyl-3,4-dihydro-2H-thieno-[3,4-b]-dioxepine) (PProDOT-Me2), 758, 768, 772, 775, 776
poly(9,9-dioctylfluorene-alt-thieno[3,2-b]thiophene), 233
poly(9,9-dioctylfluorene-co-bithiophene) (F8T2), 198, 635
poly(3,4-dioxythiophene)s, 567
polydiphenylamine (PDPA), 763
poly(dithienothiophene)s (PDTTs), 234–8, 446
poly(3-dodecylthiophene)
 charge carrier mobility, 197–8
 electronic states of, 534
light-scattering studies, 186
order to disorder transition, 194
self-organizing behavior in, 522
STM microscopy studies, 191
thermal analysis, 194
vibrational spectroscopy studies, 188, 189
polyelectrochromism, 758, 774–5
polyelectrolytes, 239
polyesters, 11, 621, 794
polyether-bridged sexithiophene, 51, 384
poly(ethylene dioxyxyselenophene), 323
poly(3,4-ethylenedioxythiophene) (PEDOT)
anisotropic optical properties of, 557
as electrochromic material, 758, 760–1, 763, 764, 767–78
as hole injection layer in OLEDs, 563–4
‘doped’ state of, 549
electrochemical properties of, 430
in capacitors, 561–2, 582
in copolymers with phenylmethine, 353
in photovoltaics and sensors, 564–6
in printed wiring boards, 562–3
in situ, 552–3, 549, 554, 558
organosoluble, 558
patterning processes for, 559
preparation of layers, 558
properties of, 554–8
redox behavior of, 556–8, 567–8
spectroelectrochemical characterization, 446–8
synthesis of, 550–1
poly(3,4-ethylenedioxythiophene–didodecyloxybenzene) (PEB), 760
poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), 1, 2, 549
as conductive layer in all-organic thin film transistors, 566
as hole injection layer in OLEDs, 564
as transparent conductor in electroluminescent devices, 561
formulation of, 558–9
in antistatic coatings, 559–60
in conductive coatings in organic solar cells, 560–1
in electrochromic devices, 567–8, 764, 767
in photovoltaics and sensors, 564–6
properties of, 554–6
synthesis of, 552–3
polyethylenediathiophiene (PEDST), 446, 448
poly(ethylene glycol) (PEG), 110, 815
in block copolymers, 11–12
poly(ethylene oxide), 590
poly(ethylene terephthalate) (PET), 559, 687
polyfluorenes, 262, 563, 716, 730, 732
poly(3-hexylthiophene) (P3HT), 1, 2, 34, 116, 172, 174, 184
as benchmark semiconducting polymer, 651
charge carrier mobility, 197–200
in blends with oligothiophene-{
S}_2{
S}_2-dioxides, 284–7
in block copolymers, 201–3
in OFET devices, 629–30
in photovoltaics, 675
light-scattering studies, 185, 186
microscopy studies, 191–3
molecular weight influence on thin-film microstructure, 656
morphology, 192, 285, 680–687
solid-state X-ray studies, 189, 190
solvent vapor treatment, 683–4
thermal analysis, 194–5
vibrational spectroscopy studies, 188
poly(hexyliobiogen) (PXV), 767
polyhydroxy compounds, 559
poly(hydroxythiophene), 369
polyisoprene, 203
poly(isothianaphthene) (PITN), 66–7, 69, 342, 345–6, 351–2, 386
polyketones, 621
polymer-consistent force field (PCFF), 384
polymeric binders, 559
polymeric semiconductors, 650–1
polymerization, 697–9; see also electropolymerization
anionic, 203
atom transfer radical, 202
chemical, 306, 311
cross-coupling, 163–9, 171–4
miniemulsion, 792
oxidative, 796
‘quasi-living’, 164, 167
radical, 202–3, 792
ring-opening, 203, 294, 793
Ullmann, 700
Yamamoto, 700
polymer light-emitting diodes (PLEDs), 696–7, 741, 742, 744; see also organic light-emitting diodes
 green-emitting, 695
 near-infrared, 721
 oligomers and polymers with
 thiophene-S,S-dioxide moiety for, 735–43
 thiophene copolymers for, 713–34
 thiophene homopolymers for, 699–710
 thiophene oligomers for, 710–13

polymers
 alkoxy carbonyl-substituted, 700
 alkyl-substituted, 230
 aromatic, 349, 354
 aromatic heterocyclic, 256
 carbazole-containing, 775
 conducting, 549, 578–9, 758
 conductivity in, 294
 conjugated, 2, 58, 158, 234, 293–4, 298, 301, 341–62, 384, 485, 497, 498, 500, 813
 containing bipyridyl and terpyridyl
 metal-binding sites, 303–7
 containing chiral complexes, 305
 containing clusters, 304
 containing cyclam and porphyrin complexes, 302–3
 containing dithienylethene and quinoline components, 795
 containing metallorotaxanes, 308–9
 containing pendant bis(salicylidene) metal complexes, 308
 containing pendant dithienylethenes, 792–3
 containing pendant ferrocene complexes, 307–8, 436
 containing pendant oligothiophenes, 16–18
 containing phosphorus ligands, 309–10
 containing sulfur ligands, 310–11
 containing tethered ferrocene, 303
 containing thiophene-S,S-dioxide moieties, 275–6
 conventional, 203
 electrochromic, 757–8, 771
 expandable, 795
 fluorene-containing, 637
 green-colored, 774
 hyperbranched, 104, 106
 ladder, 358–60
 low bandgap, 66–74, 229–300, 341, 352–8, 368
 main-chain, 794–7
 metal-containing conjugated, 293–4
 metallophthalocyanine, 312
 methacrylate, 17
 methine-linked, 353
 non-conjugated, 294
 perylene-containing, 637, 638
 photochromism in, 790–7
 polyvinyl, 16–17
 quinonoid, 354–6
 silole-containing, 637, 723–5
 small gap, 344
 solution-processable, 232
 starburst, 104
 thienopyrazine-based, 70–4
 thienothiophene, 651–67
 ‘three-strand’, 308
 transition metal-containing, 302–14
 with solid-state ionochromic properties, 436
 with zig-zag conformations, 53
 polymer solar cells (PSCs), 673–4
 device structure and operational mechanism, 674–5
 low-bandgap polymers in, 676–9
 thiophene-based materials for, 675–6
 poly[2-methoxy-5-(3,7-dimethyloctyloxy-1,4-phenylenevinylene)] (MDMO-PPV), 727
 polymethacrylates, 203
 poly(3-(2-methyhex-2-yl)oxy carbonyldithiophene) (P3MHOCT), 685–6
 poly(methyl methacrylate) (PMMA), 709
 poly(3-methylthieno[3,2-b]thiophene), 230
 poly(3-methylthiophene) (P3MT), 582, 675, 758, 775
 polymorphism, 187, 189, 193; see also phase transitions
 poly(naphthodithiophene)s, 761
 polynorbornenes, 763
 poly(3-octadecylthiophene)s (P3ODTs), 167
 poly(3-octylthiophene)
 charge carrier mobility, 197–8
 excitonic structure in, 188
 phase behavior of, 187
 polymorphism in, 187
solid-state X-ray studies, 190
thermal analysis, 194
vibrational spectroscopy studies, 188, 189
poly(oligoselenophene)s, 322
poly(phenylene oxide), 187
poly(phenylenevinylene)s (PPV), 342, 456, 563, 695, 727
poly(p-phenylene) (PPP), 342, 349, 710
poly(3,4-propylenedioxythiophene) (PProDOT), 772, 775, 779
poly(pyridyl chelating ligands), 52
polypyrroles (PPy), 349, 366
electronic properties of, 256
in electrochemical capacitors, 578–9, 585
polyquaterthiophene (PQT), 198, 633
poly(3-R-thiophenes), 701, see also poly-3-alkylthiophenes
polyselenophenes, 322–3, 331, 367
poly(thieno[3,2-b]thiophene), 221, 229
poly(thienothiophene)s, 221, 230–4, 235, 633
poly(thienylenecyanovinylene)s, 721
poly(thienylenevinylene)s (PTV), 500–1, 635, 721–3
poly(thienylenevinylene)s (PTHV), 342, 348, 360
poly(thiophene-3-acetic acid), 774
polythiophene-based sensors
biological, 817–27
chemical, 815–17
types of, 814
polythiophene derivatives
ferroelectric liquid crystalline, 504–11
liquid crystalline, 498–504
polythiophene–DNA-based complex, 815
polythiophenemethine, 761
polythiophenes (PTs); see also regioregular polythiophenes
anisotropy, 191, 741
as red light emitters, 699–702
bandgaps of, 347, 349, 367
based on EDOT, 430–6
chemical and physical properties of, 3
conventional versus oligothiophene-S,S-dioxides, 276
development of, 157–8
effect of regioregularity on EL performance, 702–4
electroactive, 629–38
electronic properties of, 256, 477
emission color tuning, 704–10
for electrochemical capacitors, 577–92
for electrochromic applications, 770–7
for electroluminescent devices, 695–6
for OFETs, 629–38
ionic, 814, 815
ladder-like, 358–60
light-emitting properties of, 744
narrow-bandgap, 582–4, 591
‘neutral’, 814
nomenclature, 158–9
optical changes in, 773–6
photoluminescence and electroluminescence quantum yields, 707, 715
photovoltaics based on, 673–88
porphyrin-functionalized, 48, 299
properties of, 695–6
random coupling
regiochemistry, 160
regioirregular, 159, 184, 191
regioregular, 157–217
spectroelectrochemistry, Vis-NIR absorption, 443–444
spectroelectrochemistry, ESR, 444–445
spectroelectrochemistry, vibrational, 445–448
synthesis of, 697–9
thermochromic, 385
wide-bandgap, 582–3, 591
zwitterionic, 64, 814, 827
poly(vinyl chloride), 55
poly(4-vinylphenol) (PVP), 566
polyvinyl polymers, 16–17
POM, see polarized optical microscope
porphycene, 89
(porphyrinato)zinc(II)-based chromophores, 45, 47
porphyrin-functionalized oligothiophenes, 44–52
porphyrin-functionalized polythiophenes, 48, 299
porphyrinoid systems, 96
porphyrin–oligothiophene–fullerene triads, 50–2
porphyrins, 49, 89, 91
complexes, 302–3, 311
expanded, 96, 97
thia-analogous, 96
thiophene-functionalized, 303
post-functionalization approach, 709
potassium chloride, 474, 480
potential energy surface (PES), 350
potentiometric recognition sensors, 55
potentiostatic experiments, 420
power conversion efficiency (PCE), 674
PPP, see poly(p-phenylene)
PProDOT_{Et2}, see poly(3,3-diethyl-3,4-dihydro-2H-thieno-[3,4-b][1,4]dioxepine)
PProDOT-Me_{2}, see poly(3,3-dimethyl-3,4-dihydro-2H-thieno-[3,4-b]dioxepine)
PPV, see poly(phenylenevinylene)s
PPy, see polypyrroles
PQT, see polyquaterthiophene
Prato reaction, 37, 38, 39, 40, 44, 108
printed wiring boards (PWBs), 562–3
printing, 232, 566, 595, 598, 647, 650, 647
ProDOTs, see 3,4-propylenedioxythiophenes
3,4-propylenedioxythiophenes (ProDOTs), 553, 551, 773
protective films, 560
proteins, 824–8
PSCs, see polymer solar cells
pseudo-straight molecules, 478
PTDT, see poly(3-tetradecylthiophene)
PTFE, see polypentafluoroethylene
PTHs, see polythiophenes
PThV, see poly(thienylvinylene)s
PTV, see poly(thiénylenevinylene)s
PTz, see polythiazole
pulse radiolysis, 63
pulse-shaped emission with time delay, 456, 472–4; see also superfluorescence
purification, 171–3
purine, 817
push–pull-type compounds, 329–30
PV cells, see photovoltaic cells
PV, see photovoltaics
PVDF filters, 558
PVP, see poly(4-vinylphenol)
PWBs, see printed wiring boards
PXDOT, see poly(3,4-alkylenedioxythiophene)
PXV, see poly(hexyliiologen)
Py, see pyrrole
pyridine, 325, 732, 734
pyrimidine, 817
pyrrole (Py), 369, 727
pyrrolidino groups, 26, 427, 429
3-pyrrolidinothiophene, 427, 428
Q-bands, 45, 47, 51, 96
QCM, see quartz crystal microbalance
QE, see quantum efficiency
quadruple bonds, 298
quantum efficiency (QE), 683
quartz crystal microbalance (QCM), 55, 57
quartz glass, 480
quasi-hexagonal symmetry, 538, 539
‘quasi-living’ polymerization, 164, 167
quaterthiophene-2-carboxylic acid, 534
quaterthiophenes
azobenzene-functionalized, 30
distyryl-substituted, 620
phenyl end-capped, 18
quenching, 486, 744
quinoidal oligothiophenes, 29, 398–402
quinoidal selenophenes
amphoteric, 329–30
electron-accepting, 327–8
electron-donating, 329
quinoidal systems, 266–7
quinoline–thiophene oligomers, 732
quinonoidal structures, 349–53
quinonoid polymers, 354–6
quinoxaline (QX), 369, 732, 738
quinque thiophenes, 528
alkyl-capped, 20
alpha-substituted, 1, 2, 36, 540–3
Index 859

cycloalkane-end-capped, 537
 in OFET devices, 607
methyl end-capped, 23
QX, see quinoxaline

radiation-based industrial applications, 789
radiation dosimeters, 789
radical cations, 437
radical ions, 419–20
radical polymerization, 202–3, 792
radiofrequency-powered elements, 596
Ragone plot, 578, 591
Raman-active modes, 446
Raman bands, 445
Raman spectra, 445
Raman spectroscopy, 25, 189, 235, 243, 391–3
random coupling polythiophenes (ran-PT), 159
random lasers, 283
random lasing, 283, 284
ran-PT, see random coupling polythiophenes
 reagents
 Grignard, 162
 Lawesson’s, 13
 organometallic, 160, 164
 recognition groups, 53–8
 recording tapes, 560
redox cycling, 43
redox potentials, 259
redox processes, 578–9, 762; see also doping
redox-active agents, 52
redox-active groups, in oligothiophenes, 34–53
redox-active materials, 568
reduction potentials, 257–9, 259
regioirregular polythiophenes (ir-PT), 159, 184, 185,191
regioisomerism, 230
regioregularity (RR), 158, 687
 effect on properties of FETs, 630–633
 effect on properties of LEDs, 698–9
 EL performance in polythiophenes and, 702–4
regioregular polythiophenes
 aggregational behavior of, 186
 block copolymers containing, 201–3, 169
 bulk properties versus molecular weight, 172–3
 charge carrier mobility of, 195–200
 crystallization mechanism of, 193–5
 end-group analysis, 174, 185
 MALDI-TOF-MS studies, 185
 microscopy studies, 191–3
 molecular characterization, 173–4, 187
 NMR spectroscopy studies, 173–4, 187
 protecting groups, 170–1
 purification and fractionation, 171–3
 solid-state X-ray studies, 189–90
 synthesis of, 160–71
 terminal ring functionalization, 169–70
 thermal analysis, 193–5
 thermal properties versus molecular weight, 195
 UV–Vis spectroscopy studies, 174–65, 187–8
 vibrational spectroscopy (IR, Raman) studies, 188
resonance phenomena, 446
RFID tags, 596
RGB (red–green–blue) colors, 729, 774, 777, 778
rhenium complexes, 298
ribbon-type structures, 242
Rieke’s method, 160, 162, 163, 185, 699
‘Rieke zinc’, 162, 699
ring-closing photoreactions, 784
ring-opening metathesis polymerization (ROMP), 203, 294, 793
ring-opening photoreactions, 784
ring-opening polymerization (ROP), 294
rod–coil copolymers, 714
rod-shaped structures, 3, 41, 184, 654
roll-to-roll processing, 629, 674
ROMP, see ring-opening metathesis polymerization
room-temperature nanoimprint lithography
 (RT-NIL), see nanoimprint lithography
ROP, see ring-opening polymerization
rose-like texture, 507, 508
rotaxanes, 93
RT-NIL, see nanoimprint lithography
rubrene, 484
ruthenium, 301
ruthenium complexes, 52, 298,304, 305, 306, 313
ruthenium oligothienylacetylide complexes, 313
ruthenium polymers, 307
S1 nuclease, 817–18
salen, 312
salicylidene, 308
SAMNs, see self-assembled molecular networks
SAMs, see self-assembled monolayers
sandwich cells, 311
scanning electron microscopy (SEM), 14, 17, 18, 601
scanning force microscopy (SFM), 13, 286
scanning tunneling microscopy (STM), 84, 160, 191, 517–45
Scherrer equation, 190
Schiff base reaction, 44
Schottky–Mott model, 565
SCLC, see space charge limited current
screen printing technique, 768
SE, see stimulated emissions
secondary dopants, 559
selenocyclization, 321, 322
selenophene-containing copolymers, 325–6, 331
selenophene-fluorene copolymers, 718–19
selenophene-fused tetraethiophene, 327
selenophenes, 321–2
as n-type semiconductors, 334
as p-type semiconductors, 330–4
in conducting materials, 322–6
in electroactive materials, 327–30
in OFETs, 330–4
quinoidal, 327–30
SELEX, 824
self-assembled films, 8
self-assembled molecular networks (SAMNs)
in alkylated thiophenes, 518–21
influence of polar groups on formation, 524–5
of organosulfur compounds, 537–8
role of molecular structure and substrate, 538–43
self-assembled monolayers (SAMs), 5–7, 9, 528–9, 537–8
self-assembly, 10–16, 84, 518–40, 543–4
self-cavity effect, 462, 467, 474
‘self-healing’ properties, 521, 561
self-waveguiding effect, 462, 467, 468, 474
SEM, see scanning electron microscopy
semiconductors, see also organic semiconductors and inorganic semiconductors
factors influencing performance of, 662
fluorinated, 618
in thin film transistors, 566
n-channel, 334
polymeric, 650–1
selenophenes as, 330–4
semiempirical calculations, 366, 370–1
sensitizers, 298
sensors, 10, 248, 308, 330, 419, 545; see also chemosensors and biosensors and
photo-sensors
amperometric, 48, 55, 303
application of PEDOT in, 564–6
biological, 817–27
chemical, 815–17
fluorescence, 239
potentiometric recognition, 55
p-6P, see p-sexiphenyl
p-sexiphenyl (p-6P), 457, 465–6
sexithiophenes, 1, 2, 51, 384, 537, 624
SF, see superfluorescence
SFM, see scanning force microscopy
shape-persistent objects, 11
shell-printed texture, 507
‘side-bands’, 446
silanes, 559
silicon, 233, 238, 330, 595
silicon dioxide, 566
silicon Raman laser (SRS), 455
silk, 61, 534
silk-inspired sequence, 61
silole-containing polymers, 637, 723–4
silver, 537, 798–9
sinapinic acid, 185
single-crystal devices, 486
single excitation configuration interactions (CIS) approach, 368
single-wall carbon nanotubes (SWNTs), 10, 560, 566
SLEDs, see surface light-emitting diodes
small gap polymers, 344
smart cards, 195, 330
smart pixels, 158, 769
‘smart windows’, 769, 779–80, 784; see also electrochromic windows
SmC* phase, 507, 510, see also liquid crystallinity
soft lithography, 281
Solet extraction, 164, 172
solar cells, 158, 298, 419, 430; see also organic solar cells (OSCs)
solar energy harvesting, 298, 311
solid-state studies
 anisotropy, 191
 charge carrier mobility, 195–200
 microscopy, 191–3
 NMR spectroscopy, 187
 thermal analysis (DSC, TGA), 193–5
 UV–Vis spectroscopy, 187–8
 vibrational spectroscopy (IR, Raman), 188–9
 X-ray studies, 189–91
solution-processable polymers, 629
solvatochromic effect, 273
solvatochromism, 184, 273, 477, 739
solvent annealing, see solvent vapors
solvents
 high-boiling, 559
 low-boiling, 558
 polar, 559
 unfriendly, 687
solvent vapors, 114, 683–4
Sonogashira–Hagihara reaction, 81
Sonogashira-type coupling, 9, 21, 51, 77, 86, 88, 101, 108, see also cross-coupling reactions
Soret bands, 45, 47, 51, 96
Soxhlet extraction, 174
space charge limited current (SCLC), 599
spectral linewidth, 488, 489
spectroelectrochemistry, 442–9
spectrometry, 556, 557, 591
spectroscopy
 confocal, 602
 electrochemical impedance, 581
 Fourier transform infrared (FT-IR), 7, 25, 391
 Fourier transform Raman, 391
 in characterization of electropolymerized materials, 295
 incident angle-dependent polarized absorption, 481
 infrared, 188–9, 391–3
 near-edge X-ray absorption fine structure (NEXAFS)
 NMR, 173–4, 187
 of thin films, 481–2
 photoinduced absorption, 110
 photoluminescence, 284
 Raman, 25, 189, 235, 243, 391–3
 scanning tunneling, 532, 533
 time-resolved, 12, 38, 59
transient absorption, 110
UV–Vis, 8, 12, 14, 58, 174–88, 306, 393–8
vacuum UV, 188, 191
vibrational, 188–9, 445–9
X-ray photoelectron, 537
spin coating, 281, 558, 566, 595
spin-restricted state, see bipolaron state
spin-unrestricted state, see two-polaron state
spiropentfluorenes, 111–13
squaraine dyes, 65
SRRS, see stimulated resonance Raman scattering
SRS, see stimulated Raman scattering
stair-like morphology, 620
starburst effect, 98
starburst polymers, 104
Stark’s effect, 757
star-shaped oligothiophenes, 75, 99–110, 629
star-shaped structures, 75, 99–110, 116, 629
steady-state fluorescence, 45
step-growth mechanism, 164, 167
steric effects, 160, 393–4
steric interactions, in poly(phenylenevinylene) systems, 69
steroid-bridged thiophenes, 526
Stevens–Basch–Krauss pseudopotentials, 366
stilbenes, 239, 725
stimulated emissions (SE), 283, 490; see also amplified spontaneous emission
stimulated Raman scattering (SRS), 455, 456
stimulated resonance Raman scattering (SRRS), 456, 467–72, 474
STM, see scanning tunneling microscopy
straight molecules, 478, 480
striated fan-shaped texture, 507, 509
STS, see scanning tunneling spectroscopy
styrene, 17, 18, 202
Su–Schrieffer–Heeger (SSH) theory, 370
substitutions, 360, 376–84; see also beta substitutions
N-succinimidyl esters, 63
sulfinimides, 287
sulflour molecule, 246, 247, 248
sulfonic acids, 552
sulfonium salt protocol, 325
sulfonium salts, 287, 325
sulfoxides, 559
sulfoximides, 287
sulfur, 255, 310–11
sulfur ligands, 310–11
sunlight harvesting, 71; see also light-harvesting materials
(super)conducting complexes, 327
supercooled fluids, 173
'supercyclopolythiophene', 76
superexchange, 306, 307
superfluorescence (SF), 456, 474
super helical structures, 543
'superlighting', 822
superstructures
alkylated thiophenes, 518–24
host–guest systems based on thiophene macrocycles, 535–7
influence of polar groups on SAMNs formation, 524–31
Van der Waals and hydrogen inermolecular interaction, 531–5
supramolecular cyclic structures, 80
supramolecular organization, 10
surface-active components, 559
surface-active groups, 5–10
surface light-emitting diodes (SLEDs), 741
Suzuki–Miyaura conditions, 241
Suzuki-type cross-coupling reactions, 4, 12, 21, 22, 25, 28, 32, 34, 72, 105, 108, 112, 125, 160, 236, 299, 326, see also cross-coupling reactions
switches, 10; see also photoswitches
switching frequency, 648
switching speed, 761, 777
swivel cruciforms, 100, 628
SWNTs, see single-walled carbon nanotubes
synthons, 255

TAA, see tiarylamine
tailor-made properties, 404–8
tail-to-tail coupling, 163, 698
tail-to-tail orientation, 159, 163
Takashi substitution reaction, 29
tapping mode atomic force microscopy (TMAFM), 192, 196, see also microscopy
TCNEO, see tetracyanoethylene oxide
TCNQ, see tetracyanoquinodimethane
TCOs, see transparent conducting oxides
TCV, see tricyanovinylene
Teflon, see polytetrafluoroethylene
telechelic synthesis, 162, 169
TEM, see transmission electron microscopy
template effect, 57
templates, 57, 80, 84; see also nanotemplates
ter-EDOT, 430, 441
terpyridine, 52
terpyridyl, 306	
terselenophene, 323
terthiophene–fullerene dyads, 36
terthiophenebutadienes, 81–2, 83
terthiophenes, 5, 36, 185, 259, 266–7, 334, 396–7
tetra(ethylene oxide) (TEO), 22
tetraalkylorthosilicates, 559
tetraazoporphyrin, 803
tetracene, 618	
tetraceno[2,3-b]thiophene, 627
tetrachloroferrate, 552, 556, 557
tetracobalt complex, 87
tetracyanoethylene, 28
tetracyanoquinodimethane (TCNQ), 327–9, 334, 398, 477
tetracyanoanthraquinodimethane, 334
tetracyanoquinodimethane (TCNQ), 327–9, 334, 398, 477
tetracyanoethylene oxide (TCNEO), 327
tetraceno[2,3-b]thiophene, 627
tetrathiafulvalene–σ-tetracyano-p-quinodimethane (TTF–σ-TCNQ), 760
tetrathiafulvalenes (TTF), 44, 236, 327, 329, 436, 477, 778
tetrathiafulvine, 89
tetrathiafulvophyrin dication, 96
TFTs, see thin film transistors
thermal analysis, 18, 193–5
thermal processing, 680–3
thermochromism, 14, 184, 384, 385, 477, 696
thermocleave, 684–7
THHel, see thiaheterohelicene
Index 863

thiadiazolothenopyrazine, 70, 73
thiaheterohelicene (THHel), 342, 359, 360
thiazolothiazole, 624, 625
thieno[2,3-b]thiophene, 219, 221, 234, 633, 656, 658, 662–3
copolymers, 198, 656, 658
synthesis, 664
copolymers, 656, 658–9
synthesis, 662–4
thieno[3,4-b]-1,4-oxathiane (EDOST), 432
thieno[3,4-b]pyrazine (TP), 70, 731
thieno[3,4-b]thiophene, 219, 220, 221, 229
thieno[3,4-c]pyrazine, 433
thieno[3,4-c]thiophene, 219, 200
thienoacene ladder polymer (C_{2}SLad), 342, 359
thienoacenes, 242–3, 347, 349
thienopyrazines (TP), 70–4, 369
thienopyrazinothiadiazole (TTP), 369
thienothiadiazole (TT), 73, 369
thienothiazole, 70
thienothiophenes (TTs), 74, 219–34
copolymers, 656–9, 667
fused, 3
in improving PL efficiency of polythiophenes, 708
in organic field effect transistors (OFETs), 232
monomers, 662–4
polymers, 651–67
structural isomers, 219–20
synthesis, 220–1
2-thienylethylene, 5
thienylene-ethylenyl oligomers, 9, 10
thienylenes, 93, 118, 719
thienylenevinylene, 105, 237
thienyl sulfoxides, 287
thienyl-S,S-dioxide, 262, 265, 279
thin-film organic-light amplifiers, 281
thin films, 5, 195, 477; see also field effect mobility
amorphous, 788–90
controlling morphology of, 679–88
fast- and slow- grown, 683–4
influence of polymer molecular weight on, 654–6
in oligothiophene-S,S-dioxides, 271
molecular alignments in, 479–80
spectroscopy of, 481–2
thin film transistors (TFTs), 195, 40, 566, 624; see also organic field effect transistors
thioacetate groups, 7
thiocyanate groups, 8
thiohelicene, 342, 359, 360
thiolates, 310
thiols, 5, 6, 7
thiophene–acene oligomers, 612–20
thiophene–anthrazoline copolymers, 732
thiophene–azine oligomers, 624–5
thiophene–azole oligomers, 624–5
thiophene-based copolymers, 635–8
thiophene-based oligomers, 566
thiophene–benzobisthiazole copolymers, 732
3-thiophene-carboxylic acid, 426
thiophene–EDOT oligomers, 441–2
thiophene–fluorene copolymers, in PLEDs, 716–20
thiophene–perfluorarene copolymers, 637
thiophene–phenylene copolymers, 637
thiophene/phenylene co-oligomers (TPCO), 455–74, 478, 483, 486–8
thiophene–phenylene copolymers, in PLEDs, 716
thiophene photo-oxidation, 660
thiophene–quinoline copolymers, 732
thiophene–quinoxaline copolymers, 732
thiophene–silole polymers, 723–5
thiophene–S-oxides, 255–6, 287
thiophene-S,S-dioxides; see also oligothiophene-S,S-dioxides
electrochemical properties, 256–67, 287
in co-oligomers and copolymers, 257–9, 262–6
in electroluminescent applications, 735–43
molecular structure of, 255–6
photoluminescence properties, 267–76
thiophene sulfinimides, 287
thiophene sulfoximides, 287
thiophene–thiazole copolymers, 366
thiophene–thiophene-S,S-dioxide copolymers, 736, 737
thiophenium salts, 287
THP, see tetrahydropyranol
three-dimensional (3D) architectures, see dendrimers
three-strand polymers, 308
thrombin, see human α-thrombin
tiarylamine (TAA) oligomers, 628–9
time-off-flight (TOF) method, 20, 280, 599
time-resolved fluorescence, 32, 38, 45
time-resolved spectroscopy, 12, 38, 59
titanium-doped cerium(IV) oxide, 568
TMAFM, see tapping mode atomic force microscopy
TMS, see trimethylsilyl
TOF, see time-off-flight
p-toluenesulfonate, 554, 556
3-toluoxithiophene, 428
tolyl-end-substituted oligothiophenes, 613
TOPT, see 2,3-bis[(3-thienylcarbonyl)oxy]propyl
3-thiophenecarboxylate
TP, see thienopyrazines
TPCO, see thiophene/phenylene co-oligomers
TPD, see tetraphenylbenzidine
transetherification reaction, 550–1
transient absorption spectroscopy, 110
transistors, 330, 396; see also organic field-effect transistors
light-emitting, 42, 485
organic electronic, 396
thin film, 195, 40, 566, 612, 624
transition dipole moment, large, 491, 492
transition metal-containing oligothiophenes, 295–302
transition metal-containing polymers
electropolymerization and properties, 302–14
synthesis of, 294
types of, 293–4, 302–13
transition-metal-catalyzed cross-coupling reactions, 3, 4–5
transmission electron microscopy (TEM), 13, 14, 17, 461, 601
transparent conducting oxides (TCOs), 560
transparent conductors, 561
transparent electrodes, 430
triarylamine/perfluorocyclobutane-containing polymer (BTPD-PFCB), 729
triarylamines, 119, 126, 711
1,2,4-triazine, 803
tricyanovinylene (TCV), 28
trifluoroacetic acid, 53, 557
trifluoromethylphenyl groups, 625
trimethylsilyl (TMS), 123, 125, 424, 441
triphenylamine, 102, 105, 730
triple-decker porphyrin complex, 311
triplexes, 819, 821
tripod-shaped molecules, 6, 7
tris[4-(2-thienyl)phenyl]amine, 103
trithienobenzene, 628
trithienocyclotriyne (TTC), 87, 88
truxenes, 105–7, 405, 628
TT, see thienothiadiazole
TTC, see trithienocyclotriyne
TTF–σ-TCNQ, see tetrathiafulvalene–σ-tetracyano-p-quinodimethane
TTP, see thienopyrazinothiadiazole
TTs, see thienothiophenes
tubular structures, 78
tungsten, 55
tungsten trioxide, 567, 760, 777
twist-glass transition, 193
twisting, see inter-ring twisting
twistons, 385
two-dimensional crystals, see platelet crystals
two-polaron state, 371
UFF, see universal force field
Ullmann polymerization, 700
Ullmann-type homocoupling, 32
ultramicroelectrodes, 421
undecanethiol, 5
β-undeci(thienoacene), 74
uniaxial alignment, 480
universal force field (UFF), 385
uracil, 59
UV ozonizing, 558
UV–Vis spectroscopy, 8, 12, 14, 58, 174–88, 306, 393–8
vacuum deposition, 479, 595
vacuum UV spectroscopy, 188, 191
valence effective Hamiltonian (VEH), 366, 393, 713
valence tautomerism, 349–52
Van der Waals’ crystals, 485
Van der Waals’ forces, 84
Van der Waals’ interactions, 520, 521, 525, 531–5, 542, 599
Van der Waals’ radii, 232
vapor deposition, 457
vapor phase, 456, 474, 480
VDOT, 436, see 3,4-(vinyleneoxy)thiophene
VEH, see valence effective Hamiltonian
vertical alignment, 479, 480, 482, 490–2
vibrational spectroscopy, 188–9, 445–9
video display panels, 560
Vilsmeier formylation, 26, 44
Vilsmeier reaction, 169
Vilsmeier–Haack formylation, 29, 31, 38, 45, 105, 115
3,4-(vinyleneoxy)thiophene (VDOT), 436, 551, 553
viologens, 169, 773, 778
Vis–NIR absorption spectrotol electrochemistry, 443–4
voltammetry, 58, 420–2, 579–81

wallpaper artworks, 777
Warburg-type region, 581
water-soluble polymers, 229
WAXRD, see wide-angle X-ray diffraction
WAXS (wide-angle X-ray scattering) studies, 194
wet cleaning, 558
wet-processing techniques, 566
whisker microstructure, 654
white electroluminescence, 278, 729
white light-emitting copolymers, 729–31
wide-angle X-ray diffraction (WAXRD), 601
wide-angle X-ray scattering, see WAXS
wide-bandgap polythiophene derivatives, 582–3, 591
Williamson alkylation, 435
Williamson etherification, 35
Williamson ether synthesis, 550, 551
Wittig coupling, 299
Wittig–Horner-type reactions, 25, 26, 105
Wittig reaction, 16, 50
Wolff–Kishner reduction, 19
Wurtz coupling, 158

XPS, see X-ray photoelectron spectroscopy
X-ray crystallographic analysis, 297, 325
X-ray crystal studies, 240, 243, 301
X-ray diffraction (XRD), 271, 489
X-ray photoelectron spectrometer, 591
X-ray photoelectron spectroscopy (XPS), 537
X-ray scattering, 234; see also grazing incidence
 small-angle X-ray scattering
 X-ray studies, 189–91
XRD, see X-ray diffraction
X-shaped structures, 100

YAG/OPO, 462, 467
Yamamoto coupling, 233, 238, 722
Yamamoto polymerization, 666, 667, 700
Y-branch switching assembly, 790
Zeonex polyolefin films, 791
zig-zag conformations, 53
zinc complexes, 311
zinc porphyrin, 45, 50
zinc sulfide, 561
zirconacyclopentadiene, 88
zwitterionic forms, 329
zwitterionic polythiophenes, 64, 814, 827